Bailey, N.T.J.
The total size of a general stochastic epidemic.
Biometrika 40 (1953), 177--185.

Bailey, N.T.J.
The mathematical theory of infectious diseases and its applications.

Ball, F.; Barbour, A.D.
Poisson approximation for some epidemic models.
J. Appl. Probab. 27 (1990), 479--490.

Ball, F.; Donnelly, P.
Branching process approximation of epidemic models. (Russian)
Teor. Veroyatnost. i Primenen. 37 (1992), 144--147.

Ball, F.; Donnelly, P.
Strong approximations for epidemic models.

Barbour, A.D.; Kafetzaki M.
A host--parasite model yielding heterogeneous parasite loads.

Barbour, A.D.; A. Pugliese
Asymptotic behaviour of a metapopulation model.

Barbour, A.D.; A. Pugliese
Convergence of a structured metapopulation model to Levins's model.

Barbour, A.D.; Utev, S.
Approximating the Reed-Frost epidemic process.

Barbour, A.D.
Quasi--stationary distributions in Markov population processes.

Barbour, A.D.
Macdonald's model and the transmission of bilharzia.

Barbour, A.D.
Modelling the transmission of schistosomiasis: an introductory view.

Billingsley, P.
Convergence of probability measures.

Daley, D.J. and Gani, J.
Epidemic modelling: an introduction.

Diekmann, O. and Heesterbeek, J.A.P.
Mathematical epidemiology of infectious diseases.

En'ko, P.D.
On the course of epidemics of some infectious diseases.

Heesterbeek, J.A.P.
R.O.
CMI Amsterdam, 1992.

Jordan, P. and Webbe, G.
Human schistosomiasis.

Kermack, W.O. and McKendrick, A.G.
Contributions to the mathematical theory of epidemics, part I.

Kamliô, J.; Major, P.; Tusnády, G.
An approximation of partial sums of independent RV's, and the sample DF. II.
Kurtz, T.G.
Limit theorems and diffusion approximations for density dependent Markov chains.

Kurtz, T.G.
Strong approximation theorems for density dependent Markov chains.

Kurtz, T.G.
Approximation of population processes.
CBMS-NSF Regional Conference Series in Applied Mathematics 36,

Levins, R.
Some demographic and genetic consequences of environmental heterogeneity for biological control.

Luchsinger, C.J.
Stochastic models of a parasitic infection, exhibiting three basic reproduction ratios.

Luchsinger, C.J.
Approximating the long-term behaviour of a model for parasitic infection.

Ross, R.
The prevention of malaria, 2nd Edn.

Sellke, T.
On the asymptotic distribution of the size of a stochastic epidemic.

Whittle, P.
The outcome of a stochastic epidemic---a note on Bailey’s paper.
Biometrika 42 (1955), 116--122.