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Motivation

Key information about functional parameters (nonparametric
regression functions, hazard functions, . . . ) is not easily reported
non-graphically.

We are interested in condensing functional information into a form
that can be communicated easily (using a few parameters).

We investigate how this can be done in terms of the best-fitting
binary decision tree approximation, defined by the location of an
abrupt change and mean levels on either side.

Binary decision trees are “weak learners” in terms of prediction
(unless improved via bagging say), but are readily interpretable.
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Example: cumulative baseline hazard

What is the best way to interpret this plot?
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Binary decision trees in nonparametric regression (CART)

Y = f (X ) + ε
E (ε|X ) = 0
f unknown
X has unknown density pX (·)
ε has unknown conditional variance σ2(x)

n i.i.d. observations of (X , Y )

(β0
l , β0

u , d0) = argminβl ,βu ,d E [Y − βl 1(X < d) − βu 1(X ≥ d)]2
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Least squares estimates

(β̂l , β̂u, d̂n) = argminβl ,βu ,d

n∑
i=1

[Yi − βl 1(Xi < d) − βu 1(Xi ≥ d)]2

Normal equations:

β0
l = E (Y | X < d0), β0

u = E (Y | X ≥ d0), f (d0) =
β0

l + β0
u

2
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Bühlmann and Yu (2002)

n1/3(d̂n − d0) →d argmaxt Q(t)

where
Q(t) = a W (t) − b0 t2, t ∈ R

W (t) is two-sided Brownian motion started from 0,

a2 = pX (d0)σ2(d0), b0 =
1

2
| pX (d0)f ′(d0) |> 0 .

Error in proof: assumes that β̂l and β̂u converge at n1/2-rate and
make no contribution to the limiting distribution of d̂n.
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Conditions

(A1) There is a unique minimizer (β0
l , β0

u , d0) of the expectation in
the least squares criterion with β0

l �= β0
u .

(A2) f (x) is continuous and is continuously differentiable in an
open neighborhood N of d0. Also, f ′(d0) �= 0.

(A3) pX (x) does not vanish and is continuously differentiable on N.

(A4) σ2(x) is continuous on N.

(A5) supx∈N E [ε2 1{|ε| > η}|X = x ] → 0 as η → ∞.
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Theorem (Banerjee and McKeague, 2006)

n1/3
(
β̂l − β0

l , β̂u − β0
u , d̂n − d0

)
→d (c1, c2, 1) argmaxtQ(t),

where
Q(t) = a W (t) − b t2,

b = b0 − 1

8
|β0

l − β0
u | pX (d0)2

(
1

FX (d0)
+

1

1 − FX (d0)

)
> 0,

b0 = pX (d0)|f ′(d0)|/2,

c1 =
pX (d0)(β0

u − β0
l )

2FX (d0)
, c2 =

pX (d0)(β0
u − β0

l )

2(1 − FX (d0))
.
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Example: binary response

Y |X ∼ Ber(f (X )), where f (x) = P(Y = 1|X = x).

The ratio of β0
u to β0

l is a relative risk:

β0
u/β0

l = P(Y = 1|X > d0)/P(Y = 1|X ≤ d0)

useful for comparing the risks before and after the split point.

Ian McKeague Columbia University Estimating optimal step-function approximations in semiparamet



Binary decision trees in nonparametric regression (CART)
Binary decision trees in Cox regression

Confidence intervals
Conclusion

Binary decision trees in Cox regression

Conditional hazard function for the failure time T of an individual
with a p-vector of covariates Z

λ(t|Z ) = λ(t) exp{βTZ},

β = (β1, . . . , βp)
T is a p-vector of unknown regression coefficients

and λ(t) is an unspecified baseline hazard function.

X = min{T , C}, where T and the censoring time C are assumed
to be conditionally independent given Z .

δ = 1{T ≤ C}, indicator that failure is observed.
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Binary tree approximation to λ(t)

λ̄(t; λl , λu, d) = λl 1(t ≤ d) + λu 1(t > d)

where d is the threshold (or jump point), λl is the value to the left
of the jump, and λu is the value to the right of the jump.

