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1. Introduction

Generalities about Branching and 
Populations



What is a Branching Process?

• Mathematically, a random rooted tree (or forest, usually 
with nodes branching independently and often even i.i.d.

• Historically, 
– born in a demographic and biological context, the extinction of 

family names, Galton, Fisher, Haldane (1850 – 1930);

– maturing in nuclear physics: the cold war (Harris and 
Sevastyanov) (1945 – 1965);

– turning into pure mathematics (Russian school, Dawson, Dynkin, 
Aldous....) 

• But also finding use in computer science – and 
population biology again!



In a book store near you:In a book store near you:



More Mathematical Books

• Harris, T. E., The Theory of Branching Processes (1963, recent reprint)
• Sevastyanov, B. A.,  Vetvyashchiesya protsessy (1971 – also in German: 

Verzweigungsprozesse)
• Mode, C. J., Multitype Branching Processes (1971)
• Athreya, K. B. and Ney, P., Branching Processes (1972)
• Jagers, P., Branching Processes with Biological Applications (1975)
• Asmussen, S. and Hering, H., Branching Processes (1983)
• Guttorp, P., Statistical Inference for Branching Processes (1991)
• Athreya, K. B. and Jagers, P.  (eds,), Classical and Modern Branching 

Processes (1997)
• Lyons, R. and Peres, Y. Probability on Trees and Networks. Under

preparation. Manuscript downloadable from 
http://mypage.iu.edu/~rdlyons/prbtree/prbtree.html

• Biological books:
– Taib, Z. , Branching Processes and Neutral Evolution (1992)
– Kimmel, M. and Axelrod, D.  E. , Branching Processes in Biology (2002) 



What is a population?What is a population?

•• Originally, a group of humans = people.Originally, a group of humans = people.

•• To us a set of To us a set of individuals,individuals, who may generate new who may generate new 
individuals, and/or disappear.individuals, and/or disappear.

•• ItsIts dynamicsdynamics is how the size and composition changes is how the size and composition changes 
over time, and possibly stabilises.over time, and possibly stabilises.

•• TheThe sizesize is usually the number of individuals is usually the number of individuals –– but might but might 
also be their DNA content or total body mass, or the also be their DNA content or total body mass, or the 
total number ever alive.total number ever alive.

•• TheThe compositioncomposition might be over ages or types of might be over ages or types of 
individuals, or even family relations. (How probable is it individuals, or even family relations. (How probable is it 
to be firstto be first--born?)born?)



The essence is that The essence is that --

•• -- changes are initiated by individuals.changes are initiated by individuals.
•• In this sence they act In this sence they act independently.independently.
•• Literally: individuals live and give birth Literally: individuals live and give birth 

independently of each other (once born!).independently of each other (once born!).
•• This is branching processes!This is branching processes!
•• ButBut ””initiated by individualsinitiated by individuals”” does not preclude does not preclude 

that individuals influence each other:that individuals influence each other:
•• ””SiblingSibling”” oror ””locallocal”” interactioninteraction
•• Population size dependencePopulation size dependence
•• Environmental variationEnvironmental variation



No sex!

For simplicity: no mating - asexual 
reproduction. Or just think of the 
females.

In small populations and for 
inheritance of traits mating does
matter.

Extinction risks and times are affected 
by inbreeding



This leads to General Multi-type 
Branching Processes:

• An individual is characterized by her (geno)type.

• The type defines a probability measure over the 
set of possible life careers.

• A life career consists of a life span and a
reproduction process.

• The life span is a non-negative random variable.

• The  reproduction process is a point process, 
telling at what ages you get children of what 
types.



General Branching Processes

A process, initiated by one individual, might thus 
start like this, numbers denoting generations:



Markov structure, not in time but in the pedigree



Markov Branching Field



Questions

• How is the extinction probability determined from 
individual reproduction?

• And how the growth rate?
– Can they be large simultaneously?

• What is the time to extinction (if it occurs)?
• Does population composition stabilise under 

growth?
– Age and type distribution? 
– History (like mutational past)?

• Can population size stabilise?



