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Functional Data Analysis (FDA)

Introduction
Measurements treated in the FDA literature typically are recorded by high
frequency automatic sensing equipment and therefore the data object is an
entire curve. From a theoretical point of view, (stochastic) models and
statistical analysis of a functional data set Functional Data Analysis – can
be taken often one-to-one from the conventional multivariate analysis.

A first method how to deal with the functional data is to discretize them
and perform a standard multivariate analysis on the resulting random
vectors. The natural question is then: “what makes a data set functional?”
when is it appropriate to understand a vector {vj, j = 1, . . . , d} as a vector
of discretized functional values vj = v(tj), j =1, . . . , d?
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What are functional data?
Heuristically, a data set is functional when there is a reason to assume that
the discretized function v possess some features that are meaningful only in
the functional context. Probably the most important example of such a
feature is the smoothness.

In mathematical terms functional data are observations of some function
space valued random elements.

The sample paths are usually observed on a fine discrete grid with some
noise measurement process added

Data on individual i (i = 1, . . . , n) :

Xij = xi(tij) + ε(tij), j = 1, . . . , ni
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Why functional data?
• Real world phenomena are usually continuous at small enough time

scale. Lot of interesting objects are rather functions than vectors
(Finance: Yield-curves, Supply/Demand-curves; Economy:
Macro-indexes; Biology: Growth-curve, etc . . . )

• Smoothness make sense in FDA

• FDA overcomes the curse of dimensionality; For smooth functions with
bounded derivative the instrinsic dimension is finite and typically the
practical dimension is 10-20.
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Goals of FDA
• Exploratory data analysis

• Characterizing homogeneity and patterns of variability among curves,
and identifying unusual ones.

• Assessing the relationships of shapes of curves to covariates.

• Prediction: Prediction of the future.
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Basic Setup
A random object in FDA can be modeled as a measurable function defined
on a probability space with values on some separable Hilbert space of
functions.

For the purpose of FDA, the most often used function space is the space of
the Lebesque integrable functions L2

J on some subset of J ⊂ Rq or more
complicated type of function spaces – Sobolev spaces – spaces of smooth
Lebesque integrable functions.
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Typical assumptions
One usually assumes the existence of the expected value, variance and
continuous covariance and correlation function of the functional random
variable X and denote these by

• µ(t) = E(X(t)), t ∈ J,

• σ2(t) = E{(X(t)− µ(t))2}, t ∈ J,

• γ(s, t) = E{(X(s)− µ(s))(X(t)− µ(t))}, s, t ∈ J,

• ρ(s, t) = γ(s,t)√
σ2(t)σ2(s)

, t, s ∈ J.

The ρ(s, t) is defined under the assumption σ2(t), σ2(s) > 0. Then
E(‖X − µ‖2

H) =
∫

γ(t, t)dt < ∞ and the covariance operator Γ of X is given
by

(Γv)(t) =
∫

γ(t, s)v(s)ds, v ∈ L2
J .
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Empirical counterparts
Given a functional sample {Xi(t), t ∈ J}, i = 1, . . . , n estimates of the
previous moments are constructed as straightforward generalizations of the
multivariate counterparts:

• Mean X̄(t) = n−1 ∑n
i=1 Xi(t),

• Variance function σ̂2(t) = (n− 1)−1 ∑n
i=1(Xi(t)− X̄(t))2}.

• Covariance function
γ̂(s, t) = (n− 1)−1 ∑n

i=1{(Xi(s)− X̄(s))(Xi(t)− X̄(t))}

• Correlation function ρ̂(s, t) = γ̂(s,t)√
σ̂2(t)σ̂2(s)

.

The point-wise consistency of these estimators can be obtained using
standard multivariate results. The covariance operator can be approximated
by the empirical covariance operator

(Γ̂v)(t) =
∫

γ̂(t, s)v(s)ds.
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Cross-correlation
Given pairs of random functional {(Xi(t), Yi(t)), t ∈ J} ,i = 1, . . . , n one
may also compute:

• the cross-covariance
ˆCovX,Y(s, t) = (n− 1)−1 ∑n

i=1{(Xi(s)− X̄(s))(Yi(t)− Ȳ(t))}

• the cross-correlation function ˆCorrX,Y(s, t) =
ˆCovX,Y(s,t)√
σ̂2

X(t)σ̂2
Y(s)

.
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Goals for This Course
Provide an overview of relevant FDA techniques and concentrate mainly on

• Some of the basics way of exploring functional data.

• An overview of functional principal components

• Some exposure to functional regression and nonparametric mixed
models.

Again, as for LDA, these lectures (alone) will not train you comprehensively
in the various nuances required for good applied functional data analysis.
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References
FDA ideas have been around a while . . .

