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1 The SIR epidemic

1.1 The SIR model

We begin with a classical epidemic model based on ideas of En’ko (1889),
Ross (1911) and Kermack and McKendrick (1927); see Bailey’s (1975) book.

We begin with a closed population of N + 1 individuals, of whom I0

are originally infected, and the remainder S0 are susceptble to the disease.

Mixing is homogeneous. Let St and It denote the numbers of susceptibles
and infectives at time t. There are two transitions possible at any time:

1. Infection: I → I + 1, S → S − 1, at rate αI(S/N).

2. Removal: I → I − 1, S unchanged, at rate βI.

The former rate comes from the ‘law of mass action’ analogy. The number

of susceptibles can only decrease.

1.2 Differential equation formulation.

Interpret the rates as average drifts. This gives the equations

dS

dt
= −αI(S/N);

dI

dt
= αI(S/N) − βI. (1.1)
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Rewriting in terms of normalized variables s = S/N , i = I/N , this gives

ds

dt
= −αis;

di

dt
= αis − βi. (1.2)

Initial condition: s0 = S0/N , i0 = I0/N ; s0 + i0 = 1 + 1/N .

Solution curve.
di

ds
= −1 + β/(αs),

integrated to give

i + s − (β/α) log s = constant = i0 + s0 − (β/α) log s0,

or

i − i0 = f(s0) − f(s) ≈ (s − s0)f
′(s0),

for s close to s0.

Basic reproduction number.

R0 := α/β,

the average number of new infections caused by a single infective in an unin-

fected population. Note that thus f(s) = s − (1/R0) log s, so that, if s0 = 1,
then, as s gets a little smaller, i becomes smaller that i0 if f ′(1) < 0, whereas

i becomes larger than i0 if f ′(1) > 0. This leads to the following:

Threshold theorem.

If R0 < 1, only a small epidemic occurs. If R0 > 1 there will be a large
epidemic.

Final size. If R0 > 1, then the final proportion of susceptibles s∞ is the

smaller positive solution s to the equation

i0 = f(s) − f(s0). (1.3)

1.3 Stochastic formulation.

Interpret the rates as jump rates of a pure jump Markov process (S(t), I(t))

in continuous time. The state space is {(S, I) ∈ Z
2
+ : S + I ≤ N + 1}, hence

finite; the process begins with S(0) = S0 and I(0) = I0, and stops when I(t)
first reaches zero.
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The Kolmogorov forward equations. Defining P0 to mean PS0,I0 and

pkl(t) := P0[(S(t), I(t)) = (k, l)], k ≥ 0, l ≥ 0,

we have

dpkl

dt
= β(l+1)pk,l+1+α

(k + 1)

N
(l−1)pk+1,l−1−

(
α

k

N
l + βl

)
pkl, k ≥ 0, l ≥ 0,

if pkl(t) = 0 for all l < 0. Multiply the k, l equation by ukvl and add: if

F (t; u, v) :=
∑
k≥0

∑
l≥0

pkl(t)u
kvl,

then we get
∂F

∂t
= β(1 − v)

∂F

∂v
+

α

N
v(v − u)

∂2F

∂u∂v
. (1.4)

This yields moment equations, by taking partial derivatives of (1.4) with

respect to u and v, and then setting u = v = 1. For instance, writing

mS(t) := E0S(t) =
∂F

∂u
(t; 1, 1),

mI(t) := E0I(t) =
∂F

∂v
(t; 1, 1),

then the first partial derivatives of (1.4) give

dmS

dt
= − α

N
E0{S(t)I(t)};

dmI

dt
= −βmI(t) +

α

N
E0{S(t)I(t)}.

The deterministic differential equations result from these moment equations
by setting

E0{S(t)I(t)} = E0S(t)E0I(t) = mS(t)mI(t),

so that possible correlation is effectively being ignored. This is a simple

example of the ‘moment closure’ heuristic.
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1.4 Sellke’s model.

Sellke (1983) assumed the following:

1. Each susceptible needs a random cumulative amount of exposure to

disease organisms before becoming infected.

2. Each infective exposes each susceptible equally to disease organisms,

until removal.

In detail, he supposed:

1. Susceptibles have independent exp(1) distributed infection thresholds,

L1, L2, . . . , LS0 .

2. Each infective exposes each susceptible to infection at rate α/N , until

removal; the infectious periods are independent and exp(β) distributed
(i.e. having mean 1/β).

The ‘forgetting property’ of the exponential distribution leads to the follow-
ing:

Curious fact: this model generates exactly the same stochastic process as
the SIR-Markov model above.

Exploiting Sellke’s construction.

1. Order the infection thresholds L(1) < L(2) < . . . < L(S0).

2. Let the total per capita exposure generated by the I0 initial infected
individuals be U0 := (α/βN)T0 (with T0 having Gamma distribution

Γ(I0, 1)).

3. Let the amount of per capita exposure generated by the kth infected

individual be (α/βN)Tk (the Tk’s being independent exp(1) distributed

random variables). Write

Uk :=
α

βN

{
T0 +

k∑
j=1

Tj

}
.
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4. The kth smallest infection threshold can be expressed as

L(k) =

k∑
j=1

Vj

S0 − j + 1
,

where the Vj are independent exp(1) random variables.

