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3 Branching process approximations.

3.1 Whittle’s threshold theorem.

Back to the SIR-epidemic, in the case R0 > 1, or β < α, which should lead
to large epidemics. However, this is not certain, because of chance elements.

Whittle’s stochastic threshold theorem says the following, for an epidemic
with I0 small and with N large:

If R0 < 1, then the probability of having N−S(∞) as big as any non-zero
fraction of N is very small: if R0 > 1, then N − S(∞) will be some positive

fraction of N with probability close to (β/α)I0.

More precisely, Whittle noted that, given any ε > 0, the process I(·) can

be bounded above and below by birth and death processes Xu and X l,ε, until
the first time that S < (1 − ε)N :

1. above by the process Xu with per capita birth rate α and death rate β;

2. below by the process X l,ε with smaller birth rate (1−ε)α, but the same

death rate β.
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He then showed that, for either of the birth and death processes, provided
that α(1−ε) > β, the events of extinction and of becoming extinct with only

εN individuals ever born differ on a set of probability geometrically small

with N . Hence, comparing the extinction probabilities of the two birth and
death processes, he concluded that(

β

α

)I0

+η1
N ≤ P[the epidemic ends with S(∞) ≥ (1−ε)N ] ≤

(
β

α(1 − ε)

)I0

+η2
N ,

where both η1
N and η2

N are geometrically small. This argument can be

adapted for ε = εN ; taking for instance εN = N−1/2 gives

P[the epidemic is small] ∼ (β/α)I0,

when R0 > 1. Of course, for R0 < 1, both birth and death processes die out
fast with probability geometrically close to 1.

The time τ to reach S = (1 − ε)N , if this happens, is in distribution larger
than

(log(εN) − log W u)/(α − β)

and smaller than

(log(εN) − log(W l,ε))/(α(1 − ε) − β),

by the same comparison, where, by the usual martingale convergence argu-

ment,

e(β−α)tXu(t) → W u a.s.

e(β−α{1−ε})tX l,ε(t) → W l,ε a.s.

Thus the time to reach, say, S = N − N1/2 is of order c log N for some c; in

any fixed time interval [0, T ], the change in S(t) is only of order O(1). This
explains why the Kurtz theorem is consistent and correct for starting with

I0 = O(1), but not helpful.

3.2 The Ball and Donnelly coupling.

In this approach, the epidemic is not just bounded by birth and death pro-

cesses, but attached to one of them, path by path; this makes comparison

arguments very direct. Start with Xu as before, with Xu(0) = I0. Associate
the epidemic process (S̃, Ĩ) with Xu by
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1. choosing a label for each newborn individual and for each of the I0

initial indviduals uniformly and indpendently from {1, 2, . . . , N + 1}
(excluding the parent’s label).

2. marking individuals that are assigned a label that has previously been
assigned to an unmarked individual, or that are offspring of a marked

individual.

Set

Ĩ(t) := number of unmarked individuals alive at t;

S̃(t) := S0 − #{unmarked individuals born up to time t}.
The process (S̃, Ĩ) is clearly Markovian; it is easy to check that it is indeed

an SIR-epidemic process.

The coupling: if τ denotes the first occasion on which a label is chosen for
the second time, then we have

Xu(t) = Ĩ(t) for all 0 ≤ t < τ :

the infective process is identical to the birth and death process Xu up to the
random time τ (and S̃(t) decreases by 1 on each occasion when Ĩ(t) increases,

so that it is also determined precisely by Xu up to the time τ).

For some choice of tN , define

∆N := dTV (L(Xu(t), 0 ≤ t ≤ tN),L(Ĩ(t), 0 ≤ t ≤ tN)),

and note that, from the coupling above,

∆N ≤ P[τ < tN ].

When is this probability small?

If M labels are sampled as above, then the probability of having a coin-
cident pair is the solution to a birthday problem, with great Poisson approx-

imation using the Stein–Chen method. In particular,

P[no coincident pair] ∼ e−
1
N (M

2 ).

So ∆N is small if M � √
N , i.e. as long as

N − S̃ �
√

N,

then the infectives process in the epidemic is indistinguishable from the birth
and death process Xu, with high probability.
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3.3 The Radon–Nikodym coupling.

For the epidemic process, the probability density of a path having its first m
jumps at times

0 < t1 < t2 < · · · < tm,

with sequence of states (S1, I1), . . . , (Sm, Im) is

m−1∏
i=0

{
e−Ii[αsi+β](ti+1−ti)

(αsi)
uiβ1−ui

αsi + β

}
,

where t0 = 0, si = Si/N and

ui = 1{Ii+1 = Ii + 1}.

For the linear birth and death process Xu and the state sequence {Ii, 1 ≤ i ≤
m}, the formula is the same, but with si replaced by 1. Hence the likelihood

ratio of the two processes at such a path is

rm :=
m−1∏
i=0

(1 + zi),

where

1 + zi =
eIi(1−si)(ti+1−ti)sui

i

1 − α(1−si)
α+β

. (3.1)

Note that

(I0 − 1)/N ≤ 1 − si ≤ (I0 − 1 + i)/N for all i,

and that, under the birth and death probability measure,

Ii(α + β)(ti+1 − ti)

is a realization of a random variable Ei ∼ exp(1), and that the Ei are all

independent: thus, ‘typically’,

zi = O((I0 + i)/N)

is small.
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So consider sampling paths from the process Xu of length m; the quan-
tity rm is then a realization of a likelihood ratio martingale Rm, the corre-

sponding random variables Zi have zero mean, and have variance

VarZi ≤ c(α, β)(1 − si)
2 ≤ c′(α, β)(i + I0)

2/N2.

Hence

P[ sup
0≤m≤M

|Rm − 1| ≥ ε] ≤ (1 + ε)2c′(α, β)

N2ε2

M∑
i=0

(i + I0)
2 = O

(
(M + I0)

3

ε2N2

)
.

Thus, for M + I0 � N2/3, we can choose ε � 1 to make this probability

small, and hence ∆N also: the epidemic and birth and death processes can be
coupled so as to be indistinguishable for N−S̃ � N2/3, with high probability.
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