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NOT FOR GENERAL DISTRIBUTION

4 Schistosomiasis.

4.1 Construction of the model.

We follow a simplified version of Macdonald’s (1965) model. We consider a
closed community of H human hosts, exposed to water area A containing N

snails (dead snails are immediately replaced by new ones). Let X(t) denote
the number of parasites in the whole human host population, and let Y (t)

be the number of infected snails. Write ∆ := N/A for the snail density,
Σ := H/A for the human density.

Transitions:

X → X + 1, Y unchanged at rate αH(Y/A);

X → X − 1, Y unchanged at rate γX;

Y → Y + 1, X unchanged at rate βX(1 − Y/N);

Y → Y − 1, X unchanged at rate δY.
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4.2 Deterministic treatment.

Define

x′ := X/H = average parasite load per human host;

y := Y/N = proportion of infected snails.

Then using an average rates approach gives the differential equations

dx′

dt
= α∆y − γx′;

dy

dt
= β(Σ/∆)x′(1 − y) − δy.

Set R0 := αβΣ/γδ.

Threshold theorem: If R0 ≤ 1, no endemic infection. If R0 > 1, there is an
endemic equilibrium

x̄′ =
α∆

γ
(1 − 1/R0); ȳ = (1 − 1/R0). (4.1)

4.3 Diffusion approximation

Practical interest centres on the behaviour near the deterministic equilibrium

(x̄, ȳ), where now, to match the earlier definition of MPP’s, we replace x′ =
X/H by x = X/N = x′Σ/∆. Starting with ξ0 = (x̄, ȳ), the CLT is valid over

any finite time interval [0, T ]. We then have

DF (x̄, ȳ) =

( −γ αΣ
β(1 − ȳ) −βx̄ − δ

)
=

( −γ αΣ
β/R0 −δR0

)
=: A,

the same for all t (equilibrium!), and

σ2(t) =
∑
j∈J

jjT λj(x̄, ȳ) = 2(1 − 1/R0)

(
αΣ 0
0 δ

)
.

The covariance matrix Σ(t) satisfies the linear equation

dΣ

dt
= AΣ + ΣAT + σ2. (4.2)
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Equilibrium distribution.
Not covered by the general CLT for MPP’s, which needs N → ∞ for

fixed T .

The stochastic equilibrium is in any case (0, 0) with probability 1.

However, the T → ∞ limit of the CLT can be shown (over asymptotically

long time intervals) to be a good approximation to a quasi–equilibrium distri-
bution. In particular, the equilibrium covariance matrix Σ(∞) can be found

by solving (4.2) with the LHS set equal to zero.

4.4 Stochastic threshold.

If Y � N , the process has transition rates close to those of a Markov branch-

ing process in two dimensions (e.g. use a coupling). For this branching
process:

1. Parasites (X-individuals) have lifetime offspring (infected snails) dis-

tribution with geometric distribution having mean β/γ;

2. Infected snails (Y -individuals) have lifetime offspring (parasites) dis-
tribution with geometric distribution having mean αΣ/δ.

The mean matrix for the imbedded two-dimensional Galton Watson process

is (
0 β/γ

αΣ/δ 0

)
.

If R0 > 1, one can solve the extinction probability fixed point equation to
find out the probability of early extinction, starting from (X0, Y0): this yields

P0[rapid extinction] = qX0
X qY0

Y ,

with

qX := (1 + δ/αΣ)/(1 + β/γ); qY := (1 + γ/β)/(1 + αΣ/δ).

4.5 Parameter estimation.

1. Estimate R0 using R̂0 = 1/(1 − ȳ);

2. Use the age-prevalence and age-egg output data to construct further
parameter estimates.

Neither procedure suggests that this model is at all realistic.
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