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Background on Empirical likelihood

Especially useful for finding nonparametric confidence regions
without having to estimate standard errors.

Thomas and Grunkemeier (1975) for survival function
estimation. Owen (1988, 1990, . . . , 2001).

First developed for finite-dimensional features θ = θ(F ) of a
cdf (e.g., mean, median, cdf at a single point).

Applies more generally to parameters identifiable from
estimating equations.

“Empirical likelihood” has 89,300 Google hits.
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Pros and cons of EL

Advantages Disadvantages

adapts well to skewness computationally
(cf. bootstrap) more intensive

than Wald type
nonparametric confidence regions

better small sample performance asymptotic theory
than approaches based on can be difficult to
asymptotic normality develop in

semiparametric
settings

confidence sets respect the
range of the parameter

often yields distribution-free
tests (no need for simulation)

regularity conditions are
weak and natural (smoothness
conditions often not needed)

confidence regions are Bartlett
correctable (unlike bootstrap)
and transformation preserving
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Empirical cdf

Nonparametric likelihood

L(F ) =
n∏

i=1

(F (Xi ) − F (Xi−)).

NPMLE Fn = arg maxF L(F )

Fn(x) =
1

n

n∑
i=1

1{Xi ≤ x} = Pn1{X ≤ x}

Nonparametric likelihood ratio

R(F ) =
L(F )

L(Fn)
=

n∏
i=1

npi

where F places mass pi ≥ 0 on Xi , where
∑n

i=1 pi ≤ 1.
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Contours of likelihood ratio for n = 3

Picture shows the contours of R(F ) on the simplex

{(p1, p2, p3) : pi ≥ 0, p1 + p2 + p3 = 1}
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Lemma

If R(F ) ≥ r0 > 0, then F places mass mn = O(1/n) outside
{X1, . . . ,Xn}.
Proof

r0 ≤ R(F ) =
n∏

i=1

npi ≤
n∏

i=1

n

(
1 − mn

n

)
= (1 − mn)

n

mn ≤ 1 − exp(−n−1 log(1/r0)) ≤ n−1 log(1/r0).

Justifies restricting to F supported by the data:
∑n

i=1 pi = 1.
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EL function

ELn(θ0) = sup{R(F ) : θ(F ) = θ0} =
sup{L(F ) : θ(F ) = θ0}

sup{L(F )}
(with sup ∅ ≡ 0)

EL hypothesis tests:

Accept θ(F ) = θ0 when ELn(θ0) ≥ r0 for some threshold r0.

EL confidence regions:

{θ : ELn(θ) ≥ r0}

with r0 chosen via an EL analogue of Wilks’s theorem.
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EL for means

µ = E (X ) ∈ R
d

ELn(µ) = max

{
n∏

i=1

npi :
n∑

i=1

piXi = µ, pi ≥ 0,
n∑

i=1

pi = 1

}

Confidence region:

{µ : ELn(µ) ≥ r0} =

{
n∑

i=1

piXi :
n∏

i=1

npi ≥ r0, pi ≥ 0,
n∑

i=1

pi = 1

}
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Example

ELn(µ) (solid curve); 95% confidence limits (dotted bars); from Owen (2001).
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Method of Lagrange multipliers

Maximize f (x) subject to the (multivariate) constraint g(x) = 0.

Find x∗ = x∗(λ) maximizing f (x) − λTg(x) such that g(x∗) = 0.

Then x∗ solves the constrained problem.

Geometric intuition: At the maximum, ∇f and ∇g (when g is
univariate) must be parallel:

∇f = λ∇g

for some constant λ (Lagrange multiplier).
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Maximize log R(F ) =
∑n

i=1 log(npi ) under the constraints:

n
n∑

i=1

pi (Xi − µ) = 0, 1 −
n∑

i=1

pi = 0.

Let

G =
n∑

i=1

log(npi ) − nλ
n∑

i=1

pi (Xi − µ) − γ

(
1 −

n∑
i=1

pi

)
where λ and γ are Lagrange multipliers.

