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What is Missing Data?

- Some missing data is structural:

Voting preferences of ineligible voters

Time since most recent Pap smear for males

- Consider data to be missing if a value meaningtful
for analysis is somehow hidden.




Examples

Sample surveys
Unit non-response
Item non-response
Censoring in longitudinal studies

Study termination
Drop-out

Design non-response
Subsampling difficult-to-reach respondents (American Community
Survey)

Latent variables
“Random effects to induce correlation structures

Factor analysis




What are some of the problems that missing
data cause?

m [oss of information, efficiency or power due to loss
of data.

= Complication in data handling, computation and
analysis due to irregularities in the data patterns and

nonapplicability of standard software.

m Potentially serious bias due to systematic differences
between the observed data and the unobserved data.




Notation

- Data matrix Z:(ZOZ’S,Z’""S)

- Assoclated missingness matrix R, where
R,=1ifZ,eZ™

R,=0ifZ, ez

- Assume that cases 7 are independent (may include
multiple observations on the same subject).







Missing Data Patterns

- Patterns concern the marginal distribution of R.

- Certain patterns may allow for simpler or more
direct techniques to be applied:

“Monotone” missingness patterns may allow ML estimates (under a
“missing at random” mechanism assumption) to be obtained without
resorting to data augmentation or imputation.




Missing Data Mechanisms

- Mechanisms concern the conditional distribution of
R|Z.
- Missing Completely at Random (MCAR):
P(R|Z) = P(R)

- Missingness independent of the value of the data.

- Ex: Have dataset consisting of age, gender, and blood pressure measure.
- Blood pressure measurement 1s missing due to equipment breakage.




Missing Data Mechanisms

- Mechanisms concern the conditional distribution of
R|Z.

- Missing at Random (MAR):
P(R|Z) P(R|Z)

Conditional on observed data, missingness is random.

- Ex: Men over 65 are more likely and men under 34 are less likely to
refuse to have their blood pressure taken, where a) age and gender are
observed for all subjects, and b) within the age-gender groups,
missingness is unrelated to blood pressure.




Missing Data Mechanisms

- Mechanisms concern the conditional distribution of
R|Z.

- Not Missing at Random (NMAR):
P(R|Z) depends on Z™*

Missingness depends on unobserved data elements even after
conditioning on observed data.

Ex: Within all age/gender categories, the probability of blood
pressure being refused is positively associated with subject’s blood
pressure.

NMAR parameters usually not estimable from data.




Missing at Random

Let € be the set of parameters that govern the data Z
and ¥ be the parameters that govern the
missingness indicator R. Factor the joint
distribution of the data and the missingness
indicators and note that

JS(Z,R|O,w)=f(Z]0)f(R|Z,y)
Thus
f(ZObS,R|9,W)=jf(20bsazm OV f(R|Z,Z™ ) dZ™
Under MAR:

D fRIZy)=f(RIZ™,y)
2) @and yrare distinct.

Thus (Rubin 1976)
LO.y|Z7 Ry f(RIZ™ y)f(Z™ |0)= L(O|Z™) < f(Z* | 0)
k3




Not Missing at Random

Selection model: f(Z,R|6,w)=f(Z|6)f(R|Z,yv)
Pattern-mixture model: f(Z,R|0,w)= f(Z|R,0)f(R|w)
(Little 1993)

Previous MAR model is a selection model under

f(RIZ,w)=f(R|Z"”,w) and @,y distinct. NMAR
selection models posit f(R|Z,Z™ ,w)(usually not
estimable from the data).

Pattern-mixture models can allow for (restricted)
NMAR models to be fit from observed data.




An Illustrative Example

0 if <4 year college

y, = log(income), y, = {

1 if 4+ years college

Vi |yz :INN(ﬂ1>G12) %) NBERNOULL[(p)

Assume that y, is fully observed but y, is subject to non-
response. Suppose the missing data mechanism is given

by 8'80 +Bn+5ys

P(R - O) - 1+ eﬂoﬂglyﬁﬂz)’z

Thus @ =(u,,o,,u,0.) and w=(8,,5,5,)




Complete Data

1o = log(100000) = 11.51, pq = log(25000) = 10.13,
oo = o1 = log(1.35) = 0.30, p=0.4




Missing Completely at Random

Complete

Observed




Missing at Random

Now Suppose Gy = —0.85, 51 =0, B3 = 0.85
= P(R=0|yo =0) =30%, P(R=0|ys = 1) = 50%

Complete

Observed




Not Missing at Random (Non-ignorable

missing data

Bo=-23, [Bi=2 [2=085=
P

(R =0y =0) =50.6%, P(R=0|y: = 1) = 14.5%

Complete

Observed




Strategies for Analyzing Missing Data

- Complete-Case Analysis
- Analyze as Incomplete

- Imputation/Data Augmentation




Complete-Case Analysis

-+ Often OK if fraction of missing data is small (5-
15%).
But, if item-level missingness is only a few percent for each item but

is independent across predictor variables, a large number of cases can
be discarded in a multivariate analysis.

