

Advanced School and Conference on Statistics and Applied Probability in Life Sciences

24 September - 12 October, 2007

Generalized linear models IV

Peter McCullagh

Department of Statistics University of Chicago Chicago IL 60637, USA

Generalized linear models IV

Peter McCullagh

Department of Statistics University of Chicago

Trieste, October 2007

590

æ

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ●

Poisson process

Example 1

- stationarity
- Computation
- Over-dispersion

590

æ

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ●

Log-linear models

Model:

 Y_1, \ldots independent Poisson variables x_i is the covariate value for unit *i* $E(Y_i) = \mu(x_i)$ is the mean for unit *i* Components independent but not identically distributed Need a model for the response function $\mu(x)$

Constraint: $\mu(x) \ge 0$

Standard response function: $\mu(x) = \exp(\beta' x)$ i.e. log $E(Y(u)) = \beta' x(u)$ for unit unot log $Y(u) = \beta' x(u) + \epsilon(u)$

590

Poisson process

What is a Poisson process? probabilistic model for the occurrence of a series of events

Example: arrival of calls at a telephone exchange calls arrive at constant rate λ per unit time Events in non-overlapping intervals are independent Expected number of events in (t, t + dt) is λdt event occurs in dt with probability λdt

pr(no event in
$$(0, t)$$
) = $\lim_{k \to \infty} (1 - \lambda t/k)^k = e^{-\lambda t}$

(divide interval into k equal parts of length t/k)

$$pr(n \text{ events at } dt_1, \dots, dt_n) = \lambda^n e^{-\lambda t} dt_1 \cdots dt_n$$

$$pr(n \text{ events}) = \lambda^n t^n e^{-\lambda t} / n!$$

うへつ

Poisson process (contd)

What is a Poisson process? probabilistic model for random subset $Y \subset \mathcal{X}$ No of events in A: $Y(A) = #(Y \cap A)$ for $A \subset \mathcal{X}$ Y(A), Y(A') for disjoint subsets of \mathcal{X} are independent \Rightarrow Y is a Poisson process $Y(A) \sim Po(\Lambda(A))$ $Y(A \cup A') = Y(A) + Y(A') \sim Po(\Lambda(A \cup A'))$ (disjoint) Example: $\mathcal{X} = \mathcal{R}$, $\Lambda(A) = \lambda \times \text{length of } A$ $Y((0, t]) \sim Po(\lambda t)$ Time T_1 to first event:

 $\operatorname{pr}(T_1 > t) = \operatorname{Po}(\lambda t)(0) = e^{-\lambda t}$ Density function: $-d/dt (e^{-\lambda t}) = \lambda e^{-\lambda t}$

590

Applications of Poisson processes

Applications of Poisson processes

Queueing theory (telephone and computer networks,...) Insurance: occurrences of car accidents Insurance: major disasters (earthquakes, hurricanes, floods) Rare events: death by horsekick in the Prussian army Rare events: Space shuttle explosions Medical/epidemiological: incidence of anencephalus Radioactive decay: No of α -particles emitted in 1 sec Genetics: Number of crossovers on chromosome 1 Warehousing: No of orders for product *X* in 1 week Counting: No. of votes for G.B. in S. Dakota

stationarity Computation Over-dispersion

Example: Ship damage incidents

Туре	Constr	Oper	Months service	Incidents	
Α	1960–64	1960–74	127	0	
А	1960–64	1975–79	63	0	
Α	1965–69	1960–74	1095	3	
Α	1965–69	1975–79	1095	4	
Α	1970–74	1960–74	1512	6	
Α	1970–74	1975–79	3353	18	
А	1975–79	1960–74	0	0*	
А	1975–79	1975–79	2244	11	
В	1960–64	1960–74	44882	39	
В	1960–64	1975–79	17176	29	
В	1965–69	1960–74	28609	58	
В	1965–69	1975–79	20370	53	
В	1970–74	1960–74	7064	12	
В	1970–74	1975–79	13099	44	
В	1975–79	1960–74	0	0*	(
В	1975–79	1975–79	7117		▶ 重
		Peter McCulla	agh Log-linear models		

stationarity Computation Over-dispersion

Statistical modelling

Response: number of incidents — suggests Poisson model each ship type with its own rate each construction period with its own rate OPEC effect for period of operation Effects on E(Y) should be multiplicative Expected value proportional to period at risk