∂G

∂pi
=

1

pi
− nλ(Xi − µ) + γ = 0

so 0 =
∑n

i=1 pi
∂G
∂pi

= n + γ giving γ = −n. Thus pi = 1
n

1
1+λ(Xi−µ) and

g(λ) =
1

n

n∑
i=1

Xi − µ

1 + λ(Xi − µ)
= 0

This equation has a unique solution for λ = λ(µ).
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Basic EL Theorem (Owen 1990)

X1, . . . ,Xn iid with finite mean µ0, finite covariance matrix of rank
q > 0. Then

−2 log ELn(µ0)
d−→χ2

q.

Proof: Case d = 1. The Lagrange multiplier λ is the solution to

g(λ) = n−1
n∑

i=1

Xi − µ0

1 + λ(Xi − µ0)
= 0

and note that g(0) = X̄ − µ0. Denote σ̂2 = n−1
∑n

i=1(Xi − µ0)
2. Taylor

expanding g gives

0 = g(λ) = g(0) + λg ′(0) + oP(n−1/2)

= X̄ − µ0 − λσ̂2 + oP(n−1/2)
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Thus λ = (X̄ − µ0)/σ̂2 + oP(n−1/2) = OP(n−1/2). Recall

pi =
1

n

1

1 + λ(Xi − µ0)

so, using the Taylor expansion log(1 + x) = x − x2/2 + O(x3),

−2 log ELn(µ0) = −2
n∑

i=1

log(npi ) = 2
n∑

i=1

log(1 + λ(Xi − µ0))

= 2nλ(X̄ − µ0) − nλ2σ̂2 + oP(1)

= 2n(X̄ − µ0)
2/σ̂2 − n(X̄ − µ0)

2/σ̂2 + oP(1)

= n(X̄ − µ0)
2/σ̂2 + oP(1)

d−→ χ2
1
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Calibration

This suggests the χ2-calibration with threshold

r0 = exp(−χ2
q,α/2)

for a 100(1 − α)% confidence region; actual coverage
1 − α + O(n−1).

Bartlett correction (
1 +

a

n

)
χ2

q,α

a involves higher-order moments of X , and needs to be estimated.
Coverage improves to 1 − α + O(n−2).
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Bootstrap calibration

X ∗
1 , . . . ,X ∗

n iid from Fn. Simulation used to find the upper
α-quantile of −2 log EL∗

n(X̄ ), where

EL∗
n(X̄ ) = max

{
n∏

i=1

npi :
n∑

i=1

piX
∗
i = X̄ , pi ≥ 0,

n∑
i=1

pi = 1

}
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Example

Counts of two types of aquatic larvae at 22 locations in Wales.

Bivariate 95% confidence regions calibrated by χ2 and by the bootstrap

(larger region); from Owen (2001).
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Expanding the scope of EL

Linear functionals of F : θ = E (h(X )) =
∫

h(x) dF (x).

Implicitly defined parameters: E (m(X , θ)) = 0 where m(X , θ)
is the estimating function; e.g., median,
m(X , θ) = 1{X ≤ θ} − .5.

ELn(θ) = max

{
n∏

i=1

npi :
n∑

i=1

pim(Xi , θ) = 0, pi ≥ 0,
n∑

i=1

pi = 1

}

Functional parameters (e.g. F itself)

Smooth functions of means: θ = h(µ). EL-delta method?

Nuisance parameters

Non-iid data

High-dimensional data

Conditional estimating equations
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Example: simultaneous band for F

Local EL function at θ0 = F0(t):

ELn(t) =
sup{L(F ) : F (t) = F0(t)}

sup{L(F )}

=

(
F0(t)
nFn(t)

)nFn(t) ( 1−F0(t)
n(1−Fn(t))

)n(1−Fn(t))(
1
n

)n
=

(
F0(t)

Fn(t)

)nFn(t)(1 − F0(t)

1 − Fn(t)

)n(1−Fn(t))

.