- Can be biased if mechanism isn’t MCAR, and is
usually inefficient even if MCAR.




Analyze as Incomplete

Obtain ML estimates (usually under either MCAR
or MAR assumption).

- Development of algorithms may require certain
missingness patterns (e.g., Monotonicity).




Analyze as Incomplete

Reparameterize 9 as ¢and decompose log-likelihood
(under MAR assumption)

WG| Z)=1(H1Z7) ++1,(¢, | Z7)
where 1) @....9, are distinct

2) (9,12 ) are either log-likelihood for

complete-data or easier incomplete-data problems
(Little and Rubin 2002).

. Maximize each [(¢,|Z°"y? maximize I(#|Z"")




Analyze as Incomplete

Obtain Vaf(9 ) using inverse of information matrix
and Delta method:

Var(é) - D(é)r1 (gz\zobs )DT (é)

1

1, (¢, 127 )}




Analyze as Incomplete

Example: Multivariate normal with monotone missing
data pattern:

Y ~MVN,(u,Z)

—
?
?
?
?
?
?
YD




- Parameters of interest are 6 =(y,X) the mean and
covariance matrix for Y.

Transform to
O = (152115 Boger> Pore1s Zazeg s - o5

ﬂpOOI...p—l > ﬂpld...p—l A IBp,p—IOI...p—l ? prOl...p—l )

the mean and variance of the fully-observed ' |

the regression parameters of Y,on Yand the
residual covariance, the regression of ¥; on 1

and Y, , and so forth.




Obtain 4, ¥ for Y.

Regress ¥, onY”; where¥"” is the set of observations of ¥ where
Y.is also obsetrved to obtain Favets Paters Zaei.

Regress ¥, on YlObS:Y;b%O obtain :5)30.129 1831.129 :832-129 23312

Repeat through Y,

Back transform the regression parameters to the MVN mean and

variance parameters using the SWEEP operator (Beaton 1964,
Little and Rubin 2002).

For a p x p symmetic matrix G, k =0,..., p

hy ==1/84 hy ==1/gy
SWPkIG=H =>4 h,=h,=g,/gu, RSWIkIG=H > h, =h,=-g, /&4,
hjl:hlj:gjl_gjkgkl/gkk hﬂ:hzj:gﬂ_gjkgkl/gkk
Note that, for a 2x2 covariance matrix for ¥, and Y,, sweeping on row and column 1 yields a
matrix whose off-diagonal elements are the regression coefficient of ¥, when Y, is regressed on Y.,

and the lower-diagonal element is the residual variance.




[ g 1 "
Al 1 A12 1820-1
1 1 0
A21 Azz ﬁzm

_ﬁ2001 ﬂ2101 z2201 i

p-1
Al |

p-1
Ap1

IBpO-l...p—l




Bivariate Normal Example

Have n fully observed Y, and r fully observed ¥, and ¥,.

SV | 15 1155071, 0,,03,) =

S| 1560 f i | Yis Bogrs Borer» Oz
Davet =ty = Boradhs

B =0y, /0'121,

2 2 2 y)
0-22-1_522_0-12/511°




Bivariate Normal Example

From fully-observed data, have 4, = n_lz V., Opp = n_IZ( Vo — ).
i=1 i=1

Solving for y,, 5,,, and o,,, we have

= :ézool T :ézmlal

Gy, = ﬂA21016-121

&222 = 6222-1 + :5)221-1&121

where ,320,1 B,..., and 62, are obtained from
the complete-case regression of ¥, on V..

(Note this is what is obtained by following

the sweep algorithm on the previous page.)




