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Log-linear models

Log-linear models

Model:
Y1, ... independent Poisson variables
X; is the covariate value for unit /
E(Y;) = u(x;) is the mean for unit i
Components independent but not identically distributed
Need a model for the response function pu(x)

Constraint: u(x) >0
Standard response function: u(x) = exp(5'x)

l.e. log E(Y(u)) = 68'x(u) for unit u
not log Y(u) = 6'x(u) + ¢(u)
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Poisson process

Poisson process

What is a Poisson process?
probabilistic model for the occurrence of a series of events

Example: arrival of calls at a telephone exchange
calls arrive at constant rate A per unit time
Events in non-overlapping intervals are independent
Expected number of events in (¢, t + df) is A dt
event occurs in dt with probability A dt

pr(no event in (0, 1)) = k“m (1 — At/K)K = g

(divide interval into k equal parts of length t/k)

pr(nevents at dty,...,dt)) = XNe Mdt ---dt,
pr(nevents) = \'t"e*/nl
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Poisson process

Poisson process (contd)

What is a Poisson process?
probabilistic model for random subset Y C X
No of eventsin A: Y(A) =#(YNA)forAcC X
Y(A), Y(A') for disjoint subsets of X are independent
= Y Is a Poisson process
Y(A) ~ Po(A(A))
Y(AUA) = Y(A)+ Y(A) ~Po(AN(AU A)) (disjoint)

Example: X =R, A(A) = X\ x length of A
Y((O, t]) ~ Po(At)
Time T4 to first event:
pr(Ty > t) = Po(At)(0) = e~
Density function: —d/dt (e~ *) = Ae™
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Poisson process

Applications of Poisson processes

Applications of Poisson processes
Queueing theory (telephone and computer networks,...)
Insurance: occurrences of car accidents
Insurance: major disasters (earthquakes, hurricanes, floods)
Rare events: death by horsekick in the Prussian army
Rare events: Space shuttle explosions
Medical/epidemiological: incidence of anencephalus
Radioactive decay: No of a-particles emitted in 1 sec
Genetics: Number of crossovers on chromosome 1
Warehousing: No of orders for product X in 1 week
Counting: No. of votes for G.B. in S. Dakota
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Example 1

stationarity
Computation
Over-dispersion

Example: Ship damage incidents

Type Constr Oper Months service Incidents
A 1960-64 1960-74 127 0
A 1960-64 1975-79 63 0
A 1965-69 1960-74 1095 3
A 1965-69 1975-79 1095 4
A 1970-74 1960-74 1512 6
A 1970-74 1975-79 3353 18
A 1975-79 1960-74 0 0*
A 197579 1975-79 2244 11
B 1960-64 1960-74 44882 39
B 1960-64 1975-79 17176 29
B 1965-69 1960-74 28609 58
B 1965-69 1975-79 20370 53
B 1970-74 1960-74 7064 12
B 1970-74 1975-79 13099 44
B 1975-79 1960-74 0 0*
B 1975-79 1975-79 7117 18
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Statistical modelling

Response: number of incidents — suggests Poisson model
each ship type with its own rate
each construction period with its own rate
OPEC effect for period of operation
Effects on E(Y') should be multiplicative
Expected value proportional to period at risk

Initial model:

log(E(Y)) = /o + log (aggregate months service)
+ (effect due to ship type)
+ (effect due to year of construction)
+ (OPEC effect due to service period).

Remarks: factors and offsets
Stationarity, Independence
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Testing for stationarity

Extended non-stationary model:

log(E(Y)) = B + 31 log (aggregate months service)
+ (effect due to ship type)
+ (effect due to year of construction)
+ (OPEC effect due to service period).

Stationarity: 61 =1
B4 =0.9, s.e(81)=0.1
consistent with stationarity

All subsequent work uses stationary model — why?
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Zero values
Zero exposure/risk implies zero count
t = 0 implies y = 0 (non-informative components can be
ignored)
Could have t > 0, u > O withpr(y =0)=e* >0
likelihood contribution e #

Impossible factor combinations: t =0
Possible factor combinations that do not occur: t =0

Model specification in R:
y = y[t>0],....
glm(y~stype+cons+period, family=poisson(),
offset=log(t[t>0]))
stype, cons, period as factors
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Over-dispersion

Meaning of over-dispersion: var(Y;) > E(Y;)

Sources of over-dispersion: correlations and unmodelled
iInhomogeneities

Modelling of over-dispersion: var(Y; = 02 E(Y;)

Effect of over-dispersion: cov(3) ~ o2(X'WX)~"

Detection of over-dispersion:
X? =>"(Y; — ji)?/u; Pearson statistic
E(X?) ~ (n— p)o?; approx distribution o°x%_,
s> = X?/(n — p) estimates ¢
s? = 1.69 for ship damage data

Accommodation of over-dispersion:
cov(B3) ~ s?(X'WX)~
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Conclusions for ship damage data

(1) Examination of interactions: Not very large

(2) Parameter estimates and s.e.s (with over-dispersion factor)

Parameter Estimate S.E. exp(f)
Ship A 000 —  1.00
type B —054 023 058

C —0.69 043 0.50

D —0.08 0.38 0.92

E 0.33 0.31 1.39

Year of 1960-64 0.00 — 1.00
construction 1965-69 0.70 0.19 2.01
197074 0.82 0.22 2.27

1975-79 0.45 0.30 1.57

Service 196074 0.00 —  1.00
period 1975-79 0.38 0.15 1.46

Post OPEC rate = €938 x rate before 1974
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Example with continuous response
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