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National Collaborative Perinatal Project, 1959-1974

NIH study to investigate prenatal and familial antecedants of
childhood growth and development, both physical and
psychological.

Approximately 58,000 study pregnancies; mothers examined during
pregnancy, labor, and delivery.

The children were given neonatal examinations and follow-up
examinations at four, eight, and twelve months, and three, four,
seven, and eight years.
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Motivating question

Role of early life in chronic disease and cognitive development:

birth size negatively associated with cardiovascular morbidity
and mortality

birth size positively related to cancer

birth size positively associated with cognitive ability

Is there a sensitive period during which growth rate is predictive
of cognitive ability?

Ian McKeague Columbia University Analyzing trajectories: functional predictors of univariate response



Examples of growth trajectories

Linearly interpolated NCPP height data
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Models for trajectories

Compound Poisson processes

Diffusion processes Brownian motion
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Why should we model the trajectories?

We are interested in using the trajectories as predictors
without first reducing them finite-dimensional vectors.

For smooth trajectories (Lipschitz in time), “standard”
regression methods are available:

√
n-rates, asymptotic

normality, robust estimates of standard errors, bootstrap
works, etc.

For “rough” trajectories (with jump discontinuities or
unbounded variation), standard methods will not work.
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Inference for sensitive periods

An interpretable (“working”) model:

Y = α + βX (θ) + ZTγ + ε

Scalar response: Y = IQ at age 7

Predictor of interest: X (θ) = growth rate at time θ

Other covariates: Z = (birth weight, gestational age, . . . )

ε has mean zero, finite variance σ2, independent of (X , Z ).

Least squares estimates:

(θ̂n, α̂n, β̂n, γ̂n) = argmin(θ,α,β,γ)

n∑
i=1

[Yi − α − βXi (θ) − ZT
i γ]2
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Functional linear regression

Y = α +

∫ 1

0
f (t)X (t) dt + ZTγ + ε

Ramsay and Silverman (1997, 2002) popularized the method
of functional principal components for nonparametric
estimation of f .

Hall and Horowitz (2007) showed such estimators achieve the
minimax rate (in terms of the IMSE). If X is Brownian
motion, minimax rate is between n1/4 and n1/2.

Spectroscopy application: concentration Y of a protein
regressed on intensity X (t) of reflected radiation at wavelength t.
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Interpretable functional regression

Working model:
Y = α + βX (θ) + ε.

Least squares estimator:

(θ̂n, α̂n, β̂n) = argmin(θ,α,β)

n∑
i=1

[Yi − α − βXi (θ)]
2

estimates

(θ0, α0, β0) = argmin(θ,α,β)E [Y − α − βX (θ)]2.

Key Question: Is there a rate of convergence rn such that
rn(θ̂n − θ0) has a non-degenerate limiting distribution?

Two cases: 1) true working model, 2) misspecified working
model, with the data satisfying a functional linear model:

Y =

∫ 1

0
f (t)X (t) dt + ε.

Ian McKeague Columbia University Analyzing trajectories: functional predictors of univariate response



Change-point estimation

Single-jump process: X (t) = 1{T ≥ t}
Correctly specified case

Y = α + βX (θ) + ε

n(θ̂n − θ0) →d minimizer of a compound Poisson process√
n(β̂n − β0) →d normal

Koul, Qian and Surgailis (2003): two-phase linear regression.

Misspecified case

Y = F (T ) + ε where F ′ = f

Banerjee and McKeague (2007): split point estimation.

n1/3(θ̂n − θ0) →d scaled Chernoff
n1/3(β̂n − β0) →d scaled Chernoff
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Minimizer of Brownian motion with drift

Parabolic drift: Groeneboom (1985) showed that

argmint∈R(B(t) + t2)

has a density that can be expressed in terms of zeros of the Airy
function. Known as the Chernoff distribution.

Triangular drift: Bhattacharya and Brockwell (1976) showed that

argmint∈R(B(t) + |t|)

has a density that can be expressed in terms of Φ.
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Asymptotic theory for M-estimators

Consider the general M-estimator

θ̂n = argminθMn(θ)

of θ0 = argminθM(θ), where M(θ) = E [mθ] and

Mn(θ) = Pn[mθ] =
1

n

n∑
i=1

mθ(Xi , Yi ).

