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1. Introduction

Generalities about Branching and
Populations




What is a Branching Process?

Mathematically, a random rooted tree (or forest, usually
with nodes branching independently and often even i.i.d.

Historically,

— born in a demographic and biological context, the extinction of
family names, Galton, Fisher, Haldane (1850 — 1930);

— maturing in nuclear physics: the cold war (Harris and
Sevastyanov) (1945 — 1965);

— turning into pure mathematics (Russian school, Dawson, Dynkin,
Aldous....)

But also finding use in computer science — and
population biology again!
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More Mathematical Books

Harris, T. E., The Theory of Branching Processes (1963, recent reprint)

Sevastyanov, B. A., Vetvyashchiesya protsessy (1971 — also in German:
Verzweigungsprozesse)

Mode, C. J., Multitype Branching Processes (1971)

Athreya, K. B. and Ney, P., Branching Processes (1972)

Jagers, P., Branching Processes with Biological Applications (1975)
Asmussen, S. and Hering, H., Branching Processes (1983)
Guttorp, P., Statistical Inference for Branching Processes (1991)

Athreya, K. B. and Jagers, P. (eds,), Classical and Modern Branching
Processes (1997)

Lyons, R. and Peres, Y. Probability on Trees and Networks. Under
preparation. Manuscript downloadable from
http://mypage.iu.edu/~rdlyons/prbtree/prbtree.html
Biological books:

— Taib, Z. , Branching Processes and Neutral Evolution (1992)

— Kimmel, M. and Axelrod, D. E., Branching Processes in Biology (2002)



WigethSta population?s

SROrinelly, 2 group of himans = people.
o To l‘f Set of Individuals, who may gemnerate new
EIViduEls;and/or disappear.
SRISHGIIEIIcs is how the size and composition changes
B OVERtime; and possibly stabilises.
;‘—%ﬁ#ﬁe size is usually the number of individuals — but might

= also be their DNA content or total body mass, or the
total number ever alive.

® [he composition might be over ages or types of
Individuals, or even family relations. (How probable is it

to be first-born?)




SSENCENS, that ~as

Tl

SCIENGES alie nitiated 5)% ndividuals.

I LISSence they act independently.
L] raIIy iInaividuals live and give birth

gl gependently of each other (once bornl).
= WRIS S branching processes!
=S Bt Znitiatec by individuals™ does not preclude
that individuals influence each other:
“Sibling” or "local” interaction

o
® Population size dependence
¢ Environmental variation







This leads to General Multi-type
Branching Processes:

An individual is characterized by her (geno)type.

The type defines a probability measure over the
set of possible life careers.

A life career consists of a life span and a
reproduction process.

The life span is a non-negative random variable.

The reproduction process is a point process,
telling at what ages you get children of what
types.



General Branching Processes

A process, initiated by one individual, might thus
start like this, numbers denoting generations:
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Markov structure, not in time but in the pedigree

(€2,47) - the LIFE SPACE

P(s, ) on (2,A) - the LIFE LAW




Markov Branching Field
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Independence
given the
TYPES
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Independence
given the
TYPES

»STRONG MARKOV: optionally random starting




Questions

How is the extinction probability determined from
individual reproduction?

And how the growth rate?
— Can they be large simultaneously?

What is the time to extinction (if it occurs)?

Does population composition stabilise under
growth?

— Age and type distribution?

— History (like mutational past)?

Can population size stabilise?



SPECIal Casess,

SIEIENLYPE POPUIations
> golisdigle
=RBElmen-Harris age-dependent branching
=R SEVastyanoy
S Dinary.
=" _arkov pranching (in real time)
= = — Birth-and-death
= — Splitting Markov
- o Piscrete time
— Overlapping generations

— Non-overlapping: Bienayme-Galton-Watson (generations or
Seasons)




2.(Single-type) Galton-Watson
processes

-one-season plants or insects, or

-disregarding time structure and
counting generations;

-all individuals of the same type.




Defining properties

Each individual has the same life span (=
1).

At its end it splits into a random number (in
distrbution = &).

All individuals reproduce independently.