– Philippe Besse and Jim Ramsay worked on it early and formalized it as a
stats area; currently uses exploratory approach, derives models via
differential equations

seminal paper by Rice and Silverman (1991) - pca

French schools in Toulouse and Grenoble: lots of theory in function space

Müller : trying to do something model-based

big flurry of current activity linking FDA with longitudinal/mixed effects
analysis (Ruppert, Wand and Carrol; Morris; Antoniadis and Sapatinas,
Guo, Wu and Zhang, etc. . . )

FDA is still very much in its infancy. Areas of current interest:

– making inference in FDA

– trying to formulate model-based FDA
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Example: the Tecator Data
The tecator data are recorded by a Tecator near-infrared spectrometer (the
Tecator Infratec Food and Feed Analyzer) which measures the spectrum of
light transmitted through a sample of minced pork meat in the region
850–1050 nm.

Each sample contains finely chopped pure meat with different moisture, fat
and protein contents. For each meat sample the data consists of a 100
channel spectrum of absorbances and the fat contents as output. The total
number of samples is 240.

The aim is to predict the percentage of each content given the
corresponding spectrometric curve X.

The cross-correlation with the output can be misleading.
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Tecator Data
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and the cross-correlation with the scalar output (fat content).
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Functional Basis Expansion
A popular approach in FDA, motivated by the fact that one needs a flexible
method for constructing approximations to the observed data than can track
local curvature is the functional basis expansion technique.

Consider a functional basis on an interval J, i.e. a linear independent set of
functions {φk}∞

k=1 that spans the function space H. Prominent and popular
examples of such functional bases are:

• the set of monomials {tk}∞
k=0

• the Fourier basis

• Splines or B-spline bases

Basis expansion: the functional inputs {Xi(t)}n
i=1 are approximated as (for

some finite K > 0)

Xi(t) ≈
K

∑
k=1

θkφk(t).

K and θk the shape of the approximation.
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What do we want from basis functions?
• Fast computation of individual basis functions.

• Flexible so they can exhibit the required curvature where needed, but
also be nearly linear when appropriate.

• Fast computation of the coefficients θk:

• Smooth as required since one makes lots of use of derivatives in
functional data analysis

• Constrained as required, such as periodicity, positivity, monotonicity,
asymptotes and etc. . . .

Moreover, the approximation should somewhat denoise and also provide
dimension reduction. Hence an appropriate criterion for determining the
θk’s is needed.
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Fourier Basis
A well known basis for periodic functions on the interval J is the Fourier
basis, defined on J by

φ0(t) =
1√
|J|

, φ2r−1(t) =
1√
|J|/2

sin(rωt), φ2r(t) =
1√
|J|/2

cos(rωt),

for r = 1, . . . , L/2 where L is an even integer. The frequency ω determines
the period and the length of the interval |J| = 2π/ω.

The Fourier basis defined above is an orthonormal basis. The popularity of
this basis is based partially on the possibility of fast coefficient calculation
by the Fast Fourier Transformation (FFT) Algorithm (O(n log n) complexity)

Another important feature of the Fourier series is the existence of
continuous derivatives of any order. A limitation is that Fourier series are
only natural if X(t) is periodic and extremely smooth and do not perform
well for functions with strong local features, like discontinuity points in
lower order derivatives.
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Polynomial Basis
The polynomial basis, appropriate for non-periodic functions is defined by

φk(t) = tk, k = 0, 1, . . . , L− 1.

The polynomial functions are easy to calculate, for example by a simple
recursion. The calculation of derivatives is also very imple and fast.

They are okay for approximating very simple curves such as linear or slight
curvature but not flexible enough to focus on specific locations . Moreover,
high order polynomials become too fluctuating especially in the boundaries
of J.

Polynomial basis as defined above is not orthogonal. However several
modified types of polynomial systems exist, that are orthogonal, e.g.
Legendre polynomials.
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Spline Bases
Very popular functional bases for non-periodic data are spline bases. They
have the potential to model sharp changes in the observed curve X(t) as as
well as its smooth variation. They are very flexible, relatively fast to
evaluate as well as their derivatives.

• Consider a sequence of knots on the interval J, τ = {τ`}L
`=0 with

τ0 = min(J) and τL = max(J).

• A spline with knots τ is a piecewise polynomial of order K (degree
K − 1) smoothly connected at the knots.

• At the knots, it is required that the values of the polynomial pieces and
derivatives up to K − 2 agree.

• The number of the basis functions is uniquely defined by the spline
order and the number of knots. ((K + L− 1)).

• You can have multiple knots at a point. For each additional knot, the
spline function will have one less derivative at that knot.
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Some B-spline bases
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Figure: Spline basis for different orders.
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B-Spline bases for different orders. Note that B-splines have local support
and are positive.
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Approximation and Coefficient Estimation
When using a fixed number K of basis functions for approximating X(t) one
may write

X(t) =
K

∑
k=1

θkφk(t) + ε(t),

where ε models the approximation error.