Hence

−2 log ELn(t) = −2nFn(t) log
F0(t)

Fn(t)

−2n (1 − Fn(t)) log
1 − F0(t)

1 − Fn(t)
.
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Taylor expanding log(1 + x) = x − x2/2 + O(x3) we have

−2 log ELn(t) =

(√
n(Fn(t) − F0(t))√
F0(t)(1 − F0(t))

)2

+ oP(1)

As a process in t ∈ [a, b]:

−2 log ELn(t)
d−→

(
W o(F0(t))√

F0(t)(1 − F0(t))

)2

d
=

(
W (σ2(t))

σ(t)

)2

,

W o standard tied-down Wiener process (Brownian bridge)
W standard Brownian motion

σ2(t) =
F0(t)

1 − F0(t)
.
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Simultaneous confidence band over an interval [a, b]:

{F0 : −2 log ELn(t) ≤ Cα, t ∈ [a, b]}

Cα the upper α-quantile of

sup
t∈[σ̂2(a),σ̂2(b)]

W 2(t)

t
.

Equal precision EL band.

Hollander, McKeague, Yang (1997)
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Example: testing F = F0

Under H0 : F = F0,

Tn = −2

∫ ∞

−∞
log ELn(t) dFn(t)

d−→
∫ 1

0

(
W o(t)√
t(1 − t)

)2

dt.

Tn is asymptotically equivalent to the Anderson–Darling statistic

n

∫ ∞

−∞
(Fn(x) − F0(x))2

F0(x)(1 − F0(x))
dF0(x).

Einmahl and McKeague (2003)
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Example: testing for symmetry

H0 : F (−x) = 1 − F (x−), for all x > 0.

Local EL function:

ELn(x) =
sup{L(F ) : F (x) = 1 − F (x−)}

sup{L(F )} , x > 0.

Treat F as a function of 0 ≤ p ≤ 1, where F puts mass

p/2 on (−∞,−x ], and on [x ,∞)

1 − p on (−x , x)

Point masses on observations in the respective intervals:

p/2

np̂1
,
p/2

np̂2
,

1 − p

n(1 − p̂)
,

p̂ = p̂1 + p̂2, p̂1 = Fn(−x), p̂2 = 1 − Fn(x−).
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Maximum of (
p/2

np̂1

)np̂1
(

p/2

np̂2

)np̂2
(

1 − p

n(1 − p̂)

)n(1−p̂)

,

attained at p = p̂.

log ELn(x) = np̂1 log
p̂

2p̂1
+ np̂2 log

p̂

2p̂2

= nFn(−x) log
Fn(−x) + 1 − Fn(x−)

2Fn(−x)

+n(1 − Fn(x−)) log
Fn(−x) + 1 − Fn(x−)

2(1 − Fn(x−))

Test statistic:

Tn = −2

∫ ∞

0

log ELn(x) dGn(x),

Gn is the empirical cdf of the |Xi |. If F is continuous, then under H0

Tn
d−→
∫ 1

0

W 2(t)

t
dt.

Einmahl and McKeague (2003): EL tests for symmetry, exponentiality, independence and changes in distribution.
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Nuisance parameters

Now include a nuisance parameter h:

ELn(θ, h) = max
{ n∏

i=1

(nwi ) : wi > 0,

n∑
i=1

wi = 1,

n∑
i=1

wim(Xi , θ, h) = 0
}

.

Profile EL Theorem (Qin and Lawless, 1994)

For the iid case with Em(X , θ0, h0) = 0 and m “sufficiently
smooth” in (θ, h) ∈ R

q × R
�,

−2 log
suph ELn(θ0, h)

supθ,h ELn(θ, h)
→d χ2

q

What can be done with infinite dimensional nuisance parameters?
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EL with plug-in

Use a plug-in estimator ĥ in place of h (which can be arbitrary).

Generalized ELT

−2a−1
n log ELn(θ0, ĥ) →d UTV−1

2 U

provided

(A0) P(ELn(θ0, ĥ) = 0) → 0.

(A1) Un =
∑n

i=1 Xni →d U, where, for example, U ∼ Np(0, V1).

