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Longitudinal Data Analysis (LDA)

Introduction
More and more data are being collected over time on the same individual
(i.e. subject, animal, sample). Both FDA and LDA are concerned with the
analysis of such type of data.

Measurements treated in the FDA literature typically are recorded by high
frequency automatic sensing equipment, whereas those treated in the LDA
literature are more typically sparsely, and often irregularly, spaced
measurements on human or other biological subjects.

The aims of the analysis are also often somewhat different:

• those of FDA tend to be exploratory to represent and display data in
order to highlight interesting characteristics, perhaps as input for
further analysis

• those of LDA have a stronger inferential component.
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Common aims
Despite these differences in focus, there are many common aims, among
them are the following:

• Characterization of average or “typical” time course.

• Estimation of individual curves from noisy and, often in LDA studies,
sparse data. Functionals of these curves, such as derivatives and
locations and values of extrema, are sometimes also of interest.

• Characterizing homogeneity and patterns of variability among curves,
and identifying unusual ones.

• Assessing the relationships of shapes of curves to covariates.

As we shall see, many of these objectives entail smoothing individual
curves, either explicitly or implicitly.
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Longitudinal Studies
The defining characteristic of longitudinal studies is that subjects are
measured repeatedly over time.

This is in contrast to cross-sectional studies where a single outcome is
measured for each individual.

Data are collected over time because interest focuses on what happens over
time! In a LDA one can investigate:

• changes over time within individuals (age effects)

• differences among subjects in their baseline levels (cohort levels)
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Why collect longitudinal data?
To separate age effects from cohort effects .

Hypothetical data on reading ability against age:
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Cross-sectional versus Longitudinal

The next three slides show real data

examples of

Cross-sectional data (1st slide)

and

Longitudinal data (2nd & 3rd slides)
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pig weight data
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• age effects : changes over time within subject

• cohort effects : differences between subjects at baseline



Longitudinal Data Analysis (LDA)

Examples of Longitudinal data
Pig weight data

• A cohort of m = 48 pigs was studied

• Weight measurements were obtained from each pig at ni = 9 successive
weeks

The scientific aims of the study is to characterize the growth patterns of
these pigs.

A scatterplot of the weights against their corresponding week number with
lines drawn connecting those measurements that belong to the same pig is
as follows
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Pig weights

Books

• Diggle, Heagerty, Liang & Zeger (applied)

• Fitzmaurice, Laird & Ware (applied)

• Pinhiero & Bates (applied; for S-PLUS & R users)

• Verbeke & Molenberghs (applied; for SAS users)

• McCulloch & Searle (theory; for algebra lovers)
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Style of Delivery

• These slides (‘big picture’ stuff).

• Whiteboard interludes (‘small picture’ stuff).
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Outline

• Introduction

• Simplest models

• Estimation

• More advanced models

• Inference

• Computing
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pig weight data
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Longitudinal Data Analysis (LDA)

“Orthodontic study data” (Potthoff and Roy (1964))
• involved 27 children, 16 boys and 11girls

• on each child, distance(mm) from the center of the pituitary to the
pteryomaxillary fissure (two points that are easily identified on x-ray
exposures of the side of the head) measured at ages 8, 10, 12, and 14
years of age

• A measure of growth

Questions of interest:

• Do things change over time?

• Understand pattern of change

• Is the pattern different for boys and girls? How?

Here is a plot of the data.
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Dental Study Data
All data: 0=girl, 1 = boy

All data: 0 = girl, 1 = boy
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Sample average dental distances: 0 = all girls, 1 = all boys
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Longitudinal Data Analysis (LDA)

Dental Study Data
Sample average: 0= all girls, 1 = all boys

All data: 0 = girl, 1 = boy

age (years)

d
is

ta
n
c
e
 (

m
m

)

8 9 10 11 12 13 14

2
0

2
5

3
0

 0 0
 0

 0

 0

 0

 0

 0

 0

 0

 0

1

1

1

1

1

1

1

1

1

1

1

1

1

1
1

1

 0

 0

 0
 0

 0

 0

 0
 0

 0

 0

 01

11

1

1

1

1
1

1

1

1
1

1

1

1

1  0

 0
 0
 0

 0

 0

 0
 0

 0

 0

 0

1

1

1

1

1

1

11

11

1
1

1
1
1

1
 0

 0
 0
 0

 0

 0

 0

 0

 0

 0

 0

1

1

1
1

1

1

1

1
1

1

1

1

1

1

1

1

Slide 5

Sample average dental distances: 0 = all girls, 1 = all boys

age (years)

d
is

ta
n
c
e
 (

m
m

)

8 9 10 11 12 13 14

2
0

2
5

3
0

0

0
0

0

1

1

1

1

Slide 6

3



Longitudinal Data Analysis (LDA)

Remarks
• All children have all 4 measurements( no missing data, “balanced”)

• Overall pattern of increasing distance measurements for boys and girls

• More specifically, the pattern for most children follows a rough straight
line increase (with some “jitter”)

• Average distance follows an approximate straight line pattern (although
that for boys looks like it might curve. . . )

• The rate of change of the measurements with increasing age seems
similar

To address these issues some formal model is required.
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Multicenter AIDS Cohort Study (MACS) of HIV
The HIV virus destroys CD4+ cells (T-Lymphocytes, a vital component of
the immune system) so that the number of CD4 cells in the blood of a
patient will reduce after the subject is infected with HIV.