Z, = the number of individuals during
season n (in generation n)

Start from one ancestor, Z, = 1.



Reproduction law and generating
function

Write p, = P(€ = k), k=0, 1, 2, ...., the
reproduction law ;

f(s)=2,* p,s¥, 0< s< 1; the reproduction
generating function ;

m = E[E] = 2 kp, = F(1), the reproduction
mean, ¢? = Var[g], the reproduction
variance.

The process is supercritical if m > 1,
critical if m = 1, and subcritical if m < 1.



Benchmarks

* Binary splitting: ¢ = 0 or 2. The generating
function becomes f(s) = 1-p + ps?, m = 2p,
o =4p(1-p).

« Geometric: p.= (1-p)p%, k=0, 1, 2, .... ;
f(s) = (1-p)/(1-ps), m = p/(1-p).
 Poisson: p,=e™ mk/k!, f(s) = ems),
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SPopulation.development

T g—— s —

A VAT AT } = the past.
GW PHOCESS IS Markov
o CeE[Z|fl3n1]_E[Z ‘Zn1]_mzn1 /
nd E[Z,] = m E[Z,]=. .. = m"
= l—) oo If m>1,
m=1ifm=1,
m— 0if m<1.




But how much does the
expectation tell us?

Var[Z,] = Var[E[Z,| B, 4]I*E[Var]Z,[$8, ] =
= Var[E[Z,[Z, q]]+E[Var]Z,|Z, 4]] =
- Val’[mZn_1]+E[O'ZZn-1] =
=m? Var[Z, ] + o2m™1=

=o?m™1 (m"-1)/(m-1), if m =1, and
=o?n, ifm=1.
Thus, the coefficient of variation (the ratio
between the standard deviation and the

expectation) explodes in the critical case,
stabilises otherwise.




Teg) ative Conclusionss

fm > 1 exponentlal growth , like .
(M‘ Ithuss Law, 1798; Euler 1748)

J F" =l 777

—_

" ’ﬁ' m < 1 Bxtinction.

the critical case? And Is the time structure
relevant? Yes, for one season plants, no
for generation counting.




Extinction

* A general branching process dies out if and only
If its generation process does!

* Malthus 1798: in the city of Berne 379 out 487
bourgeois families died out 1583-1783

Bienaymé 1845, Galton 1873: (Problem 4001,
Educational Times) "A large nation of whom we
will only concern ourselves with the adult males,
N in number, and who each bear separate
surnames, colonise a district. .... Find (1) what
proportion of surnames will have become
extinct




The Extinction Probability

Write q, = P(Z,=0). Then q..=>,p.q.* = f(q.),
q,T q =P(extinction); q = f(q):




The Extinction Theorem

The equation f(g) = q has one solution in
[0,1)if m < 1 and p, < 1, none if m>1.

The smallest non-negative solution is the

extinction probability. It is always true that
f(1) = 1.

Watson’s mistake: f(1) = 1 implies that ALL
(branching) populations die out. Strange?



In the real world extinction iIs
frequent!

* Bienaymé and Galton considered
extinction of (noble) family names.

* The paleontologist Raup (1991) claims
that 99.99% (!!) of all species are extinct.

* For GW branching processes it is easy to
obtain examples where m is large but the
extinction probability g still close to 1.



Supercritical processes dying out
are — subcritical!

» With Q := {Z, — 0} and p, the transition
probability, P(Z . =j|Z,=1, Q) =
P(Z,.1=K,Z, = ],Q)IP(£,=),Q) =
P(Z,=))pya"/P(Z,=))a" = pyq* -

 The Markov property can be checked
similarily, and {Z_ | Q} has the reproduction
law {p,q"'}.

« Strangely, this property extends to general
processes! (Lageras, 2007)




szlEclele

SliViVal probabilitiEsHer Seals IooIZTke
| 0.6.0.8 0.95 0.6 .. 0.95,
'r)o»- slightiy lower after 30 years or so.

e e SHNilst three years no children are born. The
ielroyear, the probability of a daughter is 0.2,
RelErtEnTit is 0.45 per year.

