

1863-17

Advanced School and Conference on Statistics and Applied Probability in Life Sciences

24 September - 12 October, 2007

Analyzing trajectories: Functional predictors of univariate responses

> Ian McKeague Mailman School of Public Health Columbia University New York NY 10032, USA

Analyzing trajectories: functional predictors of univariate responses

Ian McKeague Columbia University

October 1, 2007

Advanced School and Conference on Statistics and Applied Probability in Life Sciences, Trieste

Outline

- Motivating example: National Collaborative Perinatal Project
- Punctional linear regression models
- **Interpretable functional regression and misspecification**
- 4 Least squares estimators for temporal parameters
 - Brownian trajectories
 - Fractional Brownian motion trajectories
- Sumerical examples
 - Growth curves
 - Stock prices
- Onclusion

NIH study to investigate prenatal and familial antecedants of childhood growth and development, both physical and psychological.

Approximately 58,000 study pregnancies; mothers examined during pregnancy, labor, and delivery.

The children were given neonatal examinations and follow-up examinations at four, eight, and twelve months, and three, four, seven, and eight years.

Role of early life in chronic disease and cognitive development:

- birth size negatively associated with cardiovascular morbidity and mortality
- birth size positively related to cancer
- birth size positively associated with cognitive ability

Is there a **sensitive period** during which growth rate is predictive of cognitive ability?

Examples of growth trajectories

Linearly interpolated NCPP height data

Models for trajectories

Diffusion processes

Why should we model the trajectories?

- We are interested in using the trajectories as predictors without first reducing them finite-dimensional vectors.
- For smooth trajectories (Lipschitz in time), "standard" regression methods are available: √n-rates, asymptotic normality, robust estimates of standard errors, bootstrap works, etc.
- For "rough" trajectories (with jump discontinuities or unbounded variation), standard methods will not work.

An interpretable ("working") model:

$$Y = \alpha + \beta X(\theta) + Z^{T} \gamma + \epsilon$$

Scalar response: Y = IQ at age 7

Predictor of interest: $X(\theta) =$ growth rate at time θ

Other covariates: Z = (birth weight, gestational age, ...) ϵ has mean zero, finite variance σ^2 , independent of (X, Z). Least squares estimates:

$$(\hat{\theta}_n, \hat{\alpha}_n, \hat{\beta}_n, \hat{\gamma}_n) = \operatorname{argmin}_{(\theta, \alpha, \beta, \gamma)} \sum_{i=1}^n [Y_i - \alpha - \beta X_i(\theta) - Z_i^T \gamma]^2$$

Functional linear regression

$$Y = \alpha + \int_0^1 f(t)X(t) dt + Z^T \gamma + \epsilon$$

- Ramsay and Silverman (1997, 2002) popularized the method of functional principal components for nonparametric estimation of *f*.
- Hall and Horowitz (2007) showed such estimators achieve the minimax rate (in terms of the IMSE). If X is Brownian motion, minimax rate is between $n^{1/4}$ and $n^{1/2}$.

Spectroscopy application: concentration Y of a protein regressed on intensity X(t) of reflected radiation at wavelength t.

Interpretable functional regression

Working model:

$$Y = \alpha + \beta X(\theta) + \epsilon.$$

Least squares estimator:

$$(\hat{\theta}_n, \hat{\alpha}_n, \hat{\beta}_n) = \operatorname{argmin}_{(\theta, \alpha, \beta)} \sum_{i=1}^n [Y_i - \alpha - \beta X_i(\theta)]^2$$

estimates

$$(\theta_0, \alpha_0, \beta_0) = \operatorname{argmin}_{(\theta, \alpha, \beta)} E[Y - \alpha - \beta X(\theta)]^2.$$

Key Question: Is there a rate of convergence r_n such that $r_n(\hat{\theta}_n - \theta_0)$ has a non-degenerate limiting distribution?

Two cases: 1) true working model, 2) misspecified working model, with the data satisfying a functional linear model:

$$Y = \int_0^1 f(t) X(t) \, dt + \epsilon.$$

Change-point estimation

Single-jump process:
$$X(t) = 1\{T \ge t\}$$

Correctly specified case

$$Y = \alpha + \beta X(\theta) + \epsilon$$

 $n(\hat{\theta}_n - \theta_0) \rightarrow_d$ minimizer of a compound Poisson process $\sqrt{n}(\hat{\beta}_n - \beta_0) \rightarrow_d$ normal

Koul, Qian and Surgailis (2003): two-phase linear regression.

