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5 Schistosomiasis, II

5.1 New model

The snails are no longer explicitly mentioned. We use M to denote the
number of human hosts, whereas H = H(t) will now denote the vector

(Hj(t), j ≥ 0), with Hj(t) the number of hosts having j parasites at time t:
the structure of the distribution of parasites among hosts is now critical.

Clearly, we have
∑

j≥0 Hj(t) = M for all t. Write hj = hj(t) = Hj(t)/M .

Infection: each host makes potentially infectious contacts at rate λ per unit

time. The probability that the contact is with a j-host is then hj (homoge-
neous mixing). Only uninfected (0-) hosts can become infected (concomitant

immunity); if a 0-host contacts an i-host, the probability that he then be-
comes a j-host is pij. Typically, think of each of the i parasites in the i-host

causing independent and identically distributed numbers of parasites in the
newly infected host, each with mean θ. Then pij is the convolution of i copies

of a distribution with mean θ, so that, in particular,∑
j≥1

jpij = iθ. (5.1)

Parasite mortality: parasites die independently with rate µ.
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Transition rates:
Death of a parasite in an i-host:

H → H − εi + εi−1 at rate iµHi, i ≥ 1.

Infection changing a 0-host into a j-host:

H → H + εj − ε0 at rate λH0

∑
i≥1

hipij , j ≥ 1.

Here, εi denotes a unit vector in the ith direction.
The model is easy to simulate, is ‘reasonably’ lifelike, but difficult to

analyze.

5.2 Deterministic analysis.

The average rate differential equations yield

dhi

dt
= (i + 1)µhi+1 − iµhi + λh0

∑
j≥1

hjpji, i ≥ 1;

dh0

dt
= µh1 − λh0

∑
j≥1

hj(1 − pj0), (5.2)

now an infinite system of non-linear ODE’s. Note that the approximation
cannot now be justified by the theorems of Chapter 2, since they are essen-

tially finite dimensional. General arguments for systems like this are very

much harder.
Questions of interest: Threshold theorems? Equilibria?

5.3 Equilibria.

Take equations (5.2) with LHS set to zero; write h̄ for h(t), all t, and write

Λ := λh̄0. Multiply the i-equation by i, and add over i ≥ 1:

0 = iµ(i + 1)h̄i+1 − iµ.ih̄i + Λ
∑
j≥1

jh̄j .
1

j
pjii. (5.3)

Now, since
∑

i≥1 pjii = jθ, we can write

p̃ji :=
1

jθ
pjii,
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defining the elements of a stochastic matrix P̃ . Then (5.3) becomes

0 = iµyi+1 − (i − 1)µyi + Λθ
∑
j≥1

yj p̃ji − Λθyi + (Λθ − µ)yi

= (ySΛ)i + (Λθ − µ)yi, (5.4)

where we have written yi = ih̄i, i ≥ 1; and SΛ is the infinitesimal matrix of
a Markov jump process Y on IN.

If Y is positive recurrent, then there is certainly a solution to these equa-

tions for Λ = µ/θ, i.e. for h̄0 = µ/(λθ) — so this only works for λθ > µ
— which we can call ȳ; and then any multiple of it is also a solution. The

required solution h̄i for i ≥ 1 is then given by

h̄i = cȳi/i, i ≥ 1,

where c satisfies

c
∑
i≥1

ȳi/i = 1 − h̄0 = 1 − µ/(λθ).

Y is positive recurrent only if θ < e.

5.4 Threshold theorems.

The parasites’ viewpoint. In an (almost) uninfected population, a parasite
enjoys

• average lifetime 1/µ;

• constant fecundity λθ.

So the average whole life expected number of offspring is their product:

Rp
0 = λθ/µ.

This suggests a threshold theorem with critical value Rp
0 = 1, as usual.

The branching approximation. In an (almost) uninfected population, neglect-
ing the (large) uninfected population, the transition rates become effectively:
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Death of a parasite in an i-host:

H → H − εi + εi−1 at rate iµHi, i ≥ 2;

H → H − ε1 at rate µH1.

Infection changing a 0-host into a j-host:

H → H + εj at rate λ
∑
i≥1

Hipij, j ≥ 1.