Assumption: there is a metric d on Θ such that

M(θ) − M(θ0) � d2(θ, θ0)

for all θ in a neighborhood of θ0.
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Brownian trajectories

Working model: Y = X (θ) + ε

X (t) is Brownian motion, mθ(X , Y ) = (Y − X (θ))2

Misspecified case: data from the functional linear model

Y =

∫ 1

0
f (t)X (t) dt + ε.

Easy to show that M(θ) = E [mθ] is twice differentiable, so
d is Euclidean distance: d(θ, θ0) = |θ − θ0|.

Correctly specified case: data from Y = X (θ0) + ε. Now

M(θ) = E [X (θ) − X (θ0)]
2 + σ2 = |θ − θ0| + σ2.

M is not differentiable at θ0, and d(θ, θ0) =
√|θ − θ0|.
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Rate of convergence

A lower bound on the rate of convergence rn can be found in terms
of the continuity modulus

wn(δ) = sup
d(θ,θ0)<δ

|Gn(mθ − mθ0)|,

where Gn =
√

n(Pn − P) is the empirical process.

Theorem (van der Vaart and Wellner). If E [wn(δ)] � δα for some
0 < α < 2, then

n1/(4−2α)d(θ̂n, θ0) = Op(1).

Example: α = 1 gives the “usual” rate n1/2.

Example: α = 1
2 gives rate n1/3.
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Key steps

A result from empirical process theory (Pollard, 1989) gives

E [wn(δ)] ≤ J[ ](1,Mδ){EM2
δ}1/2.

J[ ](1,Mδ) is the bracketing entropy integral of the class of functions

Mδ = {mθ − mθ0 : d(θ, θ0) < δ}.

Mδ is an envelope function for Mδ.

Brownian trajectories are Lipschitz: for 0 < α < 1/2,

|X (t) − X (s)| ≤ K |t − s|α ∀ t, s ∈ [0, 1]

where K has moments of all orders [Kolmogorov’s continuity theorem].

Lemma: mθ is “Lipschitz in parameter”:

|mθ1 − mθ2 | ≤ L|θ1 − θ2|α, where EL2 < ∞.

Corollary: J[ ](1,Mδ) < ∞.
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Envelope function

Self-similarity of the Brownian trajectories is used to bound the
second moment of the continuity modulus

Fδ = sup
|θ−θ0|<δ

|mθ − mθ0 |.

Self-similarity: X (δt) =d δ1/2X (t).

{EF 2
δ }1/2 �

{
E sup

|θ−θ0|<δ
|X (θ) − X (θ0)|4

}1/4

�
√

δ.
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Results

Correctly specified case

d(θ, θ0) =
√|θ − θ0|, envelope function Mδ = Fδ2 . Get the “usual” rate

n1/2 with respect to d , which translates to rate n with respect to
Euclidean metric:

n(θ̂n − θ0) →d argmint∈R
(2σB(t) + |t|),

where B is a two-sided Brownian motion.

Misspecified case

d(θ, θ0) = |θ − θ0|, envelope function Mδ = Fδ. Cube-root rate:

n1/3(θ̂n − θ0) →d argmint∈R
(2aB(t) + bt2)

and a scaled Chernoff limit, as in change-point estimation.

Full model: Y = α + βX (θ) + ε, LS estimators of α0, β0 have
√

n and

n1/3 rates for the correctly specified and misspecified cases, respectively.
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Details

Idea is to localize the criterion function:

M̃n(h) = sn[Mn(θ0 + h/rn) − Mn(θ0)]

rn(θ̂n − θ0) = ĥn = argminh∈RM̃n(h)

Need to adjust the scaling sn so we can apply the

Argmin continuous mapping theorem: If M̃n →d M̃ in Bloc(R)
and ĥn = Op(1), then

ĥn →d argminhM̃(h)
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Details (cont’d)

Correctly specified case: sn = rn = n

M̃n(h) = n(Pn − P)(mθ0+h/n − mθ0) + nP(mθ0+h/n − mθ0)

= n−1/2
Gn[Zn(h)2] − 2Gn[εZn(h)] + |h|,

where Zn(h) ≡ √
n[X (θ0 + h/n) − X (θ0)], and first term is op(1).

Zn(h) =d B(h) as processes on the real line, so

Gn[εZn(h)] =d B(h)

(
1

n

n∑
i=1

ε2
i

)1/2

→d σB(h)

Conclude M̃n(h) →d 2σB(h) + |h| in Bloc(R).
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Fractional Brownian motion

Gaussian process X (t), t ∈ R, mean zero, covariance

Cov{X (t), X (s)} =
1

2
(|t|2H + |s|2H − |t − s|2H),

H ∈ (0, 1] is the Hurst exponent.