Misspecified case

 $Y = F(T) + \epsilon$ where F' = f

Banerjee and McKeague (2007): split point estimation.

 $n^{1/3}(\hat{\theta}_n - \theta_0) \rightarrow_d$ scaled Chernoff $n^{1/3}(\hat{\beta}_n - \beta_0) \rightarrow_d$ scaled Chernoff

Minimizer of Brownian motion with drift

Parabolic drift: Groeneboom (1985) showed that

 $\operatorname{argmin}_{t\in\mathbb{R}}(B(t)+t^2)$

has a density that can be expressed in terms of zeros of the Airy function. Known as the Chernoff distribution.

Triangular drift: Bhattacharya and Brockwell (1976) showed that

 $\operatorname{argmin}_{t\in\mathbb{R}}(B(t)+|t|)$

has a density that can be expressed in terms of Φ .

Asymptotic theory for M-estimators

Consider the general M-estimator

 $\hat{\theta}_n = \operatorname{argmin}_{\theta} \mathbb{M}_n(\theta)$

of $\theta_0 = \operatorname{argmin}_{\theta} \mathbb{M}(\theta)$, where $\mathbb{M}(\theta) = E[m_{\theta}]$ and

$$\mathbb{M}_n(\theta) = \mathbb{P}_n[m_{\theta}] = \frac{1}{n} \sum_{i=1}^n m_{\theta}(X_i, Y_i).$$

Assumption: there is a metric d on Θ such that

$$\mathbb{M}(heta) - \mathbb{M}(heta_0) \gtrsim d^2(heta, heta_0)$$

for all θ in a neighborhood of θ_0 .

Brownian trajectories

Working model: $Y = X(\theta) + \epsilon$

X(t) is Brownian motion, $m_{\theta}(X, Y) = (Y - X(\theta))^2$

Misspecified case: data from the functional linear model

$$Y = \int_0^1 f(t)X(t) \, dt + \epsilon.$$

Easy to show that $\mathbb{M}(\theta) = E[m_{\theta}]$ is twice differentiable, so d is Euclidean distance: $d(\theta, \theta_0) = |\theta - \theta_0|$.

Correctly specified case: data from $Y = X(\theta_0) + \epsilon$. Now

$$\mathbb{M}(\theta) = E[X(\theta) - X(\theta_0)]^2 + \sigma^2 = |\theta - \theta_0| + \sigma^2.$$

M is not differentiable at θ_0 , and $d(\theta, \theta_0) = \sqrt{|\theta - \theta_0|}$.

A lower bound on the rate of convergence r_n can be found in terms of the continuity modulus

$$w_n(\delta) = \sup_{d(\theta,\theta_0) < \delta} |\mathbb{G}_n(m_{\theta} - m_{\theta_0})|,$$

where $\mathbb{G}_n = \sqrt{n}(\mathbb{P}_n - P)$ is the empirical process.

Theorem (van der Vaart and Wellner). If $E[w_n(\delta)] \lesssim \delta^{\alpha}$ for some $0 < \alpha < 2$, then

$$n^{1/(4-2lpha)}d(\hat{ heta}_n, heta_0)=O_p(1).$$

Example: $\alpha = 1$ gives the "usual" rate $n^{1/2}$. Example: $\alpha = \frac{1}{2}$ gives rate $n^{1/3}$.

Key steps

A result from empirical process theory (Pollard, 1989) gives

 $E[w_n(\delta)] \leq J_{[]}(1, \mathcal{M}_{\delta}) \{EM_{\delta}^2\}^{1/2}.$

 $J_{[]}(1, \mathcal{M}_{\delta})$ is the bracketing entropy integral of the class of functions

$$\mathcal{M}_{\delta} = \{m_{\theta} - m_{\theta_0} : d(\theta, \theta_0) < \delta\}.$$

 M_{δ} is an envelope function for \mathcal{M}_{δ} .

Brownian trajectories are Lipschitz: for $0 < \alpha < 1/2$,

$$|X(t)-X(s)|\leq K|t-s|^lpha \quad orall \ t,s\in [0,1]$$

where *K* has moments of all orders [Kolmogorov's continuity theorem]. **Lemma:** m_{θ} is "Lipschitz in parameter":

$$|m_{ heta_1} - m_{ heta_2}| \leq L | heta_1 - heta_2|^lpha, \ \ ext{where} \ EL^2 < \infty.$$

Corollary: $J_{[]}(1, \mathcal{M}_{\delta}) < \infty$.