(A2) Vn = an
∑n

i=1 XniX
T
ni →P V2.

(A3) an max1≤i≤n ‖Xni‖ →P 0.

Here Xni = mn(Xi , θ0, ĥ) has dimension p, an is bounded away
from zero, and V2 is a p × p positive definite covariance matrix.
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Sketch of proof in the case an = 1

By the Lagrange multiplier argument,

ELn(θ0, ĥ) = ELn =
n∏

i=1

(1 + λ̂′Xni )
−1

where
∑n

i=1 Xni (1 + λ̂TXni )
−1 = 0. In terms of the dual optimization

problem:

−2 log ELn = 2
n∑

i=1

log(1 + λ̂TXni ) = max
λ

Gn(λ),

where

Gn(λ) = 2
n∑

i=1

log(1 + λTXni )

= 2λTUn − λTVnλ + oP(1)

→d G (λ) = 2λTU − λTV2λ

uniformly over compacta.
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It can be shown that

λ̂ = argmaxλGn(λ) = OP(1)

and, via the proof of the argmax continuous mapping theorem,

max
λ

Gn(λ) →d max
λ

G (λ).

We conclude that

−2 log ELn →d UTV−1
2 U.

Hjort, McKeague and Van Keilegom (2007)
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Remarks

(A0) is the basic existence condition for EL to be useful: the
zero vector has to be in the interior of the convex hull of

{mn(Xi , θ0, ĥ), i = 1, . . . , n}.

Owen’s EL theorem follows using mn = m/
√

n and an = 1.
For i.i.d. observations, (A0) holds by the Glivenko–Cantelli
theorem over half-spaces (using the separating hyperplane
theorem), (A1) by the CLT, (A2) by the WLLN, and (A3) by
Borel–Cantelli.

When U ∼ Np(0, V1) with V1 positive definite, the limit is

r1χ
2
1,1 + · · · + rpχ

2
1,p

where the χ2
1,js are independent χ2

1 and r1, . . . , rp are the

eigenvalues of V−1
2 V1.
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Example: weakly dependent observations

Suppose {Xi} is a stationary sequence with a rapidly decaying
mixing coefficient, and we have an unbiased estimating
function m(X , θ) without a nuisance parameter. Setting
mn = m/

√
n and an = 1, (A1) can be checked using a CLT for

stationary sequences; (A2) follows from the ergodic theorem.

−2 log ELn(θ0) →d rχ2
1 where

r =
∞∑
i=1

Corr{m(X1, θ0), m(Xi , θ0)}.

Kitamura (1997) showed that blockwise EL has greater
efficiency than the “naive” EL in this setting.
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Example: long range dependence

Estimate the mean θ0 of the stationary ergodic process
Xi = G (Zi ), where G is a Borel function and {Zi} is a
mean-zero, unit-variance, stationary Gaussian process such
that

Cov(Zi , Zi+n) = n−αL(n)

for some 0 < α < 1 and slowly varying L(·).

Estimating function: mn(Xi , θ) = bn(Xi − θ), where bn

depends on the (slower than
√

n) rate of convergence of the
sample mean.

Nordman, D., Sibbertsen, P. and Lahiri, S.N. (2007). Journal of Time Series Analysis, to appear.
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Condition (A1) is checked using a result of Taqqu (1975):

bn

n∑
i=1

(Xi − θ0) →d U

where bn = nα/2−1L(n)−1/2 and U is a certain multiple
Wiener integral.

Condition (A2) is checked by setting

an = n−1b−2
n = n1−αL(n)

and using the ergodic theorem:

an

n∑
i=1

mn(Xi , θ0)
2 =

1

n

n∑
i=1

(Xi − θ0)
2 →a.s. V2.

In this case the choice of an tends to infinity, and it is not
possible to arrange an = 1.
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Example: symmetric cdf F

Estimate θ0 = F (x) using n i.i.d. observations from a cdf F that is
symmetric about a, using plug-in of the sample median â.

mn(X , θ, a) = n−1/2

(
1{X ≤ x} − θ

1{X > 2a − x} − θ

)
.