Special Cases:Special Cases:

•• Single type populations Single type populations 
•• splittingsplitting

–– BellmanBellman--Harris ageHarris age--dependent branchingdependent branching
–– SevastyanovSevastyanov
–– binarybinary

•• Markov branching (in real time)Markov branching (in real time)
–– BirthBirth--andand--deathdeath
–– Splitting MarkovSplitting Markov

•• Discrete timeDiscrete time
–– Overlapping generationsOverlapping generations
–– NonNon--overlapping: Bienaymoverlapping: Bienayméé--GaltonGalton--Watson (generations or Watson (generations or 

seasons)seasons)



2.(Single-type) Galton-Watson 
processes

-one-season plants or insects, or
-disregarding time structure and 

counting generations;
-all individuals of the same type.



Defining properties

• Each individual has the same life span (= 
1).

• At its end it splits into a random number (in 
distrbution = ).

• All individuals reproduce independently.

• Zn = the number of individuals during 
season n (in generation n)

• Start from one ancestor, Z0 = 1.



Reproduction law and generating 
function

• Write pk = P( = k), k=0, 1, 2, ...., the 
reproduction law ;

• f(s)= pks
k, 0 s 1; the reproduction

generating function ;

• m = E[ ] = kpk = f’(1), the reproduction
mean, 2 =  Var[ ], the reproduction
variance.

• The process is supercritical if m > 1, 
critical if m = 1, and subcritical if m < 1.



Benchmarks

• Binary splitting: = 0 or 2.  The generating 
function becomes f(s) = 1-p + ps2 , m = 2p, 

2 =4p(1-p).

• Geometric: pk= (1-p)pk , k=0, 1, 2, .... ;
f(s) = (1-p)/(1-ps), m = p/(1-p).

• Poisson: pk= e-m mk/k! , f(s) = em(s-1).

To what extent are these biologically 
relevant?



Population development Population development 

•• LetLet BBnn == {Z{Z00, Z, Z11, ... Z, ... Znn} = the past.} = the past.

•• The GW process is The GW process is MarkovMarkov..

•• Hence E[ZHence E[Znn|| BBnn--11] = E[Z] = E[Znn|Z|Znn--11] = mZ] = mZnn--11 ,,
and  E[Zand  E[Znn] = m E[Z] = m E[Znn--11]= . .. = m]= . .. = mnn..

if m>1,if m>1,

= 1 if m=1,= 1 if m=1,

0 if m<1.0 if m<1.



But how much does the 
expectation tell us?

Var[Zn] = Var[E[Zn|Bn-1]]+E[Var[Zn|Bn-1]] =
= Var[E[Zn|Zn-1]]+E[Var[Zn|Zn-1]] =

= Var[mZn-1]+E[ 2Zn-1] =
= m2 Var[Zn-1] + 2mn-1 = ......... =

2mn-1 (mn -1)/(m-1), if m 1, and

= 2n, if m = 1.

Thus, the coefficient of variation (the ratio 
between the standard deviation and the 
expectation) explodes in the critical case, 
stabilises otherwise.



Tentative ConclusionsTentative Conclusions

•• If m > 1, exponential growth, like If m > 1, exponential growth, like mmnn..
(Malthus(Malthus’’s Law, 1798; Euler 1748)s Law, 1798; Euler 1748)

•• If m = 1, If m = 1, ??????

•• If m < 1, If m < 1, extinctionextinction..

•• But is this correct? And what happens in But is this correct? And what happens in 
the critical case? And is the time structure the critical case? And is the time structure 
relevant? Yes, for one season plants, no relevant? Yes, for one season plants, no 
for generation counting.for generation counting.



Extinction

• A general branching process dies out if and only 
if its generation process does!

• Malthus 1798: in the city of Berne 379 out 487 
bourgeois families died out 1583-1783

• Bienaymé 1845, Galton 1873: (Problem 4001, 
Educational Times) ”A large nation of whom we 
will only concern ourselves with the adult males, 
N in number, and who each bear separate 
surnames, colonise a district. .... Find (1) what 
proportion of surnames will have become 
extinct.......”



The Extinction Probability 

Write qn = P(Zn=0). Then qn+1= kpkqn
k = f(qn),

qn q =P(extinction); q = f(q):



The Extinction Theorem

The equation f(q) = q has one solution in 
[0,1) if m 1 and p0 < 1, none if m>1.

The smallest non-negative solution is the 
extinction probability. It is always true that 
f(1) = 1.

Watson’s mistake: f(1) = 1 implies that ALL 
(branching) populations die out. Strange?



In the real world extinction is 
frequent!

• Bienaymé and Galton considered 
extinction of (noble) family names.

• The paleontologist Raup (1991) claims 
that 99.99% (!!) of all species are extinct.