The approximation looks like a linear regression model w.r.t. to the
transformed variables φk(t) and a natural candidate for estimating the
coefficient vector θ is by minimizing some loss function.
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Smoothing data by least squares
The choice of a quadratic loss function leads to the least squares criterion,
i.e. fit the observed discretized curve x = {x(tj)}j=1,...,T using the model

x(tj) =
K

∑
k=1

θkφk(tj) + εj,

and interpolate the data using

x̂(t) =
K

∑
k=1

θ̂kφk(t)
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Least Squares fitting
Define by Φ the T × K matrix with values φk(tj). Then ordinary least
squares fits the data by minimizing with respect to θ

‖x−Φθ‖2

and leads to
x̂ = Φθ̂ = Φ(Φ′Φ)−1Φ′x

This is of course appropriate for i.i.d. residuals with zero mean and constant
variance. When the errors are nonstationary or autocorrelated then one uses
weighted least squares.
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Example: pubertal age

Two estimates for the acceleration. As one can see we get very strong
boundary effects and the fit needs improvements there for the interpolation
to be meaningful.
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How many functions?
In the nonparametric regression, K is however unkown and needs to be
estimated from the data important question for practitioners is how many
functions should be used in the basis expansion.

This problem is essentially equivalent to the bandwidth-choice in the local
polynomials and is related to the standard Bias/Variance dilemma:

• High K

– High order expansion gives a better approximation to data

– Bias[x̂(t)] = x(t)−E[x̂(t)] is small

– Fit of noise or wrong variations

• Low K

– Miss of important aspects of estimated function

– Var[x̂(t)] = E{(x̂(t)−E[x̂(t)])2} is small

One usually uses penalized least squares estimates to achieve the best MSE.
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Principal Components for Functional Data
• In the multivariate framework PCA is usually used when we want to

find the dominant features and modes of variation in the data, usually
after subtracting the mean from each observation.

• We want to know how many of these modes of variation are required to
achieve a satisfactory approximation to the original data (dimension
reduction).

• It may be assumed that keeping only dominant modes will improve the
signaltonoise ratio of what we keep (denoising).

The functional version of principal component analysis has much more
important role than its multivariate version, in fact it is often the only way
to describe and work with distribution of random functions in practice.
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PCA for multivariate data
Let x be a p-dimensional random vector and let X be the N × p matrix
whose rows form a sample of size N from x. The aim is to find normalized
weight vectors γr ∈ Rp for which the linear transformations of the
p-dimensional random vector x:

βr = γ′r(x−E(x)) = 〈γr, x−E(x)〉.

has maximal variance subject to:

γ′`γr = 〈γ`, γr〉 = δ`,r.

The problem is solved by the means of the Jordan spectral decomposition of
the covariance matrix, the r-th principal component is the eigenvector of
covariance matrix C = 1

N X′X corresponding to the r-th largest eingenvalue.
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Functional PCA
In FDA the motivation for Functional Principal Components Analysis
(FPCA) as the dimension reduction technique can be done via the same
route: having a random function X find orthonormal weight functions γ1,
γ2, . . . , such that the variance of the linear transformation

βr = 〈γr, X − µ〉 =
∫

J
γr(t){X(t)− µ(t)}dt,

is maximal, w.r.t. to the orthonormal weight functions γr, i.e. such that:

‖γr‖2 =
∫

γ2
r (t)dt = 1, 〈γ`, γr〉 =

∫
γr(t)γ`(t)dt = δ`,r.

The solution is achieved by γr, the normalized eigenfunction of the
covariance operator Γ corresponding to the r-th largest eigenvalue λr, i.e. by
solving the integral eigen-equation∫

γ(s, t)γ(t)dt = λγ(s), s ∈ J.
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Karhunen-Loève Expansion
The theoretical basis for the application of the FPCA as a dimension
reduction tool is given by the Karhunen-Loève Expansion (KL) of X
obtained by:

X = µ +
∞

∑
r=1

βrγr.

The factor loadings
βr = 〈γr, X − µ〉

are uncorrelated, mean zero and with variance λr.

Clearly the distribution of X can be analyzed by analyzing the structure of
the eigenfunctions γr and of the (one-dimensional) factor loading βr.
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Properties of KL-Expansion
Smoothness If X is a random function with realizations that are twice

continuously differentiable with probability 1 then this will be also true
for the eigenfunctions γr.

Best Empirical Basis The first L principal components provide a “best
basis” for approximating the sample functions in terms of the
integrated square error. More precisely, for any choice of L orthonormal
basis functions v1, . . . , vL the mean integrated square error:

E(‖(X − µ−
L

∑
r=1

〈X − µ, vr〉 vr‖2)

is minimized by vr = γr.

The later property is of high importance in the application of the FPCA. In
many important applications a small number of functional principal
components will suffice to approximate random function X with a small
(residual) error justifying a truncated KL-expansion.
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Estimation of Functional Principal Components
The estimation of FPC is done using same arguments as in multivariate
PCA: for a given sample Xi of size n generated by X an empirical analog of
the KL-expansion can be constructed by using eigenvalues λ̂1 ≥ λ̂2 ≥ . . .
and orthonormal eigenfunctions γ̂1, γ̂2, . . . of the empirical covariance
operator Γ̂.

Under appropriate assumptions one even has asymptotic results on λ̂r and
γ̂r (see Dauxois, Pousse and Romain (1982)) such as, for example,

‖γr − γ̂r‖ = OP(n−1/2).
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Challenges
• How to deal with functions in practice?