• A cohort of m = 369 men followed before and after HIV sero-conversion

• Interest on the natural history of HIV disease

• Important indicator of immune function is the CD4+ cell count:

– collected on each subject approximately every six months

– n = 2376 observations

The measured variables were the time in weeks since seroconversion,
timedays days since seroconversion, cd4 CD4 Count, age (yrs) relative to
arbitrary origin, packs of cigarettes smoked per day, drugs recreational drug
use yes=1/no=0, sexpart number of sexual partners.



Longitudinal Data Analysis (LDA)

Scientific goals of the study
• characterize the typical time course of CD4+ cell depletion after HIV

infection (natural history)

• characterize heterogeneity within and across men in CD4+ count and in
progression of CD4+ depletion

• estimate time course (trajectory) of CD4+ count for individual men,
accounting for substantial measurement error in CD4+ count

• study factors predicting levels and changes in CD4+ cell count

Here is a quick look at the data
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MACS of HIV

Example 4: CD4+ cell numbers
Cohort of 369 HIV seroconverters, CD4+ cell-count measured
at approximately six-month intervals, variable number of
measurements per subject.
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Each observation is given by one point; Solid lines connect observations for
four randomly-selected subjects (note high within-subject variability);
Smooth dashed curve is the average time trend of CD4+ count.
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Remarks
• lndividual CD4 profiles “jumparound” (“noisy”) but many show a

decrease over time

• Different subjects have CD4 measurements at different times (not
“balanced”)

• Some subjects drop out of the study, are administratively censored, or,
worse, die hence no CD4 available

• Can’t take averages (different time points)
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Protein Content of Milk from Cows
These data comprise 19 weekly measurements of the protein content of milk
samples from each of 79 Australian cows. Cows 1–25 were fed a barley diet,
cows 26–52 a mixed diet of barley and lupins, and cows 53–79 a diet of
lupins alone.

Time is measured in weeks since calving.

This dataset is notable because the experiment terminated at a fixed date,
and so some of the time series are shorter than the others.

The goal is to study how diet affects the protein content of milk (treatment
study): “response” is sequence of protein measurements.
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Milk data
Mean protein content by time for each diet group (time=week since calving):

Time
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Figure 4: Within-group mean traces for the milk data

This plot is displayed in Figure 4, where we can see the differing effects of the three diets (encouragingly, the
values for the mixed diet lie between those of the barley and lupins diets). Note the distinctive behaviour
of the traces: a three to four-week settling-in period, followed by an immediate levelling-off, with perhaps
a slight rise towards the end of the experiment.

5.1.3 Fitting the model

We will fit a parametric model for the covariance of the form discussed in Section 4.1, including variance
parameters for measurement error, serial correlation, and a random intercept component. Before this is
done, we first check that the data are reasonably consistent with such a model by calculating and plotting
the variogram, and incidentally get initial estimates for these three variance parameters.

The variogram is calculated by applying the variogram function to the residuals from the groups-by-times
least-squares fit calculated by the olsres function:

> milk.res <- olsres(milk)

> milk.vg <- variogram(milk.res)

> milk.vg

Call: variogram(obj = milk.res)

Estimated process variance: 0.0868720609965232

Variogram:

[1] [2] [3] [4] [5]

LAG 1 2 3 4 5

VGRAM 0.03154176 0.03924957 0.04563836 0.05410723 0.06420616

[6] [7] [8] [9] [10]

LAG 6 7 8 9 10

VGRAM 0.06895562 0.06936643 0.07768165 0.08133457 0.08056634

[11] [12] [13] [14] [15]

LAG 11 12 13 14 15

VGRAM 0.07013163 0.07150864 0.07753249 0.05810761 0.06268539

[16] [17] [18]

LAG 16 17 18

VGRAM 0.07054666 0.08949125 0.12839142

No variogram cloud was created.

> plot(milk.vg)

43

. . . suggests that barley substantially increases the protein content of milk.
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Growth of Nepalese Children
• As part of a larger study, a cohort of m = 200 children was studied

• Anthropologic measurements were obtained from each child at ni = 5
time points roughly 4 months apart

• Recording in these data were: the Childs ID, Childs age (months), Sex,
Weight (kg), Height (cm), Arm circumference (cm), Current
breastfeeding level, Nepali day of visit , Nepali month of visit, Nepali
year of visit, Mothers age (yrs), Mothers literacy (1=yes), Number of
Mother’s children who died.