• For GW branching processes it is easy to 
obtain examples where m is large but the 
extinction probability q still close to 1.



Supercritical processes dying out 
are –- subcritical!

• With Q := {Zn 0} and pjk the transition 
probability,  P(Zn+1 = j|Zn = i, Q) = 
P(Zn+1=k,Zn = j,Q)/P(Zn=j,Q) = 
P(Zn=j)pjkq

k/P(Zn=j)qi = pjkq
k-i .

• The Markov property can be checked 
similarily, and {Zn | Q} has the reproduction 
law {pkq

k-1}.

• Strangely, this property extends to general 
processes! (Lagerås, 2007)



A Seal ExampleA Seal Example
•• Survival probabilities for seals look likeSurvival probabilities for seals look like

0.6 0.8 0.95 0.95 ...... 0.95,0.6 0.8 0.95 0.95 ...... 0.95,
possibly slightly lower after 30 years or so.possibly slightly lower after 30 years or so.

•• The first three years no children are born. The The first three years no children are born. The 
fourth year, the probability of a daughter is 0.2, fourth year, the probability of a daughter is 0.2, 
and then it is 0.45 per year.and then it is 0.45 per year.

•• The extinction probability for the family line from The extinction probability for the family line from 
one female is qone female is q=0.65=0.65. The imbedded GW m=3, . The imbedded GW m=3, 
(The Malthusian  parameter is (The Malthusian  parameter is = 0.11. = 0.11. 
Doubling time 6 yearsDoubling time 6 years!)!)



But what if a population does 
not die out?

• The merciless dichotomy of population 
dynamics:

• Consider non-negative random variables X1, X2,
....    such that Xn= 0 Xn+1=0. Suppose that 
there is a history-independent risk of extinction: 
For any x there is a > 0 such that
P( n;Xn=0  |  X1, ... Xk) , if only Xk x.

• Then, with probability one 

either there is an n such that all Xk=0 for k n

or Xk as k .



Proof

• Lévy: P(A|X1, X2, ... Xn) P(A|X1, X2, ... ), 
as n .

• Hence, A (X1,X2, ...) P(A|X1,...Xn) 1A.

• But D ={ n; Xn=0} (X1,X2, ...) .

• By assumption, Xn x infinitely often 0<
P(D|X1,...Xn) 1D 1D=1

• Thus, 1 = P(Xn )+P( x 1{Xn x i.o.}
P(Xn )+P(D).



How quick is growth?

• Wn:= Zn/m
n . Then, E[Wn| Bn-1] = E[Wn|Zn-1]

= Wn-1 and

• Var[Wn]  = Var[Zn] /m
2n =

2 m-n )/(m -1)m, if m 1,

• and        = 2n, if m = 1.

• Thus: If m 1 (and p1 < 1), Wn 0.

If m>1 (and 2 is finite), Wn some W
0, a.s. and in mean square.  P(W=0) = q, 
E[W] = 1, Var[W] = 2 /(m -1)m.



”xlog x”

• E[ log+ ]< is the famous ”xlog x”
condition.

• In the supercritical case, ”xlog x” iff Wn

W a.s. and in the mean. If ”xlog x” does 
not hold Wn 0.

• For subcritical processes, ”xlog x” iff    
P(Zn > 0) ~ mn . Further, Zn|Zn > 0 has a 
limit in distribution, as n .The latter 
has a  finite mean precisly under ”xlog x”.



Critical populations

• If m = 1 and 2< ,then as n

– P(Zn>0) 2/(n 2), and

– Zn/n|Zn>0 Exp(2/ 2) in distribution.

• But note: this holds only if m=1 exactly.
The form of the other results are robust 
against small deviations.



A comment on multi-type GW

• A branching process is multi-type if individuals 
can be of finitely many types i = 1, 2, ... , d. In 
the GW case, all still have life span one but the 
off-spring random variable is replaced by a 
vector, whose distribution is determined by the 
mother’s type.

• The rôle of m is taken by M=(mik) =(E[no of k-
children to i-individual]).

• If types communicate (some Mn >>0), not much 
is changed. 



A decomposable process

• Some populations where types do not 
communicate are of great interest, like:

• Mutation to survival (Iwasa-Haccou-Serra). 
Consider a single-type subcritical GW process, 
where children are supercritical mutants with a 
little probability, or become so after a number of 
mutations (cancer).