• Functional values are observed just at discrete grid

• Functions may be observed with additional error

• How to do inference in practice ?
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The naive method
In the standard FDA setup, one assumes that the n functions Xi are
observed without additional error on a fine discrete grid of size T and the
analysis proceeds “as if” the functions were directly observed. Using the
discrete data

• Take the n× T data matrix X of finely sampled values of Xi

• solve the eigenvalue problem for V = n−1X′X

• to obtain an approximate eigenfunction γr from the discrete values, use
any convenient interpolation method
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The functional basis approach
Denote a functional basis on the interval J by {φ1, φ2, . . . , } and assume that
the functions Xi are approximated by the first K basis functions of this basis:

• Express each Xi as

Xi(t) =
K

∑
k=1

θikφk(t) = θ′iφ(t)

• In matrix form X = ΘΦ. The analysis of the functional objects is
implemented through the coefficient matrix Θ. More precisely,

– The principal components are obtained by a spectra analysis of the
matrix 1

n Θ′ΘW where W is the K × K Gram matrix corresponding to
the basis, i.e. Wk` = 〈φk, φ`〉.

Easy implementation, in fact one analyzes Θ; Works fine if you use proper
basis; Choice of L influences the quality of the results.
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Smoothed Functional Principal Components
Often the functions Xi(t) are observed with additional error or affected by
wrong variations: combine then optimization criterion with a roughness
penalty as it is done traditionally in nonparametric regression.

• use as a roughness penalty pen(γ) = ‖D2γ‖2

• unsmoothed PCA maximizes sample variance Var {〈γ, X − µ〉}

• Maximize instead the penalized variance

Var {〈γ, X − µ〉}
‖γ‖2 + λpen(γ)

• Smoothing parameter λ ≥ 0 chosen with cross-validation

• constrains:

* ‖γr‖2 = 1

*
∫

γr(t)γ`(t)dt +
∫
D2γr(t)D2γ`(t)dt = 0, ` = 1, . . . , r − 1.
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Example : A PCA of monthly temperature curves
The goal of principal . . .

Defining functional PCA

A PCA of monthly . . .

Perspectives and rotations

How are functional . . .

Home Page
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The centered monthly temperature

curves

30-year centered monthly temperatures for each of 35 Canadian weather
stations.



Functional Data Analysis (FDA)

What do we see?
• some curves are high (warm) and some curves are low (cold)

• some curves have larger variation between summer and winter than
others.

• How much of the variation do these two types of variation account for?
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The correlation surface
The goal of principal . . .
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What do we see?
• The diagonal ridge and the unit “wing-tips” correspond to unit

correlations between temperatures at identical times.

• The ridge perpendicular to this corresponding to correlations between
temperatures symmetrically placed around midsummer.

• Correlations fall off much more rapidly for times symmetric about
March and September 21.
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The first four principal components
The goal of principal . . .

Defining functional PCA

A PCA of monthly . . .

Perspectives and rotations

How are functional . . .

Home Page

Title Page

!! ""

! "

Page 11 of 28

Go Back

Full Screen

Close

Quit

The first four principal components



Functional Data Analysis (FDA)

What do we see?
• The two components that we saw in the centered curves account for

about 98% of the variation.

• The first four components account for 99.8% of the vari- ation.

• The first four components tend to look like linear, quadratic, cubic and
quartic polynomials, respectively.
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The first two principal component scores

The goal of principal . . .

Defining functional PCA

A PCA of monthly . . .

Perspectives and rotations

How are functional . . .

Home Page
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The first two principal component

scores
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What do we see?
• Most stations are along a curved line running from lower center to top

right.

• At the top end of the banana are maritime stations with less variation
between winter and summer, and high average temperatures.

• At the lower end are the continental stations with large seasonal
variation and lower average temperatures.

• The Arctic stations are in their own space with large seasonal variation
and very low average temperatures.
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Functional Data Analysis and Mixed-Effects
Basic model: Yij response of the i-th subject at time point tij

Yij = Xijβ(tij) + Zijα
(i)(tij) + εij, i = 1, 2, . . . , n; j = 1, 2, . . . , ni

• β(t) = (β1(t), . . . , βp(t))′ is a p× 1 vector of fixed functions,

• α(i)(t) = (α
(i)
1 (t), . . . , α

(i)
q (t))′ is a q× 1 vector of stochastically

independent random functions that are modelled as realisations of
zero-mean Gaussian processes a(t) = (a1(t), . . . , aq(t))′ (a q× 1
collection of such independent processes) with parametrically
structured covariances γi(s, t),

• Xij = (Xij[1], . . . , Xij[p]) and Zij = (Zij[1], . . . , Zij[q]) are, respectively,
1× p and 1× q design vectors that can include dummy variables as
well as covariates, and

• εij ∼ N(0, σ2
ε ) i.i.d. Gaussian independent of a(t).
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Interpretation
Similar to the interpretation of linear mixed-effects models for longitudinal
data

• Xijβ(t) models the population-average curve profile (fixed effects),

• Zijα
(i)(t) is the i-th curve-specific deviation (also called the

subject-specific deviation if each curve is from a different subject) from
the population-average curve profile that accounts for correlation
(random effects), and

• Xijβ(t) + Zijα
(i)(t) is the i-th curve-specific function (individual curve).