= BSNTIE extinction probability: for the family line from
.;:.-;;, ﬂne female is g=0.65. The imbedded GW m=3,

= ((The Malthusian parameter is . = 0.11.
——Peubling time 6 years!)

———
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But what if a population does
not die out?

» Consider non-negative random variables X,, X,,
such that X =0 = X ,.=0. Suppose that

’i-h"ere IS a history-independent risk of extinction:
For any x there is a 6 > 0 such that
P(En X =0 | X4, ... X)) >9, ifonly X, <x.

* Then, with probability one
either there is an n such that all X,=0 for k > n
or X, - ooask — oco.




Proof

Lévy: P(A|X,, X,, ... X. )= P(A|X,, X,, ... ),
as N—oo .

Hence, Ac o(X,X,, ...) = P(A[X,,...X )>1,.
But D ={d n; X =0}c o(X,,X,, ...).

By assumption, X < x infinitely often = 0<6
< P(D|X;,..X.)—> 15 = 1,=1

Thus, 1 = P(X,—00)*+P(U,{X,< X 1.0.}<
P(X,—o0)+P(D).










Critical populations

e If m=1 and %< o ,then as n—>oc
— P(Z>0)~ 2/(nc?), and
—Z./n|Z.>0 — Exp(2/c?) in distribution.
* But note: this holds only if m=1 exactly.

The form of the other results are robust
against small deviations.



A comment on multi-type GW

* A branching process is multi-type if individuals

can be of finitely many typesi=1, 2, ... ,d. In
the GW case, all still have life span one but the
off-spring random variable ¢ is replaced by a
vector, whose distribution is determined by the
mother's type.

* The role of m is taken by M=(m,, ) =(E[no of k-

children to i-individual]).

If types communicate (some M">>0), not much
IS changed.




A decomposable process

Some populations where types do not
communicate are of great interest, like:

Mutation to survival (lwasa-Haccou-Serra).
Consider a single-type subcritical GW process,
where children are supercritical mutants with a
little probability, or become so after a number of
mutations (cancer).

What is the probability of non-extinction? The
time to an out-break?

In the conference S. Sagitov will tell more about
such matters




3. General processes

— still (mostly) single-type
— but time enters: individuals can

have different life spans and give birth at
different ages

— dividing cells, animals with yearly litters.




Basics

« Each life-span is distributed like A and
reproduction like a point process ¢ on R,.

* Then g(a) is the number of children born
up to age a, &(oo) is the total off-spring,
m = E[E(c0)], u(a) := E[E(a)] is called the
reproduction measure. (Usually (L) =
E(oc0), of course.)

« Assumptions: E[£(0)] <1, m < o0, and
o2 = Var[§(co)] < oo , mostly.



The Malthusian parameter

* |s there an intrinsic time-scale,
doubling/halfing time??

* A process is called Malthusian if there is a
number a (the Malthusian parameter) with
Jo™ e 'u(dt) = E[f> e E(dE)] =1.

» Supercritical and critical processes are
always Malthusian. Only mathematicians
can think of subcritical non-Malthusian
populations!



3.1 Growth and Stabilisation

of general, single-type,
supercritical populations




Renewal theory and expected size

e The key renewal theorem: If f(t) = h(t) + [,! f(t-u)g(du),
— his "Riemann integrable”, and
— gis a "non-lattice” distribution function on R, ,

then f(t) — [,>° h(u)du/[,> ug(du), as t—oo.

But: E[Z] = P(A > 1) + [o' E[Z; ] u(du);
eotE[Z]=e*tP(A>1) +

+ [oterTIE[Z, ] e u(du).

Write B := [,>* uetu(du), "the mean age at
child-bearing”. Then, as t— oo,

E[Z] ~ e*! [,>* e*UYP(A > u)du/ B =

e*t (1-E[e>*])/ap.




Once again: How close is the
process to its expectation?

Let 8, be the c-algebra generated by all lives of
the n first generations (as before).

Var[Z] = Var[E[Z/|B,]]+E[Var[Z|B,]] =....
complicated renewal formulas, leading to Var[Z,]

~ constant x e?at

So, like in the GW case, the coefficent of
variation stabilises for supercritical populations

Indeed, e*Z, - some W, a.s. (and in mean
square, if 62 < c0), as time passes. P(W=0) = g
under an “xlog x” condition.