(λ0
l , λ

0
u, d

0) = argminλl ,λu ,d

∫ τ

0

[
λ(t) − λ̄(t; λl , λu, d)

]2
dt,

where τ > 0 is a given terminal time.

The threshold d0 is the main parameter of interest; it most
accurately splits the time interval into two subintervals with
the risk changing abruptly at the boundary.
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Express the L2-distance in terms of the cumulative baseline hazard
function Λ(t) =

∫ t
0 λ(u) du:

(λ0
l , λ

0
u, d

0) = argminλl ,λu ,d M(λl , λu, d),

where M is the criterion function

M(λl , λu, d) ≡ (λ2
l − λ2

u) d + λ2
u τ + 2 (λu − λl) Λ(d) − 2 λu Λ(τ) .

Normal equations:

λ0
l =

Λ(d0)

d0
, λ0

u =
Λ(τ) − Λ(d0)

τ − d0
, λ(d0) =

λ0
l + λ0

u

2
,
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Estimators

n i.i.d. observations (Xi , δi , Zi ) of (X , δ, Z ).

(λ̂0
l , λ̂

0
u, d̂n) = argminλl ,λu ,d Mn(λl , λu, d),

where

Mn(λl , λu, d) ≡ (λ2
l −λ2

u) d +λ2
u τ +2 (λu −λl) Λ̂n(d)− 2 λu Λ̂n(τ)

and Λ̂n is Breslow’s estimator

Λ̂n(t) = Pn

[
δ1{X ≤ t}
S (0)(β̂, X )

]

Pn = empirical distribution

S (0)(β, t) = Pn[Y (t)eβT Z ]
Y (t) = 1{X ≥ t} at-risk indicator.
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Conditions

Usual regularity conditions for Cox model (Andersen and Gill,
1982). In particular, assume

s(0)(β, t) = E [Y (t)eβT Z ]

is bounded away from zero. Also assume bounded covariates.

(A1) There is a unique vector (λ0
l , λ

0
u, d

0) with λ0
l �= λ0

u and
0 < d0 < τ that minimizes M.

(A2) λ is continuously differentiable in a neighborhood of d0, and
λ′(d0) �= 0.

Ian McKeague Columbia University Estimating optimal step-function approximations in semiparamet



Binary decision trees in nonparametric regression (CART)
Binary decision trees in Cox regression

Confidence intervals
Conclusion

Theorem

n1/3
(
λ̂l − λ0

l , λ̂u − λ0
u, d̂n − d0

)
→d (c1, c2, 1) argmaxtQ(t),

where
Q(t) = aW (t) − bt2,

W is two-sided Brownian motion, a2 = λ(d0)/s(0)(β0, d
0),

b = b0 − 1

8
|λ0

l − λ0
u|

(
1

d0
+

1

τ − d0

)
> 0,

b0 = |λ′(d0)|/2, and

c1 =
λ0

u − λ0
l

2d0
, c2 =

λ0
u − λ0

l

2(τ − d0)
.
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Proof

Uses a strategy applicable to general M-estimators
θ̂ = argminθMn(θ) in which we establish 1) the rate of
convergence, 2) the weak convergence of a suitably localized
version of the criterion function, and 3) apply the argmax (or
argmin) continuous mapping theorem.

The rate of convergence is derived in terms of the expected
continuity modulus of

√
n(Mn − M) at θ0:

√
nE

[
sup

d(θ,θ0)<ε

|(Mn − M)(θ) − (Mn − M)(θ0)|
]

= O(
√

ε)

for ε > 0. This implies a n1/3-rate of convergence.
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Binary decision trees for partially linear models

Y = XTβ + g(Z ) + ε
β a p-vector of regression parameters
ε independent of (X , Z )

Binary tree approximation for g :