• ni are usually quite large and equal to T with T often larger than n.
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Targets of Interest
Similar to the goals of in longitudinal data analysis

• Estimate the fixed effects curves βk(t), k = 1, . . . , p,

• Predict the individual i-th curve-specific deviation (random effects),

• Predict the individual curves Xijβ(t) + Zijα
(i)(t).

• Estimate the covariance structure γi(s, t) of the individual curves.

• Draw some inference about the fixed effects.
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Example: Orthosis data
• Interesting data on human movement.

• Data : David Amarantini and Luc Martin, Laboratoire Sport et
Performance Motrice, UJF.

• Underlying movement under various levels of an externally applied
force to the knee.

• Seven young male volunteers wore a spring-loaded orthosis of ajustable
stiffness under 4 experimental conditions:

– Control condition (without orthosis)

– Orthosis condition

– Two conditions (spring1, spring2) stepping in place was perturbed
by fitting a spring-loaded orthosis into the right knee.
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Orthosis Data (2)
The data set consists in 280 separate runs and involves the seven subjects
over four described experimental conditions, replicated ten times for each
subject.

Panels in rows correspond to treatments while the panels in columns
correspond to Subjects. The number of time recordings T per replications is
256.

Averaging over the 10 repetitions for each subject and treating subjects as
random effects, we have n = 28, ni = T = 256, p = 4 and q = 1.
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Figure 4: Orthosis data set: panels in rows correspond to
Treatments while the panels in columns correspond to Subjects.
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Question
• Understand how a subject can cope with the external perturbation and

• quantify the ways in which the individual mean cross-sectional
functions differ over the various conditions.

To do so we will not assume a parametric model neither for the fixed effects

βk(t) nor the random effects α
(i)
` (t), but instead, as it was already done for

the FPCA case, we will model these using a function basis expansion, using
for example a regression spline basis for dimension reduction.
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Basis function expansion
Denote a functional basis on the time interval J on which the data are
observed by {φ1, φ2, . . . , }, and assume that both fixed effects components

βr(t), r = 1, . . . , p and random effects α
(i)
` (t), ` = 1, . . . , q, i = 1, . . . , n are

approximated by their expansion in the first K basis functions.

For each r1 = 1, . . . , p, set

βr1(t) = (βr1(t1), . . . , βr1(tT))′,

where

• t = (t1, . . . , tT),

• φ(t) = (φ1(t), . . . , φK(t))′ and

• Φ the T × K matrix with rows the φ(tj)′.
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Then

• Express each βr1 , r1 = 1, . . . , p as

βr1(t) =
K

∑
k=1

dr1kφk(t) = φ(t)′dr1

• In matrix form βr1(t) = Φdr1 , where dr1 is the K × 1 vector of the
corresponding basis expansion coefficients.

• For each i = 1, 2, . . . , n and r2 = 1, 2, . . . , q, set

α
(i)
r2 (t) = Φθ

(i)
r2 ,

where θ
(i)
r2 is the K × 1 vector of the corresponding basis expansion

coefficients {θ
(r2,i)
k , k = 1, . . . , K}.
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More assumptions

Since Φ is not random the randomness of the α
(i)
r2 (t), i = 1, 2, . . . , n,

r2 = 1, 2, . . . , q is shifted to that of the vectors θ
(i)
r2 .

Assume that θ
(i)
r2 are independent and identically distributed as N(0, σ2

θ D)

random vectors and also that εi ∼ N(0, σ2
ε IT) and θ

(i)
r2 are independent.

These assumptions implicitly restricts the time-domain covariance of the
observed functional data to stationary covariance structures for the between
random effects function covariance. However, even with such restrictions
the model is flexible enough for often capturing key characteristics of
subject specific random variations encountered in practice.
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Notation
Let

• Yi(t) = (Yi1, . . . , YiT)′ and d̃ = (d′1, . . . , d′p)′.

• X̃i = XiΦ
(p) and Z̃i = ZiΦ

(q)
n , where Xi = diag(Xi1, . . . , XiT) (each

element is an appropriately constructed matrix containing dummy
variables and/or covariates), where

• Φ(p) = diag(ΦT×K, . . . , ΦT×K) (p blocks), Zi = diag(Zi1, . . . , ZiT),

• Φ
(q)
n = diag(Φ(p) . . . Φ(p)) (n blocks).

• θ̃i = (θi1, . . . , θiq)′ and ε̃i = (εi1, . . . , εiT)′.
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FDA-LME
We have

Y = X̃d̃ + Z̃θ̃ + ε̃,

where

• Y = (Y′1, . . . , Y′n)′,

• X̃ = (X̃′1, . . . , X̃′n)′,

• Z̃ = (Z̃′1, . . . , Z̃′n)′,

• θ̃ = (θ̃
′
1, . . . , θ̃

′
n)′

• ε̃ = (ε̃′1, . . . , ε̃′n)′.