Self-similarity of the Brownian trajectories is used to bound the second moment of the continuity modulus

$$F_{\delta} = \sup_{| heta - heta_0| < \delta} |m_{ heta} - m_{ heta_0}|.$$

Self-similarity: $X(\delta t) =_d \delta^{1/2} X(t)$.

$$\{EF_{\delta}^2\}^{1/2} \lesssim \left\{E\sup_{| heta- heta_0|<\delta}|X(heta)-X(heta_0)|^4
ight\}^{1/4} \lesssim \sqrt{\delta}.$$

Results

Correctly specified case

 $d(\theta, \theta_0) = \sqrt{|\theta - \theta_0|}$, envelope function $M_{\delta} = F_{\delta^2}$. Get the "usual" rate $n^{1/2}$ with respect to d, which translates to rate n with respect to Euclidean metric:

$$n(\hat{\theta}_n - \theta_0) \rightarrow_d \operatorname{argmin}_{t \in \mathbb{R}} (2\sigma B(t) + |t|),$$

where B is a two-sided Brownian motion.

Misspecified case

 $d(\theta, \theta_0) = |\theta - \theta_0|$, envelope function $M_{\delta} = F_{\delta}$. Cube-root rate:

$$n^{1/3}(\hat{\theta}_n - \theta_0) \rightarrow_d \operatorname{argmin}_{t \in \mathbb{R}}(2aB(t) + bt^2)$$

and a scaled Chernoff limit, as in change-point estimation.

Full model: $Y = \alpha + \beta X(\theta) + \epsilon$, LS estimators of α_0 , β_0 have \sqrt{n} and $n^{1/3}$ rates for the correctly specified and misspecified cases, respectively.

Idea is to localize the criterion function:

$$\widetilde{\mathbb{M}}_n(h) = s_n[\mathbb{M}_n(heta_0 + h/r_n) - \mathbb{M}_n(heta_0)]$$

$$r_n(\hat{\theta}_n - \theta_0) = \hat{h}_n = \operatorname{argmin}_{h \in \mathbb{R}} \widetilde{\mathbb{M}}_n(h)$$

Need to adjust the scaling s_n so we can apply the

Argmin continuous mapping theorem: If $\widetilde{\mathbb{M}}_n \to_d \widetilde{\mathbb{M}}$ in $B_{\text{loc}}(\mathbb{R})$ and $\hat{h}_n = O_p(1)$, then

$$\hat{h}_n \rightarrow_d \operatorname{argmin}_h \widetilde{\mathbb{M}}(h)$$

Details (cont'd)

Correctly specified case: $s_n = r_n = n$

$$\widetilde{\mathbb{M}}_n(h) = n(\mathbb{P}_n - P)(m_{\theta_0 + h/n} - m_{\theta_0}) + nP(m_{\theta_0 + h/n} - m_{\theta_0})$$

= $n^{-1/2}\mathbb{G}_n[Z_n(h)^2] - 2\mathbb{G}_n[\epsilon Z_n(h)] + |h|,$

where $Z_n(h) \equiv \sqrt{n}[X(\theta_0 + h/n) - X(\theta_0)]$, and first term is $o_p(1)$. $Z_n(h) =_d B(h)$ as processes on the real line, so

$$\mathbb{G}_n[\epsilon Z_n(h)] =_d B(h) \left(\frac{1}{n} \sum_{i=1}^n \epsilon_i^2\right)^{1/2} \to_d \sigma B(h)$$

Conclude $\mathbb{M}_n(h) \to_d 2\sigma B(h) + |h|$ in $B_{\text{loc}}(\mathbb{R})$.

Fractional Brownian motion

Gaussian process X(t), $t \in \mathbb{R}$, mean zero, covariance

$$\operatorname{Cov}\{X(t), X(s)\} = \frac{1}{2}(|t|^{2H} + |s|^{2H} - |t - s|^{2H}),$$

 $H \in (0, 1]$ is the **Hurst exponent**.