Note that the total number of parasites,

P (t) :=
∑
i≥1

iHi(t),

satisfies EP (t) = P (0)e(λθ−µ)t, again suggesting that Rp
0 = 1 should be criti-

cal. However, extinction means that P (t) = 0 eventually.

Criticality theorem for this branching process:

• If θ ≤ e, P[extinction] = 1 if and only if R0 ≤ 1.

• If θ > e, P[extinction] = 1 if and only if λe log θ
µ

≤ 1.

Heavily parasitized individuals. An individual with Y parasites at time 0
has about Y (t) = Y e−µt at time t later (as long as eµt � Y ). So W (t) =

log Y (t) drifts at constant rate µ towards zero. At an infection event, say at
time t, such an individual gives rise to a new individual with about θY (t)

parasites, or, on the logarithmic scale, a new heavily infected individual with
W = W (t) + log θ parasites. This suggests a continuous state branching

process for approximating the heavily parasitized individuals: the state of

an individual (on the logarithmic scale) drifts at constant rate µ towards
zero, and when zero is reached the individual dies. During its lifetime, it

gives birth at constant rate λ, and the state of the child is log θ larger than
that of the parent. All individuals behave otherwise independently.

This model can be transformed by time and space scaling to an equivalent
model, in which both drift and birth rate are 1, and the state of the child

is larger than that of the parent by an amount d = λ log θ/µ. Let P be the
total number of particles ever in existence.

Criticality theorem.
• If d ≤ 1/e, then Pw[N < ∞] = 1 for all w, and indeed 1 ≤ EdN ≤ e.
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• If d > 1/e, then Pw[N < ∞] < 1 for all w.

The interpretation is that, if λe log θ/µ ≤ 1, the heavily parasitized individu-

als are not self-supporting, but rely on being created from time to time by the
less heavily parasitized individuals. If λe log θ/µ > 1, the are self-supporting.

5.5 Initial growth rate

Assume the linear (branching process) approximation, in the deterministic

setting. Classically, a linear process has exponential growth. So set h0 = 1
in the differential equations (5.2), and ignore the i = 0 equation. Then the

equations reduce to
dhT

dt
= hT R,

a linear equation with constant coefficients, with the matrix R given by

Rij := iµδi−1,j − iµδij + λpij, i, j ≥ 1,

where δ denotes the Kronecker symbol.

Note that the vector v = (1, 2, 3, ....)T satisfies Rv = (λθ − µ)v, so that v

is (formally) a positive eigenvector with eigenvalue λθ − µ.

The parasites’ view.

hT v =
∑
j≥1

jhj = mean number of parasites per host =: m,

and
dm

dt
=∗

(
dh

dt

)T

v = hT Rv = (λθ − µ)hT v,

or
dm

dt
= (λθ − µ)m.

So m → ∞ exponentially with rate λθ − µ if Rp
0 > 1, whereas m → 0

exponentially with rate −(µ−λθ) if Rp
0 < 1. Again, suggests Rp

0 as threshold

quantity.

The hosts’ view.

hT1 = prevalence of infection,
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and d
dt

(hT 1) gives nothing pretty. However, setting yj := jhje
−(λθ−µ)t gives

dyT

dt
= yT S,

with
Sij := (i − 1)µδi−1,j − [λθ + (i − 1)µ]δij + λθp̃ij,

the infinitesimal matrix of a Markov jump process on IN — in fact, S = SΛ

when Λθ = λ. Hence

yj(t) = |y(0)|Py(0)[Y (t) = j].

For example, if Y is positive recurrent, then y(t) → |y(0)|π in total variation,
where πj > 0 for all j and

∑
j≥1 πj = 1; then

hj(t) ∼ |y(0)|e(λθ−µ)tπj/j,

and

hT (t)1 ∼ e(λθ−µ)tm(0)
∑
j≥1

(πj/j).

However, the process Y is positive recurrent if λθ log θ < µ, and the ‘parasite
critical’ value of λ is µ/θ: so Y is positive recurrent at the critical λ precisely

when θ < e, and things are different at the critical value otherwise. The
asymptotic exponential growth rate is in all cases not the expected λθ − µ

once Y is transient, which occurs for large enough ratio λ/µ, whatever the
value of θ.
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