• What is the probability of non-extinction? The 
time to an out-break?

• In the conference S. Sagitov will tell more about 
such matters



3. General processes

– still (mostly) single-type
– but time enters: individuals can       
have different life spans and give birth at 
different ages
– dividing cells, animals with yearly litters.



Basics

• Each life-span is distributed like and
reproduction like a point process on R+.

• Then (a) is the number of children born 
up to age a, ( ) is the total off-spring,
m = E[ ( )], (a) := E[ (a)] is called the 
reproduction measure. (Usually ( ) = 
( ), of course.)

• Assumptions: E[ (0)] < 1, m < , and
2 = Var[ ( )] < , mostly.



The Malthusian parameter

• Is there an intrinsic time-scale, 
doubling/halfing time? 

• A process is called Malthusian if there is a 
number (the Malthusian parameter) with

0 e- t (dt) = E[ 0 e- t (dt)] =1.

• Supercritical and critical processes are 
always Malthusian. Only mathematicians 
can think of subcritical non-Malthusian 
populations!



3.1 Growth and Stabilisation

of general, single-type, 
supercritical populations 



Renewal theory and expected size

• The key renewal theorem: If f(t) = h(t) + 0
t f(t-u)g(du),

– h is ”Riemann integrable”, and

– g is a ”non-lattice” distribution function on R+ ,

then f(t) 0 h(u)du/ 0 ug(du), as t .

• But: E[Zt] = P( > t) + 0
t E[Zt-u] (du);

• e- t E[Zt] = e- t P( > t) +
+ 0

t e- (t-u) E[Zt-u] e
- u (du).

• Write := 0 ue- u (du), ”the mean age at 
child-bearing”. Then, as t ,

• E[Zt] e t
0 e- uP( > u)du/ =

e t (1-E[e- ])/



Once again: How close is the 
process to its expectation?

• Let Bn be the -algebra generated by all lives of 
the n first generations (as before).

• Var[Zt] = Var[E[Zt|B0]]+E[Var[Zt|B0]] =.... 
complicated renewal formulas, leading to Var[Zt]

constant × e2 t .

• So, like in the GW case, the coefficent of 
variation stabilises for supercritical populations

• Indeed, e- tZt some W, a.s. (and in mean 
square, if 2 < ), as time passes. P(W=0) = q 
under an ”xlog x” condition.



Example: Splitting

• An individual can give birth only at death.

• Bellman-Harris: life-span and number 
of children ( ) are independent.

• Benchmarks:
– Binary splitting (cell proliferation):

– Markov branching ( life is exponentially 
distributed no aging);

– Birth-and-death (can be viewed as splitting or 
not).



Bellman-Harris

• The reproduction law remains {pk}, write L 
for the life span distribution. Then, =mL,
insertion into the renewal equation for the 
expected population size mt is easy, 

• mt = 1-L(t) + m 0
t mt-uL(du), and

• vt = Var[Zt] = Var[E[Zt|B0]]+E[Var[Zt|B0]] =
Var[1[0, )(t)+mmt- ]+E[mvt- ] =  L(t)(1-L(t)) –
2m(1-L(t)) 0

t mt-uL(du) + m2( 0
t mt-u

2L(du) –
( 0

t mt-uL(du))2 ) + m 0
t vt-uL(du).



Markov

• If L(t) = 1- e-at , then 

• mt =  e-at + m 0
t mt-ua e-au du  =

e-at + m e-at
0

t mua eau du.

• mt’=  (m-1)amt and mt = e(m-1)at exactly;
=a(m-1).

• Differential equations also for second 
moments, and even the generating 
function of Zt.



Measuring populations

• We have seen that the number of individuals 
alive grows exponentially. The expected 
proportionality constant was (1-E[e- ])/
E[ 0 e- u 1[0, ](u)du]/ 0 e- u (1-L(u))du/ .

• In this any individual aged u at the time of 
counting is given the weight 1[0, ](u), being her 
life span.

• More generally, if (u) is the ”size” at age u, and 
this is determined by the individual and her 
progeny, the population size thus measured will 
behave like

• e t E[ 0 e- u (u)du]/ e t
0 e- u E[ (u)]du]/



Asymptotic composition

• If Yt is the -counted population, then
Yt /Zt E[ 0 e- u (u)du]/ (1-E[e- ]),
on the set of non-extinction.