Clearly a linear mixed-effects model where the fixed-effects are parameterized
by the vector coefficients of βr1(t) (r1 = 1, 2, . . . , p) and the random-effects

are parameterized by the vector coefficients of α
(i)
r2 (t) (i = 1, 2, . . . , n;

r2 = 1, 2, . . . , q).
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Quantifying Variability
E(θ̃, ε̃)′ = (OnKq, OnT)′, where OL denots a L× L matrix with zero entries.

Var(θ̃, ε̃)′ = diag(σ2
θ Σ, σ2

ε InT), where Σ = diag (D, . . . , D) (n-components)
and Ik is the k× k identity matrix.

The corresponding covariance surface for the Gaussian process modeling

the random effect functions α
(i)
r2 (t) is given by σ2

θ Z̃ΣZ̃′. This matrix describes
how the the functions vary one from another and the parameters of D and
σ2

θ have a clear impact on any inference that is done but such a specification
seems unavoidable since the large dimension of the covariance matrices
make it infeasible to estimate them in a completely unstructured fashion.
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Summary
We can now write

E(Y) = X̃d̃ and Var(Y) = σ2
ε Vλ,

where
Vλ = Inm + λZ̃ΣZ̃T

and
λ = σ2

θ /σ2
ε .

The parameter λ can be considered as a ratio of the curve-to-curve variability
and the within-curve noise. Note that σ2

θ = 0 if and only if λ = 0, and the
parameter space for λ is [0, ∞).
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Estimation of fixed and prediction of random effects
Using classical linear mixed-effects estimation techniques, the linear
mixed-effects representation is used to obtain function basis expansion
estimates for both fixed-effects and random-effects.

More specifically, for the estimation of the functional fixed-effects (i.e., the
population-average curve profiles), we apply the classical weighted
least-squares (WLS) methodology, which is easily implemented.

On the other hand, for the estimation of the functional random-effects (i.e.,
the curve-specific functions), we apply RML estimation of variance
components, as is commonly used in standard liner mixed-models software
such as PROC MIXEDin SASand lme() in S-PLUS (see, e.g., Ngo & Wand,
2004).
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Testing for Random-Effects
Testing for random-effects in the general functional mixed-effects model is
equivalent to testing the following hypotheses

H0 : σ2
θ = 0 (λ = 0) versus HA : σ2

θ > 0 (λ > 0).

Testing is non-standard because the parameter under the null hypothesis is
on the boundary of the parameter space. Crainiceanu & Ruppert (2004) and
Claeskens (2004) have recently derived finite sample and asymptotic null
distributions for the LR and RLR test statistics in linear mixed-effects model
with one variance component.

These results can be straightforwardly adapted in the present scenario to
obtain the finite sample null distributions of the corresponding LR and RLR
test statistics that can be used for testing the hypotheses (see Theorem 3.1 in
Antoniadis & Sapatinas, 2007).
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Back to the Orthosis data
Regarding the functional random-effects, the application of the testing
methodology reveals that σ̂θ = 40.3127 and σ̂ε = 1.0799 resulting in
λ̂ = 1393.5311.

The finite sample RLR test statistic of 3.2743 (p-value of 0.0304), shows that
there is significant evidence of random-effects in this case.

Regarding the functional fixed-effects, a Bonferroni based test statistic value
of 4.8472 for Spring 1 vs Spring 2 conditions, 8.9922 for Control vs Orthosis
conditions, and 48.7512 for Spring 1 + Spring 2 vs Control + Orthosis
conditions.

The various fixed-effects hypotheses of a similar behaviour under the
different conditions were all rejected (the overall p-values were 0.0203,
0.0012 and 0 respectively) and supports the fact that individuals adjust their
posture differently under perturbations of different nature.
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Individual Random-Effects EBLUP predictions
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Fixed-Effects Estimates
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A functional approach to time series prediction
One seeks information on the evolution of a continuous-time stochastic
process X = (X(t); t ∈ R) in the future.

Given a trajectory of X observed on the interval [0, T], one would like to
predict the behavior of X on the entire interval [T, T + δ], where δ > 0,
rather than at specific time-points.

Divide [0, T] into [iδ, (i + 1)δ], i = 0, 1, . . . , n− 1 with δ = T/n, and consider
the discrete time function space valued process Z = (Zn; n ∈ Z) defined by

Zn(t) = X(t + nδ), 0 ≤ t ≤ δ, n ∈ Z. (1)

This representation is especially fruitful if X processes a seasonal
component with period δ.
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ARH(1) Processes
See Bosq (2000) for an excellent account on the theory of linear processes in
function spaces.

Let H be a (real) separable Hilbert space, with the inner product 〈·, ·〉 and
the norm || · ||. Typically, H is either L2[a, b]) or Ws

2 [a, b] the Sobolev space of
s-smooth functions on [a, b] ⊆ R ( s = 1, 2, . . .).