The scientific aims of the study are to:

– characterize the growth patterns of Nepalese children
( growth curve study )

– describe the relationship between growth and child covariates and/or
growth and maternal covariates ( explanatory analysis )

Time scale is age (months) of the child
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Nepalese Children (Weight)
Here are the weight data for the boys and the girls:

• Here are the weight data for the boys and the girls:
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Nepalese Children (Height)
And here are the height data:

• And here are the height data:
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• Note:

– each subject admits his/her own trajectory

– the trajectories exhibit common characteristics
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What Do These Examples Have in Common?
• Scientific objectives can be formulated as regression problems whose

purpose is to describe the dependence of a response variable on
explanatory variables;

• Repeated observations on each experimental unit:

– Observations from one unit to the next are independent

– Multiple observations on the same unit are dependent (correlated,
associated)

• This correlation (association) makes longitudinal data powerful

• It also makes it a challenge to analyze (well)
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Some Observations
• Complicated due to within-subject correlation due to variation over

time within individuals or measurement error

• Emerging area (most research post-1980; most widespread software
post-1990).

• Software still fairly new and not extremely stable.

• Lot of dust still to settle on best practice.
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Goals for This Course
Describe the major ideas underlying longitudinal data analysis.

• Some of the basic parametric models and their properties.

• Estimation of parameters in basic models.

• Some exposure to inference and computing.

What Won’t Be Achieved
• Typical graduate courses on longitudinal data analysis have 45-60

lectures, several assignments, computer labs, projects etc . . . These
lectures (alone) will not train you comprehensively in the various
nuances required for good applied longitudinal data analysis.

• Rather, you will be exposed (to varying degrees) to some of the basic
ideas and principles of longitudinal data analysis.
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Notation to be followed
• Yij = response variable and observed at time tij for
observation j = 1, . . . , ni on subject i = 1, . . . , m.

• xij a vector of length p of explanatory variables observed at time tij

• E(Yij) = µij, Var(Yij) = vij

• The set of repeated outcomes for unit i are collected into an ni-vector
Yi = (Yi1, . . . , Yini )

′, with mean E(Yi) = µi and ni × ni covariance matrix
Var(Yi) = Vi, [Vi]jk = cov(Yij, Yjk).

Most longitudinal analyses are based on a regression model
Yi = Xiβ + εi

where Xi is a ni × p matrix with xij in the jth row and εi a vector of random
errors.
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Books
• DIGGLE, P.J., HEAGERTY, P., LIANG, K.Y. AND ZEGER, S.L. (2002).

Analysis of Longitudinal Data(second edition). Oxford: Oxford University
Press.

• FITZMAURICE, G.M., LAIRD, N.M. AND WARE, J.H. (2004). Applied
Longitudinal Analysis. New Jersey: Wiley.

• PINEIRO, J.C. AND BATES, D.M. (2000) Mixed-Effects Models in S and
S-Plus, Springer-Verlag, New York.

• VERBEKE, G. AND MOLENBERGHS, G. (2000) Linear mixed models for
longitudinal data. Springer series in statistics, Springer, New York.

• MCCULLOGH C.E AND SEARLE, S.R. (2001) Generalized, linear and mixed
models. Wiley, New York.
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Exploring longitudinal data
Questions to be answered:

– What is nature of response variable? Continuous? Count? Binary?

– is the data balanced or unbalanced?

– What is the degree of (unintended) incomplete or missing data relative to
the design?

– What is the distribution of responses by time ( time plots):

• box-plot or similar for highly balanced settings

• scatter plot for unbalanced settings

– What is the population average or mean trend with time?

– add curves to time plots

– explore correlation structure
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Balanced and unbalanced data
• balanced design : intended measurement times common to all subjects

• balanced data : actual measurement times common to all subjects

When data are unbalanced, an important question is WHY:

• by design?

• missing values?

• observational data?
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Graphical summaries
Standard graphical summaries:

• plot of measurements against time

– error-plots (to present (features of) the distribution of response Y
across time)

– line-plots: connected line segments for each subject (spaghetti plots)

– Add a nonparametric smooth curve as preliminary estimate of mean
response (fitting smooth curves to longitudinal data)

• Decompose the data into cross-sectional patterns and longitudinal
patterns

• for balanced design display a scatterplot matrix
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Example: milk data - Median (IQ range) for barley
diet
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Such plots are easier to read than box-plots when there are many time
points.
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Pig weights – line-plot

Books

• Diggle, Heagerty, Liang & Zeger (applied)

• Fitzmaurice, Laird & Ware (applied)

• Pinhiero & Bates (applied; for S-PLUS & R users)

• Verbeke & Molenberghs (applied; for SAS users)

• McCulloch & Searle (theory; for algebra lovers)

17

Style of Delivery

• These slides (‘big picture’ stuff).

• Whiteboard interludes (‘small picture’ stuff).

18

Outline

• Introduction

• Simplest models

• Estimation

• More advanced models

• Inference

• Computing

19

pig weight data
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Dental data: scatterplot matrix

Y.t8

20 22 24 26 28 20 22 24 26 28 30

18
20

22
24

26

20
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28

Y.t10

Y.t12

20
22

24
26

28
30

18 20 22 24 26

20
22

24
26

28
30

20 22 24 26 28 30

Y.t14

dental data (girls)
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Exploring mean response profiles by smooth curve
fitting

Nonparametric regression models can be used to estimate the mean
response profile as a function of time.