Let η0 = min(θ0, 1 − θ0) and suppose 0 < θ0 < 1. Condition (A2)
holds with

V2 =

(
θ0(1 − θ0) −η2

0

−η2
0 θ0(1 − θ0)

)
.

when θ0 �= 1/2. Note that V2 is singular when θ0 = 1/2.
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To check (A1), note that

n1/2[1 − F̂ (2â − x) − θ0]

= n1/2[1 − F (2â − x) − F̂ (2a − x) + F (2a − x) − θ0] + oP(1)

= n1/2[1 − F̂ (2a − x) − θ0] − 2f (2a − x)n1/2(â − a) + oP(1)

= n1/2[1 − F̂ (2a − x) − θ0] − 2f (x)f (a)−1n1/2[F̂ (a) − 1/2] + oP(1)

provided f (a) > 0. Use the CLT to conclude that U ∼ N2(0, V1) with

V1 =

(
θ0(1 − θ0) −η2

0 − f (x)f (a)−1η0

−η2
0 − f (x)f (a)−1η0 θ0(1 − θ0) + f (x)2[f (a)]−2 + 2f (x)f (a)−1η0

)
.
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Example: integral of a squared density

Of interest for various problems related to nonparametric density
estimation:

θ0 =

∫
f 2
0 dx .

Estimating function

m(X , θ, f ) = f (X ) − θ

with plug-in of f̂ , a kernel density estimator having a symmetric
kernel and bandwidth b = bn.

Our result yields

−2 log ELn(θ0, f̂ ) →d 4χ2
1
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Example: density estimation

X1, . . . ,Xn i.i.d. density f0, θ0 = f0(t) for a fixed t.

Hall and Owen (1993) constructed EL confidence bands for f0(t).

Chen (1996) showed that the pointwise EL confidence intervals are more
accurate than those based on the bootstrap.

Estimating function

mn(x , θ) = n−1/2b1/2{kb(x − t) − θ}

where kb(u) = b−1k(b−1u), and k is a symmetric, bounded kernel
function supported on [−1, 1]. Suppose the bandwidth b = bn satisfies
nb → ∞ and nb5 → 0.
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(A1) can be checked under mild conditions on the density, as it follows
from standard asymptotic theory for kernel density estimators that

n∑
i=1

mn(Xi , θ0) = (nb)1/2{f̂n(t) − f0(t)} →d N(0, V1),

where

V1 = f0(t)R(k) and R(k) =

∫
k(u)2 du.

For (A2),

n∑
i=1

m2
n(Xi , θ0) =

b

n

n∑
i=1

{kb(Xi − t) − θ0}2

=
1

nb

n∑
i=1

k((Xi − t)/b)2 + OP(b) →P f0(t)R(k) = V1.

Conclude that
−2 log ELn(θ0) →d χ2

1
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Survival analysis background

T ∼ F represents a lifetime

Survival function: S = 1 − F , S(0) = 1

Cumulative hazard function (chf):

A(t) =

∫
(0,t]

dF (s)

1 − F (s−)

There is a 1-1 correspondence between survival functions and
cumulative hazards.

If F is continuous: S = exp(−A), A = − log(S).
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Lemma

If F is a discrete cdf, the corresponding cumulative hazard function
is

A(t) =
∑
s≤t

∆F (s)

1 − F (s−)

where ∆F (t) = F (t) − F (t−) is the jump in F at t. Conversely, if
A is a discrete chf, the corresponding survival function is

S(t) =
∏
s≤t

(1 − ∆A(t)).
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Proof

Given a discrete chf A, write S(t) =
∏

s≤t(1 − ∆A(t)). Then S
has chf A, because S(t−) = S(t)/(1 − ∆A(t)) and

∆A(t) = 1 − S(t)

S(t−)
=

∆F (s)

1 − F (s−)
.