- H = 1/2 gives two-sided Brownian motion
- H = 1 gives a straight line: X(t) = tZ where $Z \sim N(0, 1)$.
- self-similarity: $X(\delta t) =_d \delta^H X(t)$ for all $\delta > 0$
- trajectories are locally Lipschitz of order $\alpha < H$:

$$|X(t) - X(s)| \leq K |t-s|^{lpha} \quad orall \ t,s \in [0,1]$$

where K has moments of all orders.

fBm trajectories

R function fbmSim used for simulation of fBm

Correctly specified case:

$$n^{1/(2H)}(\hat{\theta}_n - \theta_0) \rightarrow_d \operatorname{argmin}_{t \in \mathbb{R}}(2\sigma B_H(t) + |t|^{2H}).$$

Rate becomes *arbitrarily fast* as $H \rightarrow 0$.

Misspecified case:

$$n^{1/(4-2H)}(\hat{\theta}_n - \theta_0) \rightarrow_d \operatorname{argmin}_{t \in \mathbb{R}}(2aB_H(t) + bt^2)$$

Rate becomes *slower* as *H* decreases — as slow as $n^{1/4}$.

Partial misspecification

$$Y = lpha + eta X(heta) + \int_0^1 f(t) X(t) \, dt + \epsilon.$$

If $H \leq 1/2$ and $\int |f|$ is sufficiently small, then θ_0 coincides with the true θ , and

$$n^{1/(2H)}(\hat{\theta}_n - \theta_0) \rightarrow_d \operatorname{argmin}_{t \in \mathbb{R}}(2aB_H(t) + |t|^{2H}),$$

where

$$a^2 = \sigma^2 + E\left(\int_0^1 f(t)X(t)\,dt\right)^2.$$

Cls in the correctly specified case

 $100(1-\alpha)\%$ confidence interval for θ_0 :

$$\hat{\theta}_n \pm \left(\frac{\sigma}{\sqrt{n}}\right)^{1/H} z_{H,\alpha/2}$$

where $z_{H,\alpha}$ is the upper α -quantile of

$$Z_H = \operatorname{argmin}_{t \in \mathbb{R}} (B_H(t) + |t|^{2H}/2).$$

Full model: $Y = \alpha + \beta X(\theta) + \epsilon$

$$\hat{\theta}_n \pm \left(\frac{\sigma}{\hat{\beta}_n \hat{\gamma}_n \sqrt{n}}\right)^{1/H} z_{H,\alpha/2}$$

given $X(t) = X_0 + \gamma \tilde{X}(t)$ with $\tilde{X}(t)$ a standard fBm.

Quantiles of Z_H

 $Z_H^* = \exp(-1/H)Z_H$ has upper quantiles given by:

Hurst exponent

Correctly specified case:

$$Y = \alpha + \beta X(\theta) + \epsilon,$$

where $\alpha = 0, \ \beta = 1, \ \theta_0 = 1/2, \ \epsilon \sim N(0, .25), \ n = 20.$

Partially misspecified case:

$$Y = \alpha + \beta X(\theta) + \int_0^1 f(t)X(t) dt + \epsilon,$$

where f(t) = 1/2 and true $\theta = 1/2$.

Hurst exponent: H = .3, .5 and .7

Correctly specified case

H = .3 (top), H = .5 (middle), and H = .7 (bottom), based on 500 samples of size n = 20. CI widths: 0.12, 0.27 and 0.38, respectively.

Partially misspecified case

H = .3 (top), H = .5 (middle), and H = .7 (bottom)

Application to growth curves

NCPP growth curves based on natural cubic spline interpolation between the observation times (left), corresponding growth rate trajectories (middle), and histogram of $\hat{\theta}_m$ for 500 subsamples of size m = 500(right).

$$n=5704$$
, $\hat{ heta}_n=2$ months.

Application to NYSE data

Black–Scholes model of stock prices: H = 1/2

X(t) = increase in S. & P. 500-stock index over trading day; Y = total increase over next day

n = 23 trading days (from August 1995) 95% CI for θ_0 : 0–57 minutes after the opening bell

- Introduced "interpretable" functional linear regression models with fBm trajectories as predictors.
- Derived confidence intervals for sensitive time points in terms of the Hurst exponent.
- Feasible extensions:
 - multiple time points (model selection issues arise)
 - diffusion processes (rates as for Brownian motion)
 - Lévy processes (stationary independent increments)
 - multiparameter fBm
 - Cox regression: $\lambda(t|X) = \lambda_0(t) \exp(\beta X(\theta))$, \mathcal{F}_0 -measurable X.