• The stable age distribution: The choice 
(u) = 1[0,aÆ ](u) yields

• 0
a e- u (1-L(u))du/ 0 e- u (1-L(u))du.

• This age distribution is ”stable”. (Euler, 
1760)



The probability of being first-born

• Let be the age at giving birth to the first-born 
(infinite for a childless individual), and the
child’s life span. 

• 1[0, ](u- ) counts the number of first-borns.

• Since and are independent,
E[ + e- udu] = E[e- ](1-E[e-

• Since life spans have the same distribution, the 
proportion of first-borns tends to E[e- ].

• The doubling time >> << ln 2 E[e- ]
>> 0.5. ”Most people are firstborn.”



Cell proliferation

• The fraction of cells in 
mitosis (m.i.) is an important 
parameter, fig 3.4

• 2pE[e- T] = 1

• The characteristic  counting 
the number of cells in mitosis 
is 1[T-M,T]  ,, M = duration of 
mitosis, T= cycle time. 

• If T and M are independent, 
E[ 0 e- u (u)du]= E[e- T]
(E[e M]-1) E[M]/2p

• Hence, m.i. E[M]/(2p-1).

G1

G2
S

M

nuclear division

cytoplasmic division

DNA replication



Doubling time

• What is the doubling time d in a cell tissue 
in balanced exponential growth?

• e d =2 tells us that d = (log 2)/

• Jensen: - E[ ]=log e- E[ ] < log E[e- ] =
-log 2p. Or E[T] > d +(log p)/

• ”The cycle time E[T] is larger than the  
doubling time, if there is no cell death.”



Another interpretation: sample
an individual (”Ego”) at random.

• from the accumulated population (live or dead). 
Since the population grows ~ e t , her age A is
exponentially distributed with parameter 

• from those alive, and you must condition upon
being alive to get the stable age distribution:

• P(A a| >A)= 0
a e- u(1-L(u))du/ 0 e- u(1-

L(u))du.

• In the multi-type case, there is also a stable type
distribution, .



Family history



The renewal structure

• This is rather intuitive,

• but  proving it in full generality is very 
technical.

• So we proceed to an application:



Mutational history

• In the one-type case the ancestral process is a 
renewal process, with intensity 1/ = the 
generation time = the average age at child-
bearing.

• In the neutral mutation, infinite alleles case the 
mutational history process remains of renewal 
type, the generation time replaced by the time 
between mutations: /p, if p is the mutation 
probability.

• Thus, the evolution rate is independent of 
population size!



Molecular Clock of Evolution

• Independence of population size. But not of the 
time scale (in general).

• However, if mutation risk is age-dependent,     p
= p(a) = c × a ~ 1 – e–ca , a = mother’s age at 
bearing, this will also cancel, and:

• Evolution rate = mutation rate = c, a molecular 
clock of evolution, independently of both 
population size and reproductive mechanism.



Evolution viewed as
branching    or    classically

+ General reproduction 
mechanism.

+ No fixed population 
size.

- Exponential growth for 
billions of years.

- No sex.

• Simplistic time scale 
and reproduction

• Fixed population size, 
since dawn of time.

• Random mating



3.2 Extinction

How long does it take until a (large) 
subcritical process dies out?

And what is the path to extinction?



Preliminaries

• General, non-lattice, single-type branching
process Zt

x starting from x, Zt=Zt
1,

• subcritical with the Malthusian parameter -r

• and having a finite xlogx or second moment of 
reproduction (and technical assumptions).

• Then Yaglom’s (generalised) theorem holds:

• P(Zt>0) ce-rt , 1>c>0.

• c = C/b, C=lim ertE[Zt],   b=lim E[Zt|Zt>0]

• Recall: A supercritical process bound to die out 
is a subcritical process!



Expected time to extinction

• Tx =T= inf {t 0; Zt
x =0}

• P(Tx>t) =1-P(T1 t)x =1- P(Zt=0)x =          1-(1-cte
-r t)x,

ct c.

• E[Tx]= 0 P(Tx>t)dt =(ln x +ln c + x)/r, x Euler's .

• 0.577 , c = C/b often quite small (C = 1 in the 
Markov case, and if the population has not died out, 
then it is probably large). In the benchmark case of 
geometric reproduction in GW, it can be calculated 
explicitly to be 1-m.

• So if x = 10 000 and c = 0.2, ln x = 9.2, ln c = - 1.5, 
and may also matter! “Log of a large number is 10.”



