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2 Markov population processes.

2.1 Setting.

This chapter is substantially based on work of T. G. Kurtz – see the refer-
ences.

Definition. A Markov population process (MPP) is a sequence of pure jump
Markov processes XN (·) on Z

d for some d, with transition rates given by

i → i + j at rate Nλj(i/N), j ∈ J ⊂ Z
d,

where the λj are smooth functions R
d → R+.

Here, we shall restrict ourselves to taking J to be a finite set, and shall

assume that the λj’s are all (fixed) functions of class C2. One can relax these
assumptions somewhat.

Exercise. Express the SIR-Markov epidemic as an MPP.

An MPP can be reformulated in terms of independent Poisson processes

{Pj, j ∈ J}. Write xN (t) := N−1XN(t), and define the ‘cumulative exposure
to j-jumps’ to be

ΛjN :=

∫ t

0

λj(xN(u)) du.
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Then the processes of j-jumps can be realized as Pj(NΛjN(·)), j ∈ J . The
MPP XN can be realized as

XN(t) = XN(0) +
∑
j∈J

jPj(NΛjN(t)). (2.1)

This construction is actually recursive in time — given the Poisson processes,

the process XN can be generated from them on a path by path basis, with
no need to read the future...

2.2 The deterministic ‘law of large numbers’.

Introduce the associated deterministic equations

dξ

dt
= F (ξ); ξ(0) = ξ0, (2.2)

where F : R
d → R

d is given by

F (x) :=
∑
j∈J

jλj(x).

Its integral form can be written as

ξ(t) = ξ(0) +

∫ t

0

F (ξ(u)) du. (2.3)

Note first that the deterministic integral equation (2.3) is very much like
the Poisson construction (2.1) of XN . Indeed, we have

xN(t) = xN(0) + N−1
∑
j∈J

jPj(NΛjN(t))

= xN(0) +
∑
j∈J

jΛjN(t) + wN(t)

= xN(0) +

∫ t

0

F (xN(u)) du + wN(t), (2.4)

where

wN(t) := N−1
∑
j∈J

jP̂j(NΛjN(t)),
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and P̂j(u) := Pj(u)− u. This makes wN a very nice process indeed: a vector
valued martingale, with very nice sample paths. Subtracting (2.3) from (2.4),

we get

xN(t)− ξ(t) = xN (0)− ξ(0) +

∫ t

0

{F (xN(u))−F (ξ(u))} du + wN(t). (2.5)

Suppose that ‖λ′
j‖ := supx |λ′

j(x)| < ∞ for each j.

Then it follows that

|xN(t) − ξ(t)| ≤ |xN (0) − ξ(0)| +
∫ t

0

‖F ′‖ |xN(u) − ξ(u)| du + |wN(t)|.

Gronwall’s inequality now implies that

∆
(1)
NT := sup

0≤t≤T
|xN(t) − ξ(t)| ≤ GNeT‖F ′‖,

where

GN := |xN(0) − ξ(0)| + sup
0≤t≤T

|wN(t)|.

Suppose also that ‖λj‖ := supx λj(x) < ∞ for each j.

We note that

sup
0≤t≤T

|wN(t)| ≤ N−1
∑
j∈J

|j| sup
0≤t≤T

|P̂j(Nt‖λj‖).

From properties of the Poisson process,

P[ sup
0≤u≤U

|P̂ (u)| > c
√

U log U ] ≤ K/U2,

for suitably chosen c, K. Hence, except on a set of probability at most

K
∑

j∈J(NT‖λj‖)2 = O(N−2), we have

sup
0≤t≤T

|wN(t)| ≤ cN−1
∑
j∈J

|j|
√

NT‖λj‖ log{NT‖λj‖}

= O(
√

T/N log(NT )).

It thus follows that, if |xN (0) − ξ(0)| = O(N−1/2 log N) as N → ∞, then

∆
(1)
NT = O(N−1/2 log N) for each fixed T.

This gives the deterministic equations as a large N limit, with an explicit
approximation error rate.
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2.3 Central limit theorem

Assume also that ‖λ′′
j‖ < ∞ for all j ∈ J .

Returning to (2.5), we now have, for example,

|F (xN(t))−F (ξ(t))−DF (ξ(t))(xN(t)−ξ(t))| ≤ ‖D2F‖{∆(1)
NT}2 = O(N−1(log N)2).