Let ξ = (ξn; n ∈ Z) be a sequence of H-valued random variables defined
on the same complete probability space (Ω,F ,P). We say that ξ is a (zero
mean) ARH(1) process, if

ξn = ρ(ξn−1) + εn, n ∈ Z, (2)

where ρ : H 7→ H is a bounded linear operator and ε = (εn; n ∈ Z) is a
H-valued strong white noise. Under mild conditions, the above equation
has a unique solution which is a weakly stationary process with innovation
ε.
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Let H∗ be the (topological) dual of H. The covariance structure of ξ is
related to two bounded linear operators from H∗ to H, namely the
covariance and cross-covariance (of order 1) operators. Since H∗ may be
identified with H (by Riesz representation), they are defined respectively by

f ∈ H 7−→ C f = E(〈ξ0 ⊗ ξ0)( f ))

and
f ∈ H 7−→ D∗ f = E(〈ξ1 ⊗ ξ0)( f )),

where the tensor product (for two fixed elements in H) u⊗ v is the bounded
linear operator from H to H, defined by

x ∈ H 7−→ (u⊗ v)(x) = 〈u, x〉 v.
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If E||ξ0||2 < ∞, the operator C is then symmetric, positive, nuclear and,
therefore, Hilbert-Schmidt. The cross-covariance (of order 1) operator D
(the adjoint of D∗) defined by

f ∈ H 7−→ D f = E(〈ξ0 ⊗ ξ1)( f ))

is also nuclear and, therefore, Hilbert-Schmidt, and we have the following
relations

D = ρC

D∗ = Cρ∗,

where ρ∗ denotes the adjoint of ρ.
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The operators C, D and D∗ can be estimated by

Cn =
1

n + 1

n

∑
k=0

ξk ⊗ ξk, Dn =
1
n

n−1

∑
k=0

ξk ⊗ ξk+1

and

D∗
n =

1
n

n−1

∑
k=0

ξk+1 ⊗ ξk.

Cn, Dn and D∗
n are unbiased estimators of C, D and D∗. Also

||Cn − C||HS → 0 a.s. and E||Cn − C||2HS = O
(

1
n

)
, as n → ∞

||Dn − D||HS → 0 a.s. and E||Dn − D||2HS = O
(

1
n

)
, as n → ∞

and

||D∗
n − D∗||HS → 0 a.s. and E||D∗

n − D∗||2HS = O
(

1
n

)
, as n → ∞.
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An estimator of ρ could be based on

ρ = DC−1. (3)

In a finite-dimensional context, it makes sense, provided the invertibility of
C. In our context, however, (3) does not make sense because C−1 is
unbounded. Now, since C is a compact operator, by the closed graph theorem
and the fact that the range of D∗ is included in the domain of C−1, the
adjoint relation to (3):

ρ∗ = C−1D∗ (4)

is well-defined. If one is able to estimate ρ∗ in (4), then ρ can be estimated
using

ρ = Ext(DC−1) = (C−1D∗)∗, (5)

where Ext denotes the extension to H of a bounded linear operator defined
on a dense subspace of H.
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Prediction
The stochastic process X is usually not centered and, therefore, is not
weakly stationary. We will assume that its mean is a periodic function
a = (at; t ∈ R) with period δ and, hence, the centered stochastic process
Y = (Yn = Zn − a; n ∈ Z) is an ARH(1) process. This implies that the best
predictor of Zn+1 given Zn, Zn−1, . . . is obtained by

Z̃n+1 = E(Zn+1 | Zn, Zn−1, . . .)

= a + ρ(Zn − a), n ∈ Z. (6)

If one is able to estimate the (unknown) periodic function a, say by â, and
the ‘prediction’ operator ρ, say by ρ̂, given Z0, Z1, . . . , Zn, then a statistical
predictor of Zn+1 based on (6) is obtained by

ˆ̃Zn+1 = â + ρ̂(Zn − â). (7)
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Estimation Procedures for the Prediction Operator –
A Review

We assume that

(H1) : E(||Y0||4) < ∞ and ||ρj0 ||L < 1 for some j0 ≥ 1,

where || · ||L stands for the supremum norm for bounded linear operators
from H to H (then Y is weakly stationary with innovation ε). We also
assume that (H2) : C is one-to-one, otherwise ρ cannot be defined
uniquely.

Let also C, D and D∗ denote the covariance and cross-covariance (of order
1) operators of Y. These are respectively estimated by Cn, Dn and D∗

n with ξk

and ξk+1 respectively replaced by Zk − Z̄n and Zk+1 − Z̄n, where
Z̄n = 1

n+1 ∑n
k=0 Zk is an unbiased estimator of the mean a. The eigenvalues

of C and Cn are respectively denoted (in decreasing order) by λ1 ≥ λ2 ≥ . . .
and λ1,n ≥ λ2,n ≥ . . . with corresponding eigenfunctions respectively
denoted by e1, e2, . . . and e1,n, e2,n . . . .
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CONTINUOUS-TIME DATA

Let Πkn the projection operator onto the space spanned by the first kn

eigenfunctions of Cn. Define the class of projection estimators by

ρ∗n =
(

Πkn CnΠkn
)−1

D∗
nΠkn . (8)