The epidemic stops after exactly k infections have occurred, 0 ≤ k ≤ S0 − 1,

if
Uk − L(k+1) ≤ 0; (1.5)

the total exposure generated by the initial infectives and the k next infected
individuals is not enough to infect any of the remaining susceptibles.

This reduces discussion of the final size, and related questions, to a stop-
ping problem for a partial sum process Wk :=

∑k
j=0 Zj , built from indepen-

dent but not identically distributed random variables

Z0 =
αT0

βN
− V1

S0
; Zk =

αTk

βN
− Vk+1

S0 − k
, 1 ≤ k < S0.

Note that

EWk =

{
αI0

βN
− 1

S0

}
+

k∑
j=1

{
α

βN
− 1

S0 − j

}
=: µ(k) (1.6)

≈
{

αI0

βN
− 1

S0

}
+

αk

βN
+ log

{
S0 − k

S0

}
. (1.7)

So EWk = 0 when, from (1.7) and writing S∞ for the corresponding value

of k, we have{
αI0

βN
− 1

N

}
+

α

β

S0 − S∞
N

+ log

{
1 − S0 − S∞

S0

}
≈ 0,

which, with s∞ = S∞/N , gives

f(s∞) ≈ i0 + f(s0),

in agreement with (1.3).
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Sellke’s construction: the CLT.
One can use Sellke’s method to prove a central limit theorem for the final

size S(∞), when N → ∞, if S0 ∼ Ns0 for s0 fixed. Note that the process

{
√

N(WNu − µ(Nu)), u ≥ 0}

has a Gaussian limit Y as N → ∞, and that Y can be written as

Y (u) :=

∫ u

0

{
(α/β)2 + (s0 − v)−2

}1/2
dB(v),

where B is a standard Brownian motion. In particular,

VarY (u) = u(α/β)2 +
u

s0(s0 − u)
.

Let NτN denote the random time at which W hits zero, so that S0−S(∞) =

NτN . Then, by Anscombe’s theorem,

−
√

Nµ(NτN ) →d N (0, (s0 − s∞){R2
0 + 1/(s0s∞)}).

Since NτN = S0 −S(∞) = S0 −S∞ +(S∞−S(∞)), where we recall that S∞
is the fixed value obtained by solving µ(S0 − S∞) = 0, we obtain from (1.7)

and by Taylor’s expansion that

µ(NτN ) ∼ α

βN
(S∞ − S(∞)) − S∞ − S(∞)

S∞
;

hence it follows that

N−1/2(S(∞) − S∞) →d N (0, σ2),

with
σ2 = (s0 − s∞){R2

0 + 1/(s0s∞)})/{R0 − 1/s∞}2.

The discussion above did not allow for the possibility that, by chance
fluctuation, the stochastic process W may have fallen below zero very early

in the trajectory, even though the deterministic average curve does not. The
probability that this occurs can be addressed as an absorption problem for a

random walk with drift. See also the later chapters.
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Sellke’s construction: severe epidemics.
Suppose that, as N → ∞, α = αN becomes large, and hence R0N = αN/β

becomes large also. Then, from (1.3), we have s∞ ∼ e−R0N small, and the

CLT suggests that S(∞) ≈ N (S∞, S∞), since s∞ 
 1 and 1/s∞GR2
0N . This

suggests a Poisson approximation (Daniels (19??)).

Let

E ′ :=
R0N

N

{
T0 +

S0∑
j=1

Tj

}

be the total conceivable per capita infectious exposure generated if the whole
population became infected. Define

S ′ := #{i : Li > E′}.

Note that, if Li > E′, individual i can never become infected.
Use the Stein–Chen method. Conditional on E′,

S ′ ∼ Bi (S0, e
−E′

),

and is at total variation distance at most e−E′
from Po (S0e

−E′
). Also, E′ =

R0N (1+N−1/2Z) with Z a very well-behaved random variable with zero mean

and variance close to 1. So S ′ is close to having a mixed Poisson distribution
(error O(e−R0N )), and, again by the Stein–Chen method, this is in turn close

to Poisson Po (S0e
−R0N ). (Error now at most O(R2

0Ne−R0N )).
The true total exposure at the end of the epidemic is not quite E′, be-

cause the S ′ individuals that were never infected should not contribute to
the exposure. This makes a mean difference of about S ′R0N/N to the total.

On average, there are about

S0e
−R0N (R0N/N)S ′

individuals i with Li between E′ − S ′R0N/N and E′, and if this number

is much smaller than 1, Poisson approximation will not be upset, though
the error in the approximation may be increased. Carrying through the

calculations shows that good Poisson approximation is obtained if R0N ≥
(1 − γ) log N for any γ < 1/2. See also Ball and Barbour (1990) for a more

general setting.
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1.5 The En’ko–Reed–Frost epidemic.

This is an epidemic in discrete time. Infectives contact individuals inde-
pendently of one another, each other with fixed probability p/N , and any

susceptibles contacted become infected.
The time index is ‘generations of infection’; start with (S0, I0). At time m,

conditional on (Sm−1, Im−1), we have

Sm ∼ Bi (Sm−1, (1 − p/N)Im−1); Im = Sm − Sm−1.

This is a ‘chain–binomial’ model; p corresponds to R0. It also has an inter-

pretation in terms of the Gn,p Bernoulli random graph.
The model is used mostly for constructing explicit likelihood functions

for small households, in order to estimate (in particular) p or R0 for within
household spread of infection.
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