Write DF (ξ(t)) = A(t), and let α(t) be such that

d

dt
eα(t) = A(t)eα(t), α(0) = I.

Of course, if A were constant, we would have α(t) = eAt. Then we can

develop (2.5) to give

N1/2{xN (t)−ξ(t)} = N1/2{xN(0)−ξ(0)}+
∫ t

0

A(u)N1/2{xN (u)−ξ(u)} du+hN(t),

with hN(t) := N1/2{wN(t) + εN(t)}, and

sup
0≤t≤T

|εN(t)| = O(N−1(log N)2).

‘Solving’ this linear integral equation now gives

N1/2{xN (t) − ξ(t)} = N1/2wN(t) + eα(t)N1/2{xN (0) − ξ(0)}
+ eα(t)

∫ t

0

e−α(u)A(u)N1/2wN(u) du + O(N−1/2(log N)2),

uniformly in 0 ≤ t ≤ T ; this expresses N1/2{xN(t) − ξ(t)} in terms of the

much nicer process N1/2wN .
Define the even nicer process

w̃N(t) := N−1
∑
j∈J

jP̂j(NΛj(t)),

where Λj(t) :=
∫ t

0
λj(ξ(u)) du should be a close, but non-random, approxi-

mation to ΛjN(t). Indeed, we have

|ΛjN(t) − Λj(t)| = t‖λ′
j‖ sup

0≤u≤t
|xN (u) − ξ(u)|

≤ T‖λ′
j‖∆(1)

NT
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for all 0 ≤ t ≤ T . Then wN(t) and w̃N(t) differ only because of the shifts in
the arguments of the Poisson processes, and, for a centred Poisson process P̂ ,

we have

sup
0≤u≤U

sup
0≤v≤δ

|P̂ (u + v) − P̂ (u)| ≤ c
√

δ log(U/δ),

except with probability (δ/U)2. Hence, recalling the definitions of wN and w̃N ,
we obtain

∆
(2)
NT := sup

0≤t≤T
|wN(t) − w̃N(t)| ≤ cN−1

∑
j∈J

|j|
{
‖λ′

j‖TN∆
(1)
NT

}1/2

log N

= O(N−3/4(log N)3/2),

except with probability of order O(N−1).
Now we can approximate the nicer process w̃N using the Komlos–Major–

Tusnady theorem: for suitably chosen c, one can construct a standard Brow-
nian motion Bj such that

sup
0≤u≤U

|P̂j(Nu) − Bj(Nu)| ≤ c log(NU)

except on a set of probably at most N−1. This enables one to establish that,

except with probability of at most order O(N−1),

sup
0≤t≤T

|N1/2w̃N(t) − W (t)| = O(N−1/2 log N),

where

W (t) :=

∫ t

0

σ(u) dB(u),

B is a d-dimensional standard Brownian motion, and

σ2(u) :=
∑
j∈J

jjT λj(ξ(u)).

Putting this all back into the expression for N1/2{xN (t) − ξ(t)} in terms of

the process N1/2wN , we obtain the following

Central limit theorem:

N1/2{xN (t) − ξ(t)} = W (t) + eα(t)N1/2{xN(0) − ξ(0)}
+ eα(t)

∫ t

0

e−α(u)A(u)W (u) du + O(N−1/4(log N)3/2)

= N1/2{xN(0) − ξ(0)} +

∫ t

0

eα(t)−α(v)σ(v) dB(v) + O(N−1/4(log N)3/2),
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this last by partial integration.
Note that this diffusion approximation has covariance matrix given by

Σ(t) :=

∫ t

0

eα(t)−α(v)σ2(v)e[α(t)−α(v)]T dv,

yielding the differential equation

dΣ

dt
= AΣ + ΣAT + σ2

as an alternative means of calculation. The approximation also has in-

finitesimal drift A(t)w at position w at time t – a time-transformed multi-
dimensional Ornstein–Uhlenbeck process.

Notes. In terms of the SIR-epidemic process, there are two problems. First,
the final size is not (directly) covered, because there is always the restriction

to fixed, finite T : T → ∞ is not easily deduced, in general. Secondly,
the value ξ(0) for the epidemic starting with e.g. only one initial infective

is the point (1, 0), and the differential equation then remains in this state
for all time, whatever the value of R0. This gives no counterpart to the

deterministic thrshold theorem. Thus there are problems with applying the
above result in epidemic theory that still need to be overcome, although the

general approximation is extremely useful.
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