H = 1/2 gives two-sided Brownian motion

H = 1 gives a straight line: X (t) = tZ where Z ∼ N(0, 1).

self-similarity: X (δt) =d δHX (t) for all δ > 0

trajectories are locally Lipschitz of order α < H:

|X (t) − X (s)| ≤ K |t − s|α ∀ t, s ∈ [0, 1]

where K has moments of all orders.
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fBm trajectories

R function fbmSim used for simulation of fBm
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Results

Correctly specified case:

n1/(2H)(θ̂n − θ0) →d argmint∈R(2σBH(t) + |t|2H).

Rate becomes arbitrarily fast as H → 0.

Misspecified case:

n1/(4−2H)(θ̂n − θ0) →d argmint∈R(2aBH(t) + bt2)

Rate becomes slower as H decreases — as slow as n1/4.
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Partial misspecification

Y = α + βX (θ) +

∫ 1

0
f (t)X (t) dt + ε.

If H ≤ 1/2 and
∫ |f | is sufficiently small, then θ0 coincides with

the true θ, and

n1/(2H)(θ̂n − θ0) →d argmint∈R(2aBH(t) + |t|2H),

where

a2 = σ2 + E

(∫ 1

0
f (t)X (t) dt

)2

.
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CIs in the correctly specified case

100(1 − α)% confidence interval for θ0:

θ̂n ±
(

σ√
n

)1/H

zH,α/2

where zH,α is the upper α-quantile of

ZH = argmint∈R(BH(t) + |t|2H/2).

Full model: Y = α + βX (θ) + ε

θ̂n ±
(

σ

β̂nγ̂n
√

n

)1/H

zH,α/2

given X (t) = X0 + γX̃ (t) with X̃ (t) a standard fBm.
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Quantiles of ZH

Z ∗
H = exp(−1/H)ZH has upper quantiles given by:
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Simulation examples

Correctly specified case:

Y = α + βX (θ) + ε,

where α = 0, β = 1, θ0 = 1/2, ε ∼ N(0, .25), n = 20.

Partially misspecified case:

Y = α + βX (θ) +

∫ 1

0
f (t)X (t) dt + ε,

where f (t) = 1/2 and true θ = 1/2.

Hurst exponent: H = .3, .5 and .7
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Correctly specified case