Conversely, given a discrete survival function S , then

S(t) =
∏
u≤t

S(u)

S(u−)
=
∏
u≤t

(
1 +

∆S(u)

S(u−)

)
=

∏
u≤t

(1 − ∆A(u))

where A is the chf.
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Hazard functions

If T ∼ F has density f , define the hazard function

α(t) = A′(t) = f (t)/S(t) ≈ P(T ∈ [t, t + dt)|T ≥ t)/dt

Thus
P(T ∈ [t, t + dt)|T ≥ t) ≈ α(t) dt

Cox proportional hazards model

α(t|Z ) = λ0(t)e
βT Z

adjusts for a (p-dimensional) covariate Z .
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Independent right-censoring

X = min(T , C ), δ = 1{T ≤ C}
T and C independent

Counting process:

N(t) = 1{X ≤ t, δ = 1}

At risk indicator: Y (t) = 1{X ≥ t}
M(t) = N(t) − ∫ t

0 Y (s)α(s) ds is a martingale:

dN(t) ∼ Bernoulli(Y (t)α(t) dt) given the past Ft , so

E (dM(t)|Ft) = E (dN(t) − Y (t)α(t) dt|Ft) = 0

Quadratic variation:

〈M〉(t) =

∫ t

0
E (dM(s)2|Fs) =

∫ t

0
Y (s)α(s) ds
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EL for right-censored data (no covariates)

Nonparametric likelihood

L(F ) =
n∏

i=1

(F (Xi ) − F (Xi−))δi (1 − F (Xi ))
1−δi

Note: this is a partial likelihood—the full likelihood is the product of

L(F ) and a similar expression involving the cdf G of C .

EL function

ELn(θ0) =
sup{L(F ) : θ(F ) = θ0}

sup{L(F )}
where the maximization is restricted to cdfs F supported by the
uncensored lifetimes.
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L(F ) in terms of the chf

Order the uncensored lifetimes: 0 < T1 ≤ . . . ≤ Tk , T0 = 0

hj = ∆A(Tj) = 1 − S(Tj)/S(Tj−1) jump in chf at Tj

rj =
∑n

i=1 1{Xi ≥ Tj} size of the risk set at Tj−, with rk+1 = 0.

dj ≥ 1 denotes the number of uncensored failures at Tj .

Lemma If F is supported by the uncensored lifetimes, then

L(F ) =
k∏

j=1

h
dj

j (1 − hj)
rj−dj
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Proof

Note that the number of censored lifetimes in [Tj , Tj+1) is
rj − dj − rj+1 , so

L(F ) =
n∏

i=1

(S(Xi−) − S(Xi ))
δi (S(Xi ))

1−δi

=

⎧⎨⎩
k∏

j=1

(S(Tj−) − S(Tj))
dj

⎫⎬⎭
⎧⎨⎩

k∏
j=1

S(Tj)
rj−dj−rj+1

⎫⎬⎭
=

⎧⎨⎩
k∏

j=1

h
dj

j S(Tj−1)
dj

⎫⎬⎭
⎧⎨⎩

k∏
j=1

S(Tj)
rj−dj

S(Tj−1)rj

⎫⎬⎭
=

k∏
j=1

h
dj

j (1 − hj)
rj−dj
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Nonparametric MLEs

L(S) is maximized when hj = dj/rj , giving the Nelson–Aalen
estimator:

An(t) =
∑

j :Tj≤t

dj

rj

Kaplan–Meier estimator:

Sn(t) =
∏

j :Tj≤t

(
1 − dj

rj

)

and Fn = 1 − Sn.
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Limit distributions

Assume now F is continuous. Then

√
n(An(t) − A(t))

d−→W (σ2(t))

√
n(Sn(t) − S(t))

d−→S(t)W (σ2(t))

where

σ2(t) =

∫ t

0

dF (s)

(1 − F (s))2(1 − G (s−))

Without censoring, simplifies to

σ2(t) =
F (t)

1 − F (t)
.
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Counting process approach