• Data (yi, ti) i = 1, . . . , n

We want to fit an unknown mean response curve µ(t) in the underlying
model

Yi = µ(ti) + εi

• Kernel estimation

• Smoothing Spline

• Local polynomial smoothing
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Kernel Estimation (local running mean)
• Selection of window of width h centered at time t;

• µ̂(t) is the average of Y values of all points which are visible in that
window

• To obtain an estimator of the smooth curve at every time, slide a
window from the extreme left to the extreme right, calculating the
average of the points within the window every time

• Weighted local running mean uses a weighting function that changes
smoothly with time and gives stronger weights to the observations
closer to t (e.g. Gaussian kernel K(u) = exp(−0.5u2)).
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Smoothing spline
• Is the “smooth” function s(t) which minimizes the criterion

J(λ) =
n

∑
i=1
{yi − s(ti)}2 + λ

∫
s′′(t)2dt

• s(t) minimizes the criterion if and only if it is a piecewise cubic
polynomial (a natural cubic spline with knots at each time ti.

• Such methods may be easily seen as projection regression methods on
specific functional bases.
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Local polynomial smoothing
• At each time point x0, one fits a polynomial

Px0(x) = β0 + β1(x− x0) + · · ·+ βp(x− x0)p

of degree p, by weighted least squares with weights wi = Kh(xi − x0).

• The estimation µ̂(x0) is given by Px0(x0) = β0.

In matrix notation:

m̂(x) = eT
1

(
XT

x0
Wx0 Xx0

)−1
XT

x0
Wx0 Y,

where e1 = (1, 0, . . . , 0)T , Y = (y1, . . . , yn)T , Wx0 = diag{Kh(xi − x0)} et

Xx0 =


1 x1 − x0 · · · (x1 − x0)p

...
...

...

1 xn − x0 · · · (xn − x0)p

 .
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Example
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Example : MACS of HIV

Example 4: CD4+ cell numbers
Cohort of 369 HIV seroconverters, CD4+ cell-count measured
at approximately six-month intervals, variable number of
measurements per subject.
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The smooth dashed curve is the mean time trend of CD4+ count obtained
using a local polynomial method.
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Remarks
There are many omitted details in the above discussion:

• choice of weighting function (kernel)

• what to do at the edges of the data

• reducing effects of outliers

• choice of bandwidth or smoothing parameter
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Graphical methods to separate CS and Longitudinal
Patterns

• Yij = β0 + βC x̄i + βL(xij − x̄i) + εij, i = 1, . . . , m; j = 1, . . . , n.

This model implies two facts:

1. Ȳi = β0 + βC x̄i + ε̄i, i = 1, . . . , m, capturing cross-sectional effects
parameterized by βC

2. Yij − Ȳi = βL(xij − x̄i) + εij − ε̄i capturing longitudinal effects
parameterized by βL

This suggests that βC can be investigated by plotting Ȳi versus x̄i, and βL

can be investigated by plotting Yij − Ȳi versus xij − x̄i.
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Example: Arm circumference and weight in
Nepalese girls

Suppose we wish to investigate the degree to which arm circumference
reflects weight differences:

– Are differences in average weight across girls reflected in differences in
average arm circumference across girls? (cross-sectional question)

– Are changes in weight for a given girl reflected in changes in arm
circumference? (longitudinal question)

A (working) model for this question is Yij = β0 + βC x̄i + βL(xij − x̄i) + εij

where: Yij= arm circumference with age-effect removed
xij = weight with age-effect removed
We can use a smoothing model fit to remove the age trends in arm
circumference and in weight by first fitting the models

arm = µ1(age) + ε1 wt = µ2(age) + ε2
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Example (Cont.)
To investigate these questions, we examine the residuals after removing the
effects of age, wtresid and armresid

Note that

(Yij − Ȳi) = βL(xij − x̄i) + (εij − ε̄i)

so βL can be investigated by plotting (Yij − Ȳi) versus (xij − x̄i)
Here:

– (Yij − Ȳi) = within-subject deviation in arm circumference

– (xij − x̄i) = within-subject deviation in weight

• To investigate these questions, we examine the residuals after removing

the effects of age, wtresid and armresid

Mean arm circumference (Ȳi) versus mean weight (x̄i)

−
2

−
1

0
1

2

a
rm

c
ro

s

−4 −2 0 2 4

wtcros

bandwidth = .4

Lowess smoother

. regress armcros wtcros

------------------------------------------------------------------------------
armcros | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------
wtcros | .5071515 .0462141 10.97 0.000 .415353 .5989501

------------------------------------------------------------------------------
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Mean arm circumference Ȳi versus mean weight x̄i (age effect removed).
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Example (Cont.)Change in arm cir. (Yij − Ȳi) versus change in weight (xij − x̄i)
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−2 −1 0 1 2
wtlong

bandwidth = .4

Lowess smoother

. regress armlong wtlong

------------------------------------------------------------------------------
armlong | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------
wtlong | .731338 .0410349 17.82 0.000 .6506785 .8119974

------------------------------------------------------------------------------

• Conclusion: Both between-girl differences and within-girl in weight

are strongly reflected in arm circumference

If we wanted to use arm circumference as a screening tool for

malnourishment in the population (over periods of one or two years), it

may be more effective to do so by following a representative cohort

of girls over time, measuring measuring arm circumference, than by

drawing a new cross-sectional sample at each point in time.