Initial model:

 $log(E(Y)) = \beta_0 + log (aggregate months service)$

+ (effect due to ship type)

+ (effect due to year of construction)

+ (OPEC effect due to service period).

▲□▶▲□▶▲目▶▲目▶

Remarks: factors and offsets Stationarity, Independence

stationarity Computation Over-dispersion

Testing for stationarity

Extended non-stationary model:

$$\begin{split} \log(E(Y)) &= \beta_0 + \beta_1 \log (\text{aggregate months service}) \\ &+ (\text{effect due to ship type}) \\ &+ (\text{effect due to year of construction}) \\ &+ (\text{OPEC effect due to service period}). \end{split}$$

Stationarity: $\beta_1 = 1$ $\hat{\beta}_1 = 0.9$, s.e. $(\hat{\beta}_1) = 0.1$ consistent with stationarity

All subsequent work uses stationary model – why?

590

▲□▶▲□▶▲□▶▲□▶

stationarity Computation Over-dispersion

Zero values

Zero exposure/risk implies zero count

t = 0 implies y = 0 (non-informative components can be ignored)

Could have t > 0, $\mu > 0$ with $pr(y = 0) = e^{-\mu} > 0$ likelihood contribution $e^{-\mu}$

Impossible factor combinations: t = 0Possible factor combinations that do not occur: t = 0

Model specification in R:

y = y[t>0],....
glm(y~stype+cons+period, family=poisson(),
offset=log(t[t>0]))

```
stype, cons, period as factors
```


590

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ →

stationarity Computation Over-dispersion

Over-dispersion

Meaning of over-dispersion: $var(Y_i) > E(Y_i)$ Sources of over-dispersion: correlations and unmodelled inhomogeneities Modelling of over-dispersion: $var(Y_i = \sigma^2 E(Y_i))$ Effect of over-dispersion: $cov(\hat{\beta}) \simeq \sigma^2 (X'WX)^{-1}$

Detection of over-dispersion:

$$X^2 = \sum (Y_i - \hat{\mu}_i)^2 / \mu_i$$
 Pearson statistic
 $E(X^2) \simeq (n - p)\sigma^2$; approx distribution $\sigma^2 \chi^2_{n-p}$
 $s^2 = X^2 / (n - p)$ estimates σ^2
 $s^2 = 1.69$ for ship damage data

Accommodation of over-dispersion: $\operatorname{cov}(\hat{\beta}) \simeq s^2 (X' W X)^{-1}$

590

Conclusions for ship damage data

(1) Examination of interactions: Not very large

(2) Parameter estimates and s.e.s (with over-dispersion factor)

Parame	Estimate	S.E.	$\exp(\hat{eta})$				
Ship	A	0.00		1.00			
type	В	-0.54	0.23	0.58			
	С	-0.69	0.43	0.50			
	D	-0.08	0.38	0.92			
	E	0.33	0.31	1.39			
Year of	1960–64	0.00		1.00			
construction	1965–69	0.70	0.19	2.01			
	1970–74	0.82	0.22	2.27			
	1975–79	0.45	0.30	1.57			
Service	1960–74	0.00		1.00			
period	1975–79	0.38	0.15	1.46			
Post OPEC rate = $e^{0.38} \times$ rate before 1974							

うくつ

Peter McCullagh	Log-linear models
-----------------	-------------------

stationarity Computation Over-dispersion

Example with continuous response

æ

▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