The (random) operator
(

Πkn CnΠkn
)−1

is defined by inverting the operator(
Πkn CnΠkn

)
and completing it by the null operator on the subspace

orthogonal to the space spanned by the first kn eigenfunctions of Cn.
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To obtain asymptotic results, it is assumed that
(

Πkn CnΠkn
)

is almost

surely invertible after some n ∈ Z. Under the extra assumption

(H4) : nλ4
kn
→ ∞ and 1

n ∑kn
k=1

gk
λ2

k
→ 0, as n → ∞,

where gk = max
{
(λk−1 − λk)−1, (λk − λk+1)−1}, one can then prove that

(see Mas, 2000) for any f ∈ H

||ρ∗n f − ρ∗ f || p→ 0, as n → ∞,

If ρ is compact, then

||ρ∗n − ρ∗||L
p→ 0, as n → ∞,

and if ρ is Hilbert-Schmidt, then

||ρ∗n − ρ∗||HS
p→ 0, as n → ∞.
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DISCRETE-TIME DATA

In many applied contexts, Z is only observed at discrete-time points.
Therefore, in order to use the previous results for continuous-time data, one
first approximates the sample paths of Z and then derives appropriate
approximations for ρ∗.

Hereafter, the discretization grid size m depends on n, the number of paths
of an ARH(1) process, i.e. m := m(n), but for notation simplicity we will
omit this dependency and denote it by m.
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Interpolation Estimators
Under some strict assumptions on the sample paths of Z (i.e. Holder
continuity of order s, 0 < s ≤ 1), Pumo (1992) considers the processes Vi,
i = 0, . . . , n, defined by, for j = 0, 1, . . . , m:

Vi(t) = Zi

(
j

m

)
+

t− j
m

1
m

[
Zi

(
j + 1

m

)
− Zi

(
j

m

)]
,

j
m
≤ t <

j + 1
m

,

and estimates C and D∗ respectively by

Cn,m =
1

n + 1

n

∑
i=0

Vi ⊗Vi, and D∗
n,m =

1
n

n−1

∑
i=0

Vi+1 ⊗Vi.

Following the steps used to obtain the projection estimators, he obtains a
new class of estimators ρ∗n,m. Using the consistency results of the projection
estimators he obtains consistency results for the estimators ρ∗n,m when
m2s > n1+η , for some η > 0.
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Smoothing Spline Estimators
To handle the discretization problem, Besse & Cardot (1996) proposed to
simultaneously estimate the sample paths and project the data using
smoothing splines. Assuming that the predictable part of Z belong to a
q-dimensional subspace Hq of smooth functions (i.e., the range of ρ is an
s-smooth Sobolev space (Ws

2 [0, 1]), s = 1, 2, . . .), they solve the following
variational problem

min
fk∈Hq ;dim(Hq)=q

{
1

m(n + 1)

n

∑
k=0

m

∑
j=1

(
Zk(tj)− fk(tj)

)2 + λ|| f (2)
k ||2L2[0,1]

}
,

where λ > 0 is the regularization parameter. The operators C and D∗ are then
estimated respectively by

Γn.m =
1

n + 1

n

∑
k=0

f̂k ⊗ f̂k
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and

∆∗
n,m =

1
n

n−1

∑
k=0

f̂k+1 ⊗ f̂k,

giving rise to the estimator

ρ∗n,m = Γ−1
n,m∆∗

n,m,

where f̂k is the solution of the above variational problem.
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Example: El Niño-Southern Oscillation
Prediction of a climatological times series describing El Niño-Southern
Oscillation (ENSO). ENSO is a natural phenomenon arising from coupled
interactions between the atmosphere and the ocean in the tropical Pacific
Ocean.

El Niño (EN) is the ocean component of ENSO.

Most of the year-to-year variability in the tropics, as well as a part of the
extratropical variability over both Hemispheres, is related to this
phenomenon. Southern Oscillation (SO) is the atmospheric counterpart of
ENSO.
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An useful index of El Niño variability is provided by the sea surface
temperatures averaged over the Niño-3 domain. Monthly mean values have
been obtained from January 1950 to December 1996 from gridded analyses
made at the U.S. National Centers for Environmental Prediction (see Smith,
Reynolds, Livezey & Stokes, 1996).

The time series of this EN index is depicted in the Figure that follows.
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The monthly mean Niño-3 surface temperature
index
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Nino-3 Time series

The monthly mean Niño-3 surface temperature index in (deg C) which
provides a contracted description of ENSO.
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The first 36 years, from 1950 to 1985, were considered as a learning sample.
The discretization size grid for each sample path, is equal to m = 12.

We have used the smoothing spline interpolation estimator with smoothing
parameters chosen optimally by a cross-validation criterion (q = 2).

To complete the comparison, a suitable ARIMA model, including 12 month
seasonality, has also been adjusted to the times series from January 1950 to
December 1985. The most parsimonious SARIMA model, validated through
a portmanteau test for serial correlation of the fitted residuals, was driven
by the parameters (0, 1, 1)× (1, 0, 1)12.
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Predicted Times Series (1986)
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The raw Niño-3 surface temperature during 1986 and its prediction.
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THANK YOU!