• Obtaining these results in Stata is not hard:
. ** Make between and within plot for arm circumference versus weight
. * Compute subject means and subject residuals
. by id: egen wtcros = mean(wtresid)

. by id: egen armcros = mean(armresid)

.

. gen wtlong = wtresid - wtcros
(43 missing values generated)

26

Change in arm circumference Yij − Ȳi versus change in weight xij − x̄i (age
effect removed).

Conclusion: Both between-girl differences and within-girl differences in
weight are strongly reflected in arm circumference.
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Exploring correlation structure: the variogram
The variogram of a stationary random process Y(t):

V(u) =
1
2

Var{Y(t)−Y(t− u)}

If E[Y(t)] = 0 and Cov{Y(t), Y(t− u)} = γ(u), it is easy to see that

V(u) = γ(0)− γ(u).

So why bother with the variogram?

• it is also well-defined for some non-stationary processes (useful if we
want a diagnostic for non-stationarity)

• it is easier to estimate from irregularly spaced data.



Longitudinal Data Analysis (LDA)

Estimating the variogram
Let rij = residual from preliminary model for mean response

• Define

vijk` =
1
2
(rij − rk`)2

• Calculate
V̂(u) = average of all quantities viji` such that |tij − ti`| ' u

• Estimate process variance by
σ̂2 = average of all quantities vijk` such that i 6= k.
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Example : Square-root CD4+ cell numbers
Example4: Square-root CD4+ cell numbers
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Note very large sampling fluctuations
Note the very large sampling fluctuations.
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Smoothing the empirical variogram
• For irregularly spaced data, group time-differences u into bands and

take averages of corresponding vijk`.

• For data from a balanced design, usually no need to average over bands
of values for u.
Example4: CD4+ cell numbers
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Linear models for longitudinal data
E(Yij) = xij1β1 + · · ·+ xijpβp, i = 1, . . . , m; j = 1, . . . , ni

Yi = Xiβ + εi, i = 1, . . . , m.

Y = Xβ + ε

Within-subject residual sequences εi are typically correlated. Modelling the
correlation is important to be able to obtain correct inferences on regression
coefficients β.

Three basic elements of correlation structure:

– random effects

– autocorrelation or serial dependence

– noise, measurement error

Estimation is achieved via weighted least squares.
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Some simple models
Consider the pig weight data introduced before. Let Yij denote the weight of
pig i on week j and let xj = j be the corresponding week number. The
simplest model is to treat the data cross-sectionally using an ordinary least
squares model

Yij = β0 + β1xj + εij, 1 ≤ i ≤ 48, j = 1, . . . , 9

with εij i.i.d. N(0, σ2
ε ) which leads to a slope estimate

β̂1 = 6.21, ŝt.dev(β̂1) = 0.0818

But there are problems. Inspection of the line-plot shows that the scatterplot
for each individual pig is less variable, so using a within-pig information
should be beneficial. Moreover the previous model ignores the correlation
of measurements pertaining to the same pig.
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Pattern of residuals from naive fit
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Pig weights (cont.)
Since the slopes look about the same but each pig seems to have his/her
own intercept a remedy could be to fit

Yij = β0i + β1xj + εij

for 1 ≤ i ≤ 48 with εij ∼ N(0, σ2
ε ).

But this model has 50 parameters and only β1 and σ2
ε are interpretable.

Moreover, it gives too much credence to the pigs used in the study.
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Random Intercept Model
A better model is:

Yij = Ui + β0 + β1xij + εij,

where
Ui are i.i.d. ∼ N(0, σ2

U)

and independent of the
εij i.i.d. ∼ N(0, σ2

ε )

which falls into the class of compound symmetry models

Yij − µij = Ui + εij, Ui ∼ N(0, σ2
U), εij ∼ N(0, σ2

ε ).
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Within subject covariance
Let us compute the covariance between different measures, say j 6= j′, of the
same subject i:

Cov(Yij, Yij′) = Cov(µij + Ui + εij, µij′ + Ui + εij′) = Cov(Ui + εij, Ui + εij′)

= Cov(Ui, Ui) + Cov(Ui, εij′) + Cov(εij, Ui) + Cov(εij, εij′)

= σ2
U + 0 + 0 + 0 = σ2

U

For j = j′, Cov(Yij, Yij′) = Var(Ui + εij) = σ2
U + σ2

ε

For i 6= i′, Cov(Yij, Yi′ j′) = 0.
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Concrete example
m = 3, n1 = 2, n2 = 3, n3 = 2. Under the compound symmetry model the
covariance matrix of the vector

Y = (Y11, Y12, Y21, Y22, Y23, Y31, Y32)′

is

σ2
U + σ2

ε σ2
U

σ2
U σ2

U + σ2
ε

 0 0 0

0 0 0

 0 0

0 0




0 0

0 0

0 0




σ2
U + σ2

ε σ2
U σ2

U

σ2
U σ2

U + σ2
ε σ2

U

σ2
U σ2

U σ2
U + σ2

ε




0 0

0 0

0 0


0 0

0 0

 0 0 0

0 0 0

 σ2
U + σ2

ε σ2
U

σ2
U σ2

U + σ2
ε




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Remarks on Random Intercept Model
• Invokes a positive (between measurements of same subject)

within-subject correlation

ρ = Corr(Yij, Yik) = σ2
U/(σ2

U + σ2
ε )

• Correlation is same for all subjects and regardless of distance apart in
time (disadvantage).