Example: Splitting

* An individual can give birth only at death.

* Bellman-Harris: life-span (A) and number
of children (&) are independent.

* Benchmarks:
— Binary splitting (cell proliferation):

— Markov branching (< life is exponentially
distributed < no aging);

— Birth-and-death (can be viewed as splitting or
not).




Bellman-Harris

* The reproduction law remains {p,}, write L
for the life span distribution. Then, pn =mL,
iInsertion into the renewal equation for the
expected population size m, is easy,

 m = 1-L(t) + m[,!m,,L(du), and

* v, = Var[4] = Var[E[Z|B,]]1+E[Var[Z|3B,]] =
Var[1y,,(t)+rmmg, [+E[mv,; ] = L(t)(1-L(t)) -
2m(1-L(t)) [o' my L(du) + m*(fo'm, L(du) —
(fo' My L(du))?) + mfotvy, L(du).




Markov

If L(t) = 1- e@, then

m= e +mf,'m_ae?du =

ed +me? [;'ma e du.

m,= (m-1)am, and m, = e(™"3t exactly;
o=a(m-1).

Differential equations also for second

moments, and even the generating
function of Z..



Measuring populations

We have seen that the number of individuals
alive grows exponentially. The expected
proportionality constant was (1-E[e>*])/af3 =
E[/o> €Y1 y(u)dul/p = [p> ¥ (1-L(u))du/B.

In this any individual aged u at the time of
counting is given the weight 1, ,;(u), A being her
life span.

More generally, if y(u) is the "size” at age u, and
this is determined by the individual and her

progeny, the population size thus measured will
behave like

et E[[p> ey (u)du]/p = e[y e E[y(u)ldu]/p




Asymptotic composition

If Y, is the y-counted population, then
Y. /Z,— o E[[,> e*y(u)du]/ (1-E[e**]),
on the set of non-extinction.

The stable age distribution: The choice
%(U) = g arny(u) yields

Jo? €Y (1-L(u))du/ [,>° e Y (1-L(u))du.
This age distribution is "stable”. (Euler,
1760)




The probability of being first-born

Let t be the age at giving birth to the first-born
(infinite for a childless individual), and A the
child’s life span.

110 Aj(U-t) counts the number of first-borns.

Since A and t are independent,

E[/.F *Ae-2udu] = E[e-**](1-E[e *A])/aL.

Since life spans have the same distribution, the
proportion of first-borns tends to E[e7].

The doubling time >> 1= a 1 <<In 2 = E[e*]
>> (0.5. "Most people are firstborn.”




Cell proliferation

' DNA replication

The fraction of cells in
mitosis (m.i.) is an important
parameter, fig 3.4

2pE[e~T] =1

The characteristic counting
the number of cells in mitosis
s 171 » M = duration of
mitosis, T= cycle time.

If T and M are independent,
E[/o> ey (u)du]= E[eT]
(E[e“M]-1) =~ a E[M]/2p
Hence, m.i. = a E[M]/(2p-1).



Doubling time

What is the doubling time d in a cell tissue
in balanced exponential growth?

e*d =2 tells us that d = (log 2)/c.
Jensen: -aE[T]=log el < log E[eT] =
-log 2p. Or E[T] > d +(log p)/a.

"The cycle time E[T] is larger than the
doubling time, if there is no cell death.”




Another interpretation: sample
an individual ("Ego”) at random.

from the accumulated population (live or dead).
Since the population grows ~ e“ | her age A is
exponentially distributed with parameter «.

from those alive, and you must condition upon
being alive to get the stable age distribution:

P(A< a|A >A)=[,2 o e*Y(1-L(u))du/[,> o e Y(1-
_(u))du.

n the multi-type case, there is also a stable type
distribution, .




- Family history_

...,;.;”Bi‘unchmg

R ,opulatwn
Age X—__ o2

Bearing age

Types and bearing ages form a Markov
renewal process.