(λ0
l , λ

0
u, d

0) = argminλl ,λu,d E [g(Z ) − ḡ(Z ; λl , λu, d)]2 ,

where
ḡ(z ; λl , λu, d) = λl 1(z ≤ d) + λu 1(z > d).
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Adapting our strategy from Cox regression

(λ0
l , λ

0
u, d

0) = argminλl ,λu,d M(λl , λu, d),

where

M(λl , λu, d) ≡ (λ2
l − λ2

u)F (d) + λ2
u + 2 (λu − λl) Λ(d) − 2 λu Λ(1),

F = cdf of Z , and Λ(t) = E [g(Z )1{Z ≤ t}].
Plug-in estimates:

Λ̂n(t) = Pn

[
(Y − XT β̂)1{Z ≤ t}

]
, F̂n(t) = Pn1{Z ≤ t}

where β̂ is a
√

n-consistent estimator of β.
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Brownian scaling

Qa,b(t) = a W (t) − b t2 is a scaled, time-changed version of Q1,1:

Qa,b(t)
D
= a (a/b)1/3 Q1,1((b/a)2/3 t)
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Chernoff’s distribution

Z = argmaxtQ1,1(t).

has a density that can be expressed analytically in terms of zeros of
the Airy function (Groeneboom, 1985); quantiles calculated exactly
via an algorithm of Groeneboom and Wellner (2001). 0.975
quantile is 0.998181.
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Confidence intervals for the split point

From Brownian scaling,

n1/3(d̂n − d0) →d kZ ,

where k = (a/b)2/3, so we have the Wald-type CI

d̂n ± n−1/3k̂pα/2,

where pα is the upper α-quantile of Chernoff’s distribution.

Problem: smoothing needed to estimate k.
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Bootstrap of M-estimators under cube-root asymptotics

subsampling (resampling without replacement), Politis and
Romano (1994)

Delgado, Rodriquez-Poo and Wolf (2001) gave simulation
evidence for inconsistency of the empirical bootstrap

Abrevaya and Huang (2005) proposed a corrected empirical
bootstrap

m out of n bootstrap, Lee and Pun (2006)
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Abrevaya and Huang (2005, Econometrica)
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Correcting the bootstrap

Abrevaya and Huang claim to have proved that, for an M-estimator
converging at cube-root rate, conditionally on the data

n1/3(d̂∗
n − d̂n) →d kZ ∗

almost surely, where k is the constant to be estimated,

Z ∗ = argmaxt(W (t) − t2) − argmaxt(W (t) + W ∗(t) − t2)

and W and W ∗ are independent two-sided Brownian motions.

Unfortunately, their proof has a serious error!
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Comparison of densities of Z and Z ∗
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Lee and Pun (2006, JASA)

Show that m out of n bootstrap works for general M-estimators.

Disadvantage: calibration (choice of m) still needed, as with subsampling.
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Confidence sets based on deviance

Use a deviance function as an asymptotic pivot:

Dn(d) = Mn(λ̂
d
l , λ̂d

u , d) − Mn(λ̂l , λ̂u, d̂n),

where

λ̂d
l =

Λ̂n(d)

d
, λ̂d

u =
Λ̂n(τ) − Λ̂n(d)

τ − d
.

It can be shown that

n2/3
Dn(d

0) →d k maxt(W (t) − t2),

where k is a constant that can be estimated.

Invert Dn(d) to get a CI for d0.
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Example: DUWC Dosing Study

Experiment to find threshold level of total phosphorus at which
biological imbalance occurs in the Everglades; data comes from
1992–1998 at two unimpacted sites. n = 340.

In 1994, the Florida legislature passed the Everglades Forever Act
which called for a threshold level of total phosphorus that would
prevent an “imbalance in natural populations of aquatic flora or
fauna.”

This threshold may eventually be set at around 10 or 15 parts per
billion (ppb), but it remains undecided despite extensive scientific
study and much political and legal debate.
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DUWC Dosing Study (cont’d)
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95% CIs for the phosphorus threshold

Bayesian changepoint: 13.7–15.4 ppb

Wald-type: 0.7–24.9 ppb

Subsampling: 8.5–17.1 ppb

Deviance-type: 7.1–26.1 ppb
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Simulation example (hazard function setting)

Baseline hazard: λ(t) = t, terminal time τ = 1.5.