• This type of correlation structure is known as exchangeable correlation or
compound symmetry.

• The β0 and β1 (and more generally µij) are called fixed effects. The Ui are
called random effects.

• Since the model contains both fixed and random effects it is a special
case of a mixed effects model or mixed model for short.

• The parameters σ2
U and σ2

ε are often referred to as variance components.
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Estimation of model parameters
• Review of linear regression model

• Ordinary least squares estimation

• General linear model with correlated errors

• Weighted least squares

• Maximum Likelihood Estimation (MLE) and Restricted maximum
Likelihood Estimation (RMLE)
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Linear regression model
Y = Xβ + ε,

where

• X is a n× p matrix,

• β ∈ Rp

• E(ε) = 0 and Var(ε) = σ2
ε In.

• Often ε ∼ MVN(0, σ2
ε In).

When xi1 = 1 for all i, then β1 is the intercept.

This is the model used for fitting naively the pig weight data.

To estimate the unknown parameters one uses ordinary least squares (OLS)
in absence of distributional assumptions or maximum likelihood otherwise.
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Ordinary least squares
The ordinary least squares estimator of β is the estimator obtained by
minimizing with respect to β1, . . . , βp the expression:

SS(β) =
n

∑
i=1

[
yi − xi1β1 − xi2β2 − . . . xipβp

]2 = ‖y− Xβ‖2 .

Choose β̂ so that the distance from Y to Xβ̂ is as small as possible !
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The OLS estimators
β̂ that minimizes SS(β) makes the residual vector Y− Xβ̂ orthogonal to the
space V spanned by the columns of X.

• β̂ =
(tXX

)−1 tXY ≡ DY

• Ŷ = X
(tXX

)−1 tXY = HY

• β̂ is an unbiased estimator of β

• Var(β̂) = σ2
ε

(tXX
)−1

• β̂ is of minimum variance among all other unbiased estimators of β that
are linear in Y (Gauss-Markov).
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Distributional theory
When ε ∼ MVN(0, σ2 In) then the log-likelihood is

L(β, σ2; y) = −n
2

ln(σ2)− 1
2σ2

t(y− Xβ)(y− Xβ)− n
2

ln(2π).

One can also write it :

L(β, σ2; y) = −n
2

ln(σ2)− 1
2σ2 SS(β)− n

2
ln(2π)

sup
(β,σ2)

L(β, σ2; y) = sup
σ2

sup
β

L(β, σ2; y).

Hence the OLS estimator of β is also the MLE of β and the MLE of σ2
ε is

σ̃2 = σ2(β̂) = SS(β̂)/n. It can be easily shown (see later) that the RMLE of
σ2

ε is σ̂2 = SS(β̂)/(n− 2).

Moreover, β̂ ∼ MVN(β, σ2
ε DD′) and β̂ is of minimum variance among all

unbiased estimators of β.
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Remarks
With correlated errors, Var(Y) = V. In the general linear model, and if one
focus on the population mean (main interest on β and a simple structure for
V), one could still use OLS (in a more clever way) to estimate β by
proceeding as follows:

• Y = Xβ + ε; E(ε) = 0; Var(ε) = V.

• β̂ =
(tXX

)−1 tXY ≡ DY

• Var(β̂) = DVD′ ' DV̂D′, with V̂ sample covariance matrix of ordinary
residuals.

• Under the Gaussian assumption β̂ ∼ MVN(β, DV̂D′).
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Remarks (cont.)
Good points:

• technically simple, often reasonably efficient

• don’t need to specify covariance structure

Bad points:

• Can be very inefficient

• Accurate nonparametric estimation of V needs high replication (small
ni, large m)

It is therefore better to incorporate correlation into the estimation of
regression models. One should distinguish two cases:

– the correlation structure is known and then one uses weighted least
squares to gain efficiency or

– it is unknown, but somehow structured, and then one uses MLE or
RMLE.
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Weighted Least Squares Estimation
Weighted least squares estimate of β minimizes

S(β) = (y− Xβ)′W(y− Xβ),

where W is a symmetric weight matrix.

Solution is
β̂W = (X′WX)−1X′Wy.

• unbiased: E(β̂W) = β, for any choice of W,

• Var(β̂W) = {(X′WX)−1X′W}V{WX(X′WX)−1}
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Special cases
W = I: Ordinary least squares

• β̂W = β̂ = (X′X)−1X′Y,

• Var(β̂W) = (X′X)−1X′VX(X′X)−1

W = V−1: MLE under Gaussian assumptions with known V

• β̂W = (X′V−1X)−1X′V−1y,

• Var(β̂W) = (X′V−1X)−1.

When V is unknown, one usually assumes that the covariance structure of
the sequence of measurements is specified by the values of unknown
parameters α which are estimated by appropriate methods (usually MLE or
RMLE). One consider therefore

E(Y) = Xβ and Var(Y) = V(α)



Longitudinal Data Analysis (LDA)

Parametric models for covariance matrices
We have already discussed the compound symmetry model

Yij − µij = Ui + εij, Ui ∼ N(0, ν2), εij ∼ N(0, σ2),

used to model the pig weight data.