Ego's age and type ~ exp(a)xn (sampling
from the total population)















3.2 Extinction

How long does it take until a (large)
subcritical process dies out?

And what is the path to extinction?




MR ENRES

General, non-lattice, single-type branching
process ZX starting from x, Z=21,

subcritical with the Malthusian parameter -r

and having a finite xlogx or second moment of
reproduction (and technical assumptions).

Then Yaglom’s (generalised) theorem holds:
P(Z>0) ~ ce™, 1>c>0

c = C/b, C=lim e"E[Z], b=lim E[Z|Z>0]
Recall: A supercritical process bound to die out
IS a subcritical process!




Expected time to extinction

T, =T=Inf {t> 0; Z* =0}

P(T,>t) =1-P(T, < t)x=1-P(£=0)* = 1-(1-ce by,
c,— C.

E[T,]=/,> P(T,>t)dt =(In x +In c +y,)/r, v, —> Euler's y ..
vy~ 0.577 , c = C/b often quite small (C = 1 in the
Markov case, and if the population has not died out,
then it is probably large). In the benchmark case of

geometric reproduction in GW, it can be calculated
explicitly to be 1-m.

Soifx=10000andc=02,Inx=92, Inc=-1.5,
and y may also matter! “Log of a large number is 10.”




The Actual Time

* T, =(In x +In ¢ +n)/r,

» Since P(n, <y) has an exponential tail,
P(n,<y) — exp(-eV), ye R, x—>o00. Gumbel!




A — - ‘h
WiSican be used to Calculate

SU Aval intervals:

> Go tzldiei the seal example pUt W|trTs_IightIy (0.1)
Jovw Wezry: survival probabilities;
.:f'- 0.5 0.85 0.85 0.85...

o fle flrst three years no children are born. The fourth

BEVear, the probability of a daughter is 0.2, and then it is
_-E'F.'.""‘”‘ED_ 45 per: year, all as before.
*®: Jihen the population is subcritical, m=0.784, and r

~ =0.018.
 [fx=10000and c=1-m =0.216, Inx+Inc = 7.7.

e The Gumbel approximation yields 381 years as a 90%
survival interval. (But, this is the lattice case.)

= =




Between Dawn and Demise

- xulzx - — Clupuetun, O<u<l, as x—oo , in

0.2 0.4 0.6 0.8

b=1.1, C=1 b=5, C=1

1



Steps of Proof

e We know that T,= (In x + In c + n,)/r.
® Therefore, check x“E[ZX,,y 4 vy

~ XU lxCxlueut = Ce-ut
® and x2U"Y Var[Z¥, .y + v = 0.

® Under a boundedness condition on the
intensity of births, the process

{XUZX i x + vyr 1 € R} IS tight.,

® Hence, the random variables n,—9n (+ In c)
can be inserted, and

o , In for fixed O<u<1.




And realisations:

6 6
5 L
"'z, . 0<u<1)
a4t
Ty
3 o SOV
2| ZaEEe

Markov branching with p, = 0.75 and p, = 0.25, life
expectancy =1, x =1 000 and 10 000, respectively.



4. Dependence in Galton-
Watson type processes

Random environments, sibling
Interaction, size dependence




Sibling dependence

Can be analysed by a simple trick:
Turn sibships into "macro individuals™.

These have independent reproduction and
constitute a multi-type proces with type =
sibship size.

Growth properties remain but extinction
probability can be severely affected.




Random environments

 Each season provides its own "weather” ,
determining the off-spring law. Given that,
contemporary individuals reproduce i.i.d. Thus,
consider {Z,, } adapted to a filtration of
environments {€, }.

Given €, , Z.., Isthe sum of Z, i.i.d. non-
negative integer valued random variables each
with conditional

— mean M,

— and variance o, ? .
* Then Z /(M,... M), n =0,1,.. forms a martingale.




Growth In random environments

Growth during the n seasons is determined by M,... M,
and is equivalent to time homogeneous growth W|th
conditional mean reproduction (M,... M_)"".

(M,... M)V = exp{(log M, +..+log M,)/n} .

If the M. are i.i.d the law of large numbers holds:

(M,... M)1n — exp{E[log M]} and

Z . ~W x M,...M, ~ W exp{nE[log M]}.