The Actual Time

• Tx =(ln x +ln c + x)/r,

• Since  P( x < y) has an exponential tail,
P( x < y) exp(-e-y), y R , x . Gumbel!



This can be used to calculate This can be used to calculate 
survival intervals:survival intervals:

•• Go back to the seal example, but with  slightly (0.1) Go back to the seal example, but with  slightly (0.1) 
lower yearly  survival probabilities,lower yearly  survival probabilities,

0.5 0.85 0.5 0.85 0.850.85 ...... 0.85......... 0.85...

•• The first three years no children are born. The fourth The first three years no children are born. The fourth 
year, the probability of a daughter is 0.2, and then it is year, the probability of a daughter is 0.2, and then it is 
0.45 per year, all as before.0.45 per year, all as before.

•• Then the population is Then the population is subcriticalsubcritical, m=0.784, and r  = , m=0.784, and r  = --
= 0.018.= 0.018.

•• If x = 10 000 and c = 1If x = 10 000 and c = 1--m = 0.216, ln x + ln c = 7.7.m = 0.216, ln x + ln c = 7.7.

•• The Gumbel approximation yields 381 years as a 90% The Gumbel approximation yields 381 years as a 90% 
survival interval. (But, this is the lattice case.)survival interval. (But, this is the lattice case.)



Between Dawn and DemiseBetween Dawn and Demise

••
__
xxuu--11ZZxx

uTuT CC11--uubbuuee--uu , 0<u<1, as x, 0<u<1, as x ,, inin
distribution.distribution.

•• Typically, the normed shape is thus Typically, the normed shape is thus 
exponentially decreasing, providedexponentially decreasing, provided > ln (b/C).> ln (b/C).

•• TheThe expectedexpected path is path is CC11--uubbuu (u+1)(u+1) ::

0.2 0.4 0.6 0.8 1

0.925

0.95

0.975

1.025

1.05

1.075

1.1

0.2 0.4 0.6 0.8 1

2

3

4

5

b=1.1, C=1 b=5, C=1



Steps of ProofSteps of Proof
•• We know that TWe know that Txx= (ln x + ln c + = (ln x + ln c + xx)/r.)/r.

•• Therefore, checkTherefore, check xxuu--11E[ZE[Zxx
u(ln x + t)/ru(ln x + t)/r ]]

xxuu--11xCxxCx--uuee--utut = Ce= Ce--utut

•• andand xx2(u2(u--1)1) Var[ZVar[Zxx
u(ln x + t)/ru(ln x + t)/r]] 0.0.

•• Under a boundedness condition on the Under a boundedness condition on the 
intensity of births, the process intensity of births, the process 

{x{xuu--11ZZxx
u(ln x + t)/ru(ln x + t)/r ; t; t R}R} is tight.is tight.

•• Hence, the random variables Hence, the random variables xx
dd (+ ln c) (+ ln c) 

can be inserted, and can be inserted, and 

•• xxuu--11ZZuTuT
dd CcCc--uuee--uu , in for fixed 0<u<1., in for fixed 0<u<1.



::

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

6

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

6

(xu−1Z
uT

 , 0<u<1) (xu−1Z
uT

 , 0<u<1) 



4. Dependence in Galton-
Watson type processes

Random environments, sibling 
interaction, size dependence 



Sibling dependence

• Can be analysed by a simple trick: 

• Turn sibships into ”macro individuals”.

• These have independent reproduction and 
constitute a multi-type proces with type = 
sibship size.

• Growth properties remain but extinction 
probability can be severely affected.



Random environments

• Each season provides its own ”weather” , 
determining the off-spring law. Given that, 
contemporary individuals  reproduce i.i.d. Thus, 
consider {Zn } adapted to a filtration of 
environments { n }.

• Given n , Zn+1 is the sum of Zn i.i.d. non-
negative integer valued random variables each 
with conditional
– mean Mn

– and variance n
2 .

• Then Zn/(M1... Mn), n = 0,1,.. forms a martingale.



Growth in random environments

• Growth during the n seasons is determined by M1... Mn ,
and is equivalent to time homogeneous growth with 
conditional mean reproduction   (M1... Mn)

1/n .
• (M1... Mn)

1/n = exp{(log M1 +..+log Mn)/n} .
• If the Mi are i.i.d  the law of large numbers holds:

(M1... Mn)
1/n exp{E[log M]} and

• Zn W × M1... Mn W exp{nE[log M]}.
• Explosion or extinction according as E[log M] > or < 0 . 
• This remains true for, say, stationary ergodic 

environments. (But there are also results for 
deteriorating ones etc.)