A common extension is the random intercept and slope model:

Yij − µij = Ui + Vitij + εij,

Ui

Vi

 ∼ i.i.d.BVN(0, Σ), εij ∼ N(0, σ2),

which often fits short sequences well.
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A general model for longitudinal data
A general model proposed by Diggle (1988) is

Yij − µij = Ui + Wi(tij) + εij,

where

• random intercept Ui ∼ i.i.d.N(0, ν2)

• Wi(t) i.i.d. centered continuous-time Gaussian processes modeling
serial correlation, and

• measurement error εij ∼ N(0, σ2).

If we further assume that the processes Wi are stationary then one can use
the variogram to characterize these variance components.



Longitudinal Data Analysis (LDA)

The variogram of the general model
Yij − µij = Ui + Wi(tij) + εij

V(u) = σ2 + τ2(1− ρ(u)), Var(Yij) = ν2 + τ2 + σ2.
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Example on the protein content of milk

0 5 10 15 20

0

.05

.1

The overall variance of the residuals is 0.087; the variogram increases with
lag (evidence of serial correlation); there is a random intercept (the
variogram does not start at 0); evidence of measurement error (the
variogram does not reach the total variance).
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Estimation and Inference in Linear Mixed Effects
Models

Mixed model methodology is one of the main contemporary tools for the
analysis of longitudinal data. We have already illustrated this with the
random intercept modeling of the pig weight data.

Just like the simple linear model,we can generalize mixed models to
arbitrary design matrices. The covariance structure of the random effects
vector can also be general. The resulting general linear mixed model is

Y = Xβ + ZU + ε,

where

E

U

ε

 =

0

0

 and Cov

U

ε

 =

G 0

0 R


It is easy to see that the random intercept or the random intercept and slope
models are special cases.
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Estimation of fixed effects
One way to derive an estimate of β in the general linear mixed effects model
(GLME) Y = Xβ + ZU + ε is to rewrite it as

Y = Xβ + ε∗, with ε∗ = ZU + ε.

This is just a linear model with correlated errors, since

Cov(ε∗) = V = ZGZ′ + R.

For a given V, the Generalized least squares estimator of β is nothing else than

β̃ = β̂V−1 = (X′V−1X)−1X′V−1Y

When the data is multivariate normal, the above estimator is the ML
estimator of β.
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Best linear unbiased prediction
How about the random effects counterpart U in the GLME model? Maximum
likelihood or least squares estimation is not defined for random effects and
we need to appeal to best prediction theory :

Û = best predictor of U given data y,

i.e.
Û = E(U|Y).

It can be shown that

BLUP(U) = Û = GZ′V−1(Y− Xβ̃).

However, most often in practice the covariance matrix V depends on
unknown parameters α which must be estimated.



Longitudinal Data Analysis (LDA)

Estimation of covariance matrices
Maximum likelihood and restricted maximum likelihood are the most
common strategies for estimating the parameters in covariance matrices.

The MLE of V is based on the model Y ∼ N(Xβ, V). The log-likelihood of y
under this model is

L(β, V) =
1
2

{
n log(2π) + log |V|+ (y− Xβ)′V−1(y− Xβ)

}
Optimizing in β for any fixed V, L(β, V) is maximized over β by

β̃ = (X′V−1X)−1X′V−1y

On substitution into the log-likelihood we therefore obtain the profile
log-likelihood for V:

LP(V) = −1
2

{
log |V|+ (y− Xβ̃)′V−1(y− Xβ̃)

}
− n log(2π)/2

ML estimates of the parameters in can be found by maximizing this
expression over those parameters.



Longitudinal Data Analysis (LDA)

Restricted Maximum Likelihood
The dimensionality of optimization required to apply the ML principle is
generally large. Moreover, simulations show that, generally, ML estimates
of the variance components tend to be largely biased.

It is therefore advisable to “concentrate” the likelihood on the estimation of
these components (and not on β) and this is achieved by using a restricted
maximum likelihood. The resulting criterion function is the restricted
log-likelihood

LR(V) = LP(V)− 1
2

log |X′V−1X|
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Estimated BLUP (EBLUP)
The BLUP of u and the estimator β̃ depend on G and R through

V = ZGZ′ + R

whose parameters are typically estimated via ML or REML.

In practice the The BLUP of u and the estimator of β are replaced by

β̂ = (X′V̂−1X)−1X′V̂−1Y

û = ĜZ′V̂−1(Y− Xβ̂)

which are referred as estimated BLUPs estimates.
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Standard Errors Estimation
For ordinary regression models the standard result is

Cov(β̂) = σ2
ε (X′X)−1

so

ŝt. dev(β̂k) =
√

σ̂2
ε

√
(X′X)−1

kk

For longitudinal models, Cov(β̂) = (X′V−1X)−1, so

ŝt. dev(β̂k) =
√

σ̂2
ε

√
(X′V̂−1X)−1

kk

These are the expressions used by the computer to provide confidence
intervals and p-values.
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Likelihood ratio tests
Estimation for Normal response longitudinal models is based on (restricted)
maximum likelihood. Therefore the likelihood ratio paradigm for nested
models may be used for hypothesis testing.