thetahat

0.0 0.2 0.4 0.6 0.8 1.0

0
10

0
20

0
30

0
40

0

betahat

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0
50

10
0

15
0

●

●
●

●
●
●●●

●

●
●

●

●●

●

●

●

●●
●

●
● ●

●

●
●

●

●●
●●
●

●

●●
●

●

●

●
●●
●

●

●

●

●
●
●

●

●

●

●

●

● ●
●
●

●

●●

●

●
●
●

●

●

●

●

●

●
●

●
●

●

●
●●

●

●

●

●

●

●●
●

●

●
●
●
●

●
●●
●●

●
●

● ●●
●

●
●●●

●●

●

●

●

●

●●●
●
●
●●

●

●

●●
●
●

●
●

●
●

●
●
●

●

●

●
●

●
●
●

●

●

●

●

●

●
●

●

●

●
●

●

●
●●

●

●

●●

●

●
●

●

●

●
●●

●●●

●
●●
●

●

●

●
●

●

●

●

●

●

●

●●

●

●
●
●

●●●
●

●

●

●
●

●
●

●●

●

●

●

●

●

●●
●
●

●

●

●

●

●
●

●

●
●

●●
●
●

●
●
●

●

●
●

●
●●●●

●

●

●
●●
●●
● ●
●
●

●

●
●

●

●
●

●

●●

●

●

●
●

●

●

●●

●

●

●

●
●

●
●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●
●

●

●

●

● ●
●

●
● ●●

●

●

●●

●

●
●
●●

●●●
●

●

●

●

●●●

●
●●
●●●

●

●

●
●

●●

●

●

●

●

●
●●

●

●

●

●

●

●
●● ●●

●

● ●●
●● ●

●●●

●

● ●●

●

●
●

●
●

●
●●

●●

●

●
●

●

●
● ●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●
●●
●

●

●●
●

●

●
●
●●
●

●
●
●

●
●

●

●

●

●●

●

●

●
●

●
●

●

●

●

●

●
●

●

●●

●

●●●● ●
●

●

●●

●

●●
●

●●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●
●

●

●
● ●
●

●

●●

●

●●

●
●●
●

●

●
●

●
●●

●
●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

thetahat

be
ta

ha
t

thetahat

0.0 0.2 0.4 0.6 0.8 1.0

0
10

0
20

0
30

0
40

0

betahat

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0
50

10
0

15
0

●●●
●

●

●
●

●
●

●

●
●

●

●
●

●

●

●

●

●●

●

●

●

●

● ●
●

●

●

●

●
●

●

●

●

●

● ●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●
●

●
●

●

●●●
● ●

●

●

●

●

●

●

●

● ●
● ●●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●● ●
●●

●
●

●
● ●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●
● ●

●

●●

●

●●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●
●

●

●

●●

●●

●

●
● ●

●

●

●
●

●

●

●

●

● ●

●

● ●● ●

●

●
●

●

●

●
●

●
●

● ●

● ●

●

●
●●

●●

●

●

●

●

●●
● ●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●●●
●
●

●

●

●●
●

●

●

●●

●

●

●
● ●

●●
●

●

●

●

●
●

●●

●

●

● ●

●

●

●
●

●
●

●

●●

●

●

●

●
●

●
●

●
●
●●

●
●

●

●

●
●

●

●●

●

● ●
●

●

●

●
●

●
●

●

●●

●
●●

●
●

●

●
●●

●

●
●

●

●●

●

●

●●
●●

●
●

●

●

●

●

●
●
●

● ●

●●
●

●

●

●
●

●

●

●

●●

●

●

●
●

●

●

●

●
●

●
●

●
●

●
●

●

●

●

●

●
●●

●

●

●

●
●

● ●
●

●

●

●

●
●●

●
●

●●●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●●● ● ●
●●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
● ●

●
●

●

●

●

●●

●
●●

●
●●

● ●

●
●

●

●●●

●
●

●

●

●

●
●

●

●
●
●●

●

●●
●●

●

●

●

●

●

●

●
● ●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

thetahat

be
ta

ha
t

thetahat

0.0 0.2 0.4 0.6 0.8 1.0

0
10

0
20

0
30

0
40

0

betahat

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0
50

10
0

15
0

●
●

●
●●

●

●
●

●

●

●
●

●

●

● ●

●
● ●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●
●
●
●
●

●

●●
●

●

●
●

●

●
●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

● ● ●

●

●

●
●

●
●

●

●

●

●

●

●

● ●

●

●

●●

●

● ●

●
●●

●

●●

●

●

●

●
●

●

●

●

●

● ●●
●

●

●

●

●

●

● ●

●

●

●●

●
●●

●●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●●
●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●
●

● ●

●

●

●
● ●

●●

●
●

●●

●●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

● ●

●

●

●

●●

●

●

●

●

●

●

●
●

●●
●

●

●●

●

●

●
●

●
●●

● ●
●

●

● ●

●

●
●●

●
●

● ●

●

●

●

●

●

●

●

●●
● ●

●

●

●

●

●

●

●

●

●
●

●
●

●

●●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●●●● ●

●

●

●

●

●

●
●

●

●

●

●

● ●●

●

● ●

●

●●

●

●●
●

●

●

●●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●
●

●
●

● ●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

thetahat

be
ta

ha
t

H = .3 (top), H = .5 (middle), and H = .7 (bottom), based on 500

samples of size n = 20. CI widths: 0.12, 0.27 and 0.38, respectively.

Ian McKeague Columbia University Analyzing trajectories: functional predictors of univariate response



Partially misspecified case
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Application to growth curves
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Application to NYSE data

Black–Scholes model of stock prices: H = 1/2

X (t) = increase in S. & P. 500-stock index over trading day;
Y = total increase over next day
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Conclusion

Introduced “interpretable” functional linear regression models
with fBm trajectories as predictors.

Derived confidence intervals for sensitive time points in terms
of the Hurst exponent.

Feasible extensions:

multiple time points (model selection issues arise)
diffusion processes (rates as for Brownian motion)
Lévy processes (stationary independent increments)
multiparameter fBm
Cox regression: λ(t|X ) = λ0(t) exp(βX (θ)), F0-measurable X .
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