Note: there is no abrupt change in λ(t)! Yet the threshold is
well-defined: d0 = .75.

Covariates: Z ∼ Unif[0, 1]p, for p = 1 and 5

β0 = 1/p

censoring time C exponential with mean 3

1000 replicated samples
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Table: Coverage and average CI length, p = 1

Wald Deviance type

n Coverage Length Coverage Length
50 98.4 1.77 93.6 1.10
100 99.0 1.42 93.1 1.02
150 97.6 1.16 93.9 0.90
200 98.0 1.05 95.1 0.85
250 98.0 0.95 94.6 0.79
300 97.5 0.89 94.5 0.74
350 95.6 0.81 94.5 0.69
400 94.8 0.76 96.4 0.66
450 94.0 0.73 94.4 0.62
500 93.7 0.70 93.8 0.59
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Table: Coverage and average CI length, p = 5

Wald Deviance type

n Coverage Length Coverage Length
50 92.4 2.44 83.4 0.98
100 95.4 1.47 89.8 0.96
150 96.0 1.23 92.3 0.89
200 96.8 1.09 92.0 0.82
250 94.5 0.99 93.5 0.78
300 94.6 0.89 94.9 0.73
350 95.3 0.82 93.5 0.68
400 93.9 0.79 92.4 0.65
450 91.9 0.73 94.4 0.61
500 92.4 0.70 92.0 0.59
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Jerusalem Perinatal Cohort Schizophrenia Study

Follow-up data on 92,000 individuals born between 1964 and 1976
to Israeli women living in Jerusalem and the adjoining rural areas.

We analyze the data on 87,642 of these individuals for which
complete covariate information is available.

Right censored survival data: indicator of a diagnosis of
schizophrenia, and age (in years) at the time of diagnosis.

Covariates of interest : indicator male, indicator of low social class,
paternal age at the time of the individual’s birth
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Malaspina et. al. (2001) demonstrate a steady increase in
schizophrenia risk with advanced paternal age.

The rate of genetic mutation in paternal germ cells is known
to increase significantly with age.

Such increased mutation frequency has a strong clinical
association with strong paternal age effects for multiple
diseases and disorders, possibly because of accumulating
replication errors in spermatogonial cell lines.
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Subgroup analyses
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Breslow’s estimate Λ̂n(t)
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Results

τ = 30 years

bandwidth for estimating λ′(d0) is 1 year

d̂n = 16.69 years

95% Wald CI for d0: 15.79–17.59

95% Deviance CI for d0: 16.29–17.06

λ̂l = 2.39 × 10−5

λ̂u = 20.16 × 10−5
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Other potential applications

Deciding the time (or age) at which vaccination or diagnostic
testing is advisable from a public health point of view.

Our results can be used to determine a confidence interval not only
for the threshold, but also for the relative risk λ0

u/λ0
l across the

threshold.

Large values of this relative risk would indicate a greater necessity
for medical intervention.

Covariate thresholds are also of interest, e.g., in paternal age related
effects in schizophrenia risk. Pons (2003) studies a covariate
change-point Cox model, but not in the misspecified setting.
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Discussion

Our approach is complimentary to change-point analysis in
which the aim is to estimate the locations of existing jump
discontinuities in an otherwise smooth curve.

In change-point analysis, no distinction is made between the
working model that has the jump point and the model that is
assumed to generate the data.

We use a model-robust approach that applies under arbitrary
misspecification of the discontinuous working model.
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Summary

We have studied the estimation of optimal binary decision tree
approximations for functional parameters.

The convergence rate n1/3 contrasts with the rate of n under
(correctly specified) change-point models.

The estimators of the mean levels on either side of the
threshold are also n1/3-consistent, in contrast to the
corresponding change-point estimators which are√

n-consistent with normal limits.
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