In counting process notation, the Nelson–Aalen estimator is

An(t) =
n∑

i=1

∫ t

0

dNi (s)∑n
i=1 Yi (s)

where dNi (s) = Yi (s)α(s) ds + dMi (s). Thus

√
n(An(t) − A(t)) = Un(t) + oP(1)

where

Un(t) =
1√
n

n∑
i=1

∫ t

0

dMi (s)

PnY (s)

is a martingale with quadratic variation

〈Un〉(t) = Pn

∫ t

0

Y (s)α(s) ds

(PnY (s))2
p−→
∫ t

0

α(s) ds

EY (s)
= σ2(t).
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EL for the survival function at a fixed point

θ0 = S(t), with t fixed. The estimate Ŝ maximizing L(S) subject
to the constraint S(t) = θ is

Ŝ(t) =
∏

j :Tj≤t

(
1 − dj

rj + λ

)
where the Lagrange multiplier λ is the solution to∏

j :Tj≤t

(
1 − dj

rj + λ

)
= θ.

Equivalently,

g(λ) =
∑

j :Tj≤t

log

(
1 − dj

rj + λ

)
= log θ = −A(t)

Theorem If F is continuous, 0 < θ0 = S(t) < 1, G (t) < 1, then

−2 log ELn(θ0)
d−→χ2

1

Thomas and Grunkemeier (1975), Li (1995), Murphy (1995)
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Proof: Taylor expansion of g leads to

λ = n(A(t) − An(t))/σ̂2 + OP(1)

where σ̂2 is an estimate of σ2(t).

−2 log ELn(θ0) = −2(log(L(Ŝ) − log(L(Sn))

= −2
∑

i :Tj≤t

{
(rj − dj) log

(
1 +

λ

rj − dj

)

−rj log

(
1 +

λ

rj

)}
= λ2σ̂2/n + oP(1)

= n(An(t) − A(t))2/σ̂2 + oP(1)
d−→ χ2

1

Ian McKeague Columbia University Empirical Likelihood based Inference in Survival Analysis



Simultaneous EL band for S

As a process in t ∈ [a, b],

−2 log ELn(S(t))
d−→

(
W (σ2(t))

σ(t)

)2

,

Simultaneous confidence band for S over an interval [a, b]:

{S(t) : −2 log ELn(S(t)) ≤ Cα, t ∈ [a, b]}

Cα the upper α-quantile of

sup
t∈[σ̂2(a),σ̂2(b)]

W 2(t)

t

Equal precision band. Hollander, McKeague, Yang (1997)
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Example: Data on 432 manuscripts submitted to JASA during 1994.

Time to first review censored by the end of the year.

Ian McKeague Columbia University Empirical Likelihood based Inference in Survival Analysis



EL for Cox regression parameters

α(t|Z ) = λ0(t)e
βT Z

Estimating function:

m(β, s(0), s(1)) =

∫ τ

0

(
Z − s(1)(β, t)

s(0)(β, t)

)
dN(t)

is an unbiased estimating function with (functional) nuisance

parameters s(j)(β, t) = E [Y (t)Z jeβT Z ] for j = 0, 1.

Reason: dN(t) = dM(t) + Y (t)λ0(t)e
βT

0 Z dt, and
∫ τ

0
(· · · ) dM(t) is a

martingale in τ .

Plug-in estimator ĥ is S (j)(β, t) = Pn[Y (t)Z jeβT Z ], j = 0, 1
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Theorem Under conditions of Andersen and Gill (1982),

−2 log ELn(β0, ĥ) →d χ2
p

Proof: Let Xni = m(β0, ĥ)/
√

n, and apply the

Generalized ELT

−2 log ELn(β0, ĥ) →d UTV−1
2 U

provided

(A0) P(ELn(β0, ĥ) = 0) → 0.

(A1) Un =
∑n

i=1 Xni →d U ∼ Np(0, V1).

(A2) Vn =
∑n

i=1 XniX
T
ni →P V2.