• Note: E[M] = E[exp(log M)] >exp(E[log M] (Jensen).
• More about branching in random environments in V. 

Vatutin’s lecture!



Population size dependence

• Now identify environment with one particular 
(but highly non-stationary) aspect: population 
size, so that Zn+1 | n = Zn+1 | Zn .

• Consider near-critical processes:

• Mn Cn/Zn + Rn , Cn and Rn in n .

• Then,  E[Zn+1 | ] = Zn + Cn + Zn Rn .

• Assume: 

– Cn independent of Zn and

– Rn = o(1/Z n),

• and write cn = E[Cn].



Must growth be exponential?

• Recall that the true dichotomy is between 
extinction and unbounded growth.

• Summing the expectation of E[Zk | k-1] = Zk-1 +

Ck-1 + Zk-1 Rk-1 yields

• E[Zn] = E[Z0] + k=0
nckP(Zk>0) + o( k=0

nckP(Zk>0)).

• If q = lim P(Zn= 0), E[Zn] - E[Z0] (1-q) k=0
nck :=

(1-q)Ln = (1-q)qcn, if all ck = c.

• Zn ~ (1-q)Ln ?  This depends  on the 
reproduction variances, n

2 !



Process convergence

• Assume that Ln infinity and Ln /Ln-1 1,

• that all conditional offspring moments are 
bounded,

• that conditional reproduction variances stabilize
in large populations: n= Vn+o(1), as Zn tends to 
infinity,

• and with vn = E[Vn], vn ~ acn, a 0, as n infinity.

• Then, it can be shown that Zn/Ln
d 2/a,2/a), if

a>0, and 1, if a = 0, provided the population 
does not die out.



The Polymerase Chain
Reaction (PCR)
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linearly
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Why?

• The probability of sucessful replication = P(two
”children”) = p(DNA, primers, polymerase, 
deoxinucleic triphosphate, MgCl2….) = K/(K+Z), 
Z=DNA, K=random or constant (usually). 
”Michaelis-Menten kinetics”.

• If replication does not succeed, the molecule
remains = one ”child”.

• Mean reproduction: Mn = 1 + Kn/(Kn+Zn) = 1 + 
Kn/Zn +o(1/Zn), Kn i.i.d., Zn no. molecules in 
cycle n.

• Mean variance: n
2 = Kn Zn/(Kn+Zn)

2.



Then:

• With cn = E[Kn] = c, Ln = cn, and n 0, as Zn

grows.

• Hence, Zn/(cn) 1. Linear growth, in probability
and actually a.s.!

• Directly: E[Zn|Zn-1] = Zn-1 + KZn-1 /(K+Zn-1)
2Zn-1, as long as  Zn-1 << K.

• But Zn , and rather E[Zn|Zn-1] Zn-1 + K.

• By dominated convergence indeed

• E[Zn] = E[Zn-1] +E[KZn-1/(K+Zn-1)] = ... 
E[Z0]+ k=0

n-1E[KZk(K+Zk)] Kn, n .



And the variances:

• With z molecules, the replication variance is 
2(z)= 4p(z) + 1- p(z) – (1+p(z))2= p(z)(1-

p(z))= Kz/(K+z)2, p(z)=K/(K+z).

• Var[Zn] = E[Var[Zn|Zn-1]] +Var[E[Zn|Zn-1]] = 
E[KZn-1

2 /(K+Zn-1)
2] +Var[Zn-1+KZn-1/(K+Zn-1)]

K +Var[Zn-1+K] =K+Var[Zn-1] = Kn+Var[Z0].

• E[(Zn/n – K)2] = Var[Zn/n] +(E[Zn/n] – K)2 0.

• Actually, Zn/n K also a.s. 



But many areas remain....But many areas remain....

How does inbreeding affect the time to How does inbreeding affect the time to 
extinction?extinction?

Can we model inbreeding at all? Other Can we model inbreeding at all? Other 
mating effects?mating effects?

Can branching help in understand Can branching help in understand 
biological evolution?biological evolution?

E.g., is sympatric speciation possible?E.g., is sympatric speciation possible?

And many more questions.And many more questions.



Thank you for yourThank you for your
attentionattention

and Good Luck!and Good Luck!