Explosion or extinction according as E[log M] > or<0.

This remains true for, say, stationary ergodic
environments. (But there are also results for
deteriorating ones etc.)

Note: E[M] = E[exp(log M)] >exp(E[log M] (Jensen).

More about branching in random environments in V.
Vatutin’s lecture!




Population size dependence

Now identify environment with one particular
(but highly non-stationary) aspect: population
size,sothat Z ,,| €, =2Z..1| Z,.

Consider near-critical processes:

M, =1+C/Z, +R ,C,and R in €,.
Then, E[Z.,,|€]=4,+C, + Z R, .
Assume:

— C,, independent of Z, and

- R, =0(1/Z2,),

and write c, = E[C,].




Must growth be exponential®?

Recall that the true dichotomy is between
extinction and unbounded growth.

Summing the expectation of E[Z, |€, ] = Z,_ 4 +
Ciit 4. R, yields

E[Z.] = E[Zo] +24=0"ckP(£>0) + 0(2=o"cP(£,>0)).
Ifq=1imP(Z,=0), E[Z.] - E[Z,] = (1-9)2=;"C, =
(1-q)L, = (1-g)qcn, if all c, = c.

Z, ~(1-q)L,? This depends on the
reproduction variances, o2 !




Process convergence

Assume that L - infinityand L, /L ;- 1,

that all conditional offspring moments are
bounded,

that conditional reproduction variances stabilize
In large populations: o= V_+0(1), as Z, tends to
infinity,

and with v, = E[V,], v,~ ac,, a =0, as n - infinity.
Then, it can be shown that Z /L -»9T'(2/a,2/a), if
a>0, and » 1, if a = 0, provided the population
does not die out.




The Polymerase Chain
Reaction (PCR)

dla

=. eExten=En



In the beginning you can't see
much....




But soon the number starts to grow ---
linearly




But everything has an end...

T
40

1
45



Why?

The probability of sucessful replication = P(two
"children”) = p(DNA, primers, polymerase,
deoxinucleic triphosphate, MgCl.....) = K/(K+Z),
Z=DNA, K=random or constant (usually).
"Michaelis-Menten kinetics™.

If replication does not succeed, the molecule
remains = one “child”.

Mean reproduction: M, =1+ K /(K +Z,) =1 +
KJ/Z, +o(1/Z,), K, i.i.d., Z, no. molecules in
cycle n.

Mean variance: 0,2= K Z /(K +Z ).




Then:

Withc,=E[K ] =c,L,=cn,and o, -~ 0, as Z,
grows.

Hence, Z /(cn) » 1. Linear growth, in probability
and actually a.s.!

Directly: E[Z,|Z,.{]1=2Z,.4 + KZ /[(K+Z ) ~
27 ., aslongas Z ,<<K.

But Z, — oo, and rather E[Z |Z, ]~ Z,.1 + K.
By dominated convergence indeed

E[Zn] = E[Zn-1] +E[Kzn-1/(K+Zn-1)] = .
E[Z,]+2 0" "E[KZ (K+Z, )]~ Kn, n— oo .




And the variances:

With z molecules, the replication variance is

6%(z)= 4p(z) + 1- p(z) — (1+p(2))*= p(z)(1-
p(z))= Kz/(K+2z)?, p(z)=K/(K+2z).

Var|Z,] = E[Var|Z,|Z, 4] +Var[E[Z,|Z,4]] =

E[Kzn-12 /(K+Zn—1 )2] +Var[zn-1 +KZn-1/(K+Zn-1 )]
~ K +Var[Z, _+K] =K+Var[Z, ;] = Kn+Var[Z].

E[(Z /n — K)?] = Var[Z./n] +(E[Z./n] — K)’°- O.
Actually, Z /n — K also a.s.




But many areas remain....

= How does Inbreeding; affect the time to
extinction?

= Canwe model inbreeding at all? Other
mating effects?

= Can branching help in understana
pielogical evelution?

= E.g., IS sympatric speciation poessible?
= And many more questions.




Thank you for your
attention

and Good Luck!