When testing H0 : (smaller model) versus H1 : larger model, classical theory
says that under H0 the test statistic

λ = −2{max. log- lik. under H0 −max. log- lik. under H1 model} ∼ χ2
k

where k is the difference in number of parameters between H0 and H1.

The assumptions of the classical theory don’t hold in the longitudinal word
due to lack of independence and parameters lying on boundaries of
parameter spaces. Current ongoing research is confronting these issues.
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Computing
SInce the early 1990s software packages have started to support LDA.
Examples are

• the MIXED and NLMIXED procedures in SAS

• the lme( ) and nlme( ) functions in R and S-plus

• the Stata package

• the Genstat package
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Back to the Pig Weight Data
Recall the longitudinal data example involving 9 repeated measurements on
48 pigs.

STAT 902: Advanced Data Analysis

Residual Analysis and Prediction in

Longitudinal Data Analysis

Matt Wand

17th April, 2007
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Pig Weights Example

Recall the longitudinal data example

involving

9 repeated measurements

on

48 (Victorian) pigs

2

pig weight data
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pig weights data
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A treillis plot of the data.
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Random Intercept Model
We model the data by a random intercept model a special case of a mixed
model using

Y =



Y1,1
...

Y1,9
...

Y48,1

vdots

Y48,9


, X =



1 x1
...

...

1 x9
...

...

1 x1
...

...

1 x9


, β =

β0

β1


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Z =


19×1 09×1 . . . 09×1

09×1 19×1 . . . 09×1
...

...
. . .

...

09×1 09×1 . . . 19×1

 , U =


U1
...

U48

 ,

G = σ2
UI and R = σ2

ε I

The estimates are

β̂0 = 19.36, β̂1 = 6.21, σ̂2
U = 15.14 and σ̂2

ε = 4.39,

leading to ρ̂ = 0.775 and ŝt. dev(β̂1) = 0.0391. The following two slides
display the fitted random intercept model and the resulting residuals.
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Fitted Random Intercept Model
Random Intercepts Model

weightij = Ui + β0 + β1weeksij + εij

where

Ui
ind.

∼ N(0,σ2

U)

are independent of the

εij
ind.

∼ N(0,σ2

ε).

5

fitted random intercept model
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Comments on Previous Two Slides

Close inspection of the fitted red lines shows that the

parallel line assumption

inherent in the random intercepts model is

too restrictive.

This is confirmed in the residual plot which shows a

pronounced

bow tie pattern.

8

Close inspection of the fitted lines shows that the parallel line assumption
inherent in the random intercepts model is too restrictive.
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Residuals in Fitted Random Intercept Model

Random Intercepts Model

weightij = Ui + β0 + β1weeksij + εij

where

Ui
ind.

∼ N(0,σ2

U)

are independent of the

εij
ind.

∼ N(0,σ2

ε).

5

fitted random intercept model
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Comments on Previous Two Slides

Close inspection of the fitted red lines shows that the

parallel line assumption

inherent in the random intercepts model is

too restrictive.

This is confirmed in the residual plot which shows a

pronounced

bow tie pattern.

8

This is confirmed in the residual plot which shows a pronounced bow tie
pattern.
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Random Intercept and Slopes Model
A remedy is to allow each pig to have his/her own slope,

Yij = Ui + β0 + (β1 + Vi)xj + εij

Random Intercepts and Slopes Model

A remedy is to allow each pig to have

his/her own slope...

9

Random Intercepts and Slopes Model II

weightij = Ui + β0 + (β1 + Vi)weeksij + εij

where

[
Ui

Vi

]
ind.
∼ N

([
0
0

]
,

[
σ2

U
ρUV σUσV

ρUV σUσV σ2
V

])

are independent of the

εij
ind.
∼ N(0,σ2

ε).

10
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fitted random intercept and slope model
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Longitudinal Data Analysis (LDA)

Residuals in Fitted Random Intercept and Slope
Model

Fitted values
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Comments on Previous Two Slides

Close inspection of the fitted red lines shows that the

lines have slightly different slopes

The residual plot is now showing

no systematic patterns

The second model is an improvement.

14

Fundamental Question

How are the red lines fitted?

15

Partial Answer

The fitted line for theith pig is

Ûi + β̂0 + (β̂1 + V̂i)weeks

The fix ed effects estimates β̂0 and β̂1 are obtained via

maximum likelihood.

How about the random effects counterparts: Ûi and V̂i?

16

The residual plot is now showing no systematic patterns. The second model
is an improvement.



Longitudinal Data Analysis (LDA)

Other aspects (not seen in these lectures)
When dealing with non-Gaussian responses the classical generalized linear
model (GLM) methodology unifies previously disparate methodologies for
a wide range of problems, including:

• multiple regression/ANOVA (Gaussian responses)

• probit and logit regression (binary responses)

• log-linear modelling (categorical responses)

• Poisson regression (counted responses)

• survival analysis (non-negative continuous responses).

One can extend the classical GLM to analyse longitudinal data but we will
not address this in these lectures as we will not also address any issues
concerning missing values in longitudinal data.




