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3 Branching process approximations.

3.1 Whittle’s threshold theorem.

Back to the SIR-epidemic, in the case Ry > 1, or 3 < a, which should lead
to large epidemics. However, this is not certain, because of chance elements.
Whittle’s stochastic threshold theorem says the following, for an epidemic
with [y small and with N large:

If Ry < 1, then the probability of having N —S(0c0) as big as any non-zero
fraction of N is very small: if Ry > 1, then N — S(oc0) will be some positive
fraction of N with probability close to (3/a)%.

More precisely, Whittle noted that, given any £ > 0, the process I(-) can
be bounded above and below by birth and death processes X* and X"¢, until
the first time that S < (1 —¢)N:

1. above by the process X™ with per capita birth rate o and death rate j3;

2. below by the process X with smaller birth rate (1 —¢)a, but the same
death rate (.
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He then showed that, for either of the birth and death processes, provided
that a(1—¢) > [, the events of extinction and of becoming extinct with only
eN individuals ever born differ on a set of probability geometrically small
with N. Hence, comparing the extinction probabilities of the two birth and
death processes, he concluded that

Io /)
p +ny < P[the epidemic ends with S(c0) > (1—&)N] < _P +n4,
a a(l —¢)
where both n and 7% are geometrically small. This argument can be
adapted for € = ey; taking for instance ey = N~/2 gives
P[the epidemic is small] ~ (8/a)%,

when Ry > 1. Of course, for Ry < 1, both birth and death processes die out
fast with probability geometrically close to 1.

The time T to reach S = (1 — €)N, if this happens, is in distribution larger
than

(log(eN) —log W*)/(ex — )

and smaller than

(log(eN) —log(W"))/(a(1 — ) = ),

by the same comparison, where, by the usual martingale convergence argu-
ment,

Bt XUty — WY as.

e(ﬂ_a{l_s})tXl’E(t) — Wh as.
Thus the time to reach, say, S = N — N'/2 is of order clog N for some ¢; in
any fixed time interval [0, 7], the change in S(¢) is only of order O(1). This

explains why the Kurtz theorem is consistent and correct for starting with
Iy = O(1), but not helpful.

3.2 The Ball and Donnelly coupling.

In this approach, the epidemic is not just bounded by birth and death pro-
cesses, but attached to one of them, path by path; this makes comparison
arguments very direct. Start with X™* as before, with X*(0) = I,. Associate
the epidemic process (§ 1 ) with X* by
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1. choosing a label for each newborn individual and for each of the I
initial indviduals wniformly and indpendently from {1,2,...,N + 1}
(excluding the parent’s label).

2. marking individuals that are assigned a label that has previously been
assigned to an unmarked individual, or that are offspring of a marked

individual.
Set
I(t) := number of unmarked individuals alive at ;
S(t) = Sy — #{unmarked individuals born up to time ¢}.

The process (§ ) I ) is clearly Markovian; it is easy to check that it is indeed
an SIR-epidemic process.

The coupling: if 7 denotes the first occasion on which a label is chosen for
the second time, then we have

Xu(t) = I(t) forall0<t<r:

the infective process is identical to the birth and death process X* up to the
random time 7 (and S(t) decreases by 1 on each occasion when /(t) increases,
so that it is also determined precisely by X up to the time 7).

For some choice of ¢y, define
Ay = dpy (L(XU(1),0 <t < ty), LI(1),0 < t < ty)),
and note that, from the coupling above,
Ay < Pl <ty].

When is this probability small?

If M labels are sampled as above, then the probability of having a coin-
cident pair is the solution to a birthday problem, with great Poisson approx-
imation using the Stein—Chen method. In particular,

P[no coincident pair|] ~ e (%),
So Ay is small if M < v/N, i.e. as long as
N-S < VN,
then the infectives process in the epidemic is indistinguishable from the birth

and death process X", with high probability.
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3.3 The Radon—Nikodym coupling.

For the epidemic process, the probability density of a path having its first m
jumps at times
0<t; <ty < - <ty,

with sequence of states (S, 1), ..., (Sm, Im) is

[ay

m—

H e_Ii[a5i+ﬁ](ti+1_ti) (Oésl)uz/gl_ul
: as; + ’

where to =0, s; = S;/N and
u; = 1{Ii+1 = Iz + 1}

For the linear birth and death process X* and the state sequence {I;, 1 < i <
m}, the formula is the same, but with s; replaced by 1. Hence the likelihood
ratio of the two processes at such a path is

m—1
Ty = H(]_ + Zi),

i=0

where
efi(l—Si)(tiﬂ—ti)S;‘i
]_ + Zi = 1 ~ a(l,Si) (31)
a+p

Note that

(Ip—1)/N < 1-s < (Iy—1+414)/N for all i,
and that, under the birth and death probability measure,
[i(OZ + ﬁ)(tﬁ_l — t,)

is a realization of a random variable E; ~ exp(l), and that the F; are all
independent: thus, ‘typically’,

z = O((lo+14)/N)

is small.



So consider sampling paths from the process X" of length m; the quan-
tity 7, is then a realization of a likelihood ratio martingale R,,, the corre-
sponding random variables Z; have zero mean, and have variance

Var Z; < c(a,p)(1—s;)* < d(a, B)(i + Iy)* /N2

Hence

(1+¢)*d(a, B) , 9
— > < =
P[Ogsigp IRy, — 1| >¢] < N2 > (i + 1o) 0

(M + Ip)?
: gZN?2 '
Thus, for M + I, < N?/3, we can choose ¢ < 1 to make this probability
small, and hence Ay also: the epidemic and birth and death processes can be
coupled so as to be indistinguishable for N —S < N?/3, with high probability.