(A3) max1≤i≤n ‖Xni‖ →P 0.
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Un is a martingale in τ :

Un =
1√
n

n∑
i=1

∫ τ

0

(
Zi − S (1)(β0, t)

S (0)(β0, t)

)
dMi (t) →d Np(0, Σ)

by the martingale CLT.

Vn = Pn

∫ τ

0

(
Z − S (1)(β0, t)

S (0)(β0, t)

)⊗2

dN(t)

= Pn

∫ τ

0

(
Z − S (1)(β0, t)

S (0)(β0, t)

)⊗2

Y (t)λ0(t)e
βT

0 Z dt + oP(1)

= 〈Un〉τ + oP(1)
p−→Σ.

Thus V1 = V2 = Σ, so the EL statistic has a χ2
p limit.
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Cox model with time-dependent coefficients

α(t|Z ) = λ0(t)e
β(t)T Z

θ0 = β(t) for some fixed t

As in the density estimation example, localize the estimating
function in a neighborhood of t using a kernel kb:

mn(θ0, s
(0), s(1)) =

√
b

n

∫ τ

0
kb(u − t)

(
Z − s(1)(θ0, u)

s(0)(θ0, u)

)
dN(u)

Generalized ELT: plug-in EL statistic has a χ2
p limit.

Sun, Sundaram, Zhao (2007): simultaneous EL band for β(·)
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Example: Mayo Clinic primary biliary cirrhosis study

Right-censored survival times of 416 patients.

Pointwise CI (dashed), simultaneous band (dotted), Cai and Sun (2003) (solid grey)

From Sun, Sundaram, Zhao (2007)
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EL for current status data

T ∼ F failure time, S = 1 − F , pdf f , θ0 = S(t)
C ∼ G check-up time, assumed independent of T , pdf g

Only get to observe X = (C , ∆) where ∆ = 1{T ≤ C}.
Nonparametric likelihood:

L(S) =
n∏

i=1

(1 − S(Ci ))
∆i S(Ci )

1−∆i

Sn(t) = arg max
S

L(S).

Groeneboom (1987) showed

n1/3(Sn(t) − S(t)) →d 2c argmins∈R
(W (s) + s2)

where c = {F (t)(1 − F (t)f (t)/(2g(t))}1/3

W two-sided Brownian motion.
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Banerjee and Wellner (2002) found a universal limit law for
−2 logLn(θ0), where

Ln(θ) =
sup{L(S) : S(t) = θ}

sup{L(S)} .

Limit is an integral involving greatest convex minorants of
W (s) + s2.

The estimating function approach also works.

Idea is to apply the generalized ELT to an efficient estimating
function.
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van der Laan and Robins (1998) found an efficient influence curve
for the functional

θ0 =

∫ ∞

0
k(u)S(u) du

(estimable at root-n rate):

m(X , θ, F , g , k) =
k(C )(1 − ∆)

g(C )
− θ − k(C )(F (C ) − 1)

g(C )

+

∫ ∞

0
k(u)(1 − F (u)) du

Provides an efficient (plug-in) estimating function m(X , θ, F̂ , ĝ , k)
when F̂ or ĝ is consistent
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van der Vaart and van der Laan (2006, IJB) found an
asymptotically normal estimator for θ0 = S(t):

n1/3(Ŝ(t) − S(t)) →d N(0, σ2),

where σ2 depends on F (t), g(t) and the limits of ĝ(t), F̂ (t).

Estimating function

mn(X , θ, F̂ , ĝ) = n−2/3m(X , θ, F̂ , ĝ , kn)

where kn(u) = k((u − t)/b)/b is a kernel function of bandwidth
b = bn = b1n

−1/3 centered at t.
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Assume

ĝ , F̂ belong to classes of functions having uniform entropy of
order (1/ε)V , V < 2, w.p. tending to 1

ĝ or F̂ locally consistent at t.

Note: If ĝ ′ → g ′ uniformly in probability, then ĝ belongs to the
class of Lipschitz functions, w.p. tending to 1.

Generalized ELT:

−2 log ELn(S(t), F̂ , ĝ) →d χ2
1

Approach can be extended to adjust for covariates.
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