Bivariate Normal Example

7 (1[11’&121 Yobs) 0

1 Z|yrobs | _
4 (¢ Y )_ 0 ]_1(1320.13 A21.136-22201 YObS)

Z(in = Baoa _ﬂ2101yi1)2

2
20—22-1

b

Since l(q; Y"b“‘) = ;

6-22201 (1 + .)_}12 /S12] ) / r _)_/] 6-22201 /(rslzl ) O

il n ma robs n/ &t 0 A n . obs . .
1 1(/11,0121 Yo ):{ 0 ! 254 /’J’ 1 l(ﬂzoalsﬂzmso-zzz-l Y ): _y16222-1 /(rslzl) 0-222-1 /(rslzl) 0
1 0 0 26';2,1/1’

wherey,, s, are based on the complete case data.

Thus

~2

~ A A = obs A A 1 p (J_; _/:\l) AD O-
\Y =D I 'd|lY™ | DT o 1 | __%np

A

sinceD(,u ): Opy, Opy, OM, Op,  Opy :(ﬁ 0,1, 0)
i Oty ’ ooy, ’ OPros , OB ’ 005, =




Bivariate Normal Example

Note that, when missingness is MCAR, (3, — 4, ) — 0 as order O(r™"), so

,\ A ,\ 1 A0 A2 A .
Var(y )z0222.1|:;+ P :|:022 |:1_p27”l 7}

n(l-p°) r n

- Thus, compared with a complete case analysis where the
variance of ¥ 1s given by o3, /r, we see the factored likelthood
method gives an estimator that 1s more efficient.

The increase in efficiency 1s a function of the correlation between
Y1 and Y2, and the fraction of data that 1s missing.




Analyze as Incomplete

- ML estimates for other types of data (categorical,
mixed categorical and normal) can be obtained as
well.

MI. estimates for more general missing data patterns
can be obtain via EM (expectation-maximization)
algorithms.




EM algorithm

The EM algorithm is a “statistical” algorithm used to
determine likelthood or posterior modes conditional on
observed data. The algorithm capitalizes on the fact
that parameter estimation would be easy if the data

were not missing.




Sketch of EM Theory

Factor the full distribution into its observed and missing
components:

f(Y|‘9):f(Yobs |‘9)f(Ymis |Yobs>‘9)
Taking the log of both sides yields

1017)=1(01, ) +1(Y, 1Yo, 0)

=1(01Y,)=10|y)-1(Y,.|Y,..0)

obs




Sketch of EM Theory

Taking expectation with respect to the missing data
otven the observed data and a current estimate of

0= 0 yields

(011,,)=0(016")-H(0]0")

where

0(016) = E(1(01 Y, Y, )Y 0
= [1(01 Yo Vi) £ (X [¥,60 ) Y, ,
H(0160V)=E(I(Y,,|Y,,.0)|Y,,.0")

:jlnf(Ymis |Y0bs>‘9)f(ymis Yobs’g(t)) Vi

J

'

S g




Sketch of EM Theory

Note that, by Jensen’s inequality,
f /
In| = |gdx<In|| = |gdx=In| fdx=Inl=
I (gjg : Iig]g I/ 10

=J.ln[§jgdx

g
:,»jln(f)gdxsjln(g)gdx

so that #(0]0")<H (6" ]6")

Choosing (#+1) to maximize Q(6| &%) will increase the log-
likelithood, since (0, )—l(@” Y, )

Q(H(Hl) | o ) _ Q(Q(t) | o ) _

.

Vo

>0

H(@(Hl) | g(t))_H(H(t) | Q(t))

'

<0




Sketch of EM Theory

Hence the EM algorithm works by:

1) Determining the expected value of the
complete-data log-likelthood conditional on the
observed data and the current value of the
parameter estimates (E-step)

2) Maximizing the parameter estimates given the
expected values of the complete data log likelihood

= expected value of the complete-data sufficient-
statistics if the distribution 1s a member of the

exponential family. (M-step)




EM example: Censoring

1 _
Suppose we have y~exp(d), f(y|4)=—-¢ "* but we only observe
the first m values of y for y<c for a known constant c:

L(4) = Hf(y |R, =1 p(R, —I)H PR, =0)

i=m+1

ﬁf(y 1y, <P, <[] PG, 20

i=m+1

-1 —y /2 . }
H (=) [T = =2, G

=l i=m+1




EM example: Censoring

Then
Ziyl. +(n—m)c

A
ol __m+zl.y,-"‘(”_m)c

[(A)=—mlog A —

oL A 22

/i=)7+(£—1jc
m




EM example: Censoring

Complete data log-likelihood: j(1) = -nlog 1 - Z y.1A

Linear in s=)_»,
i=1

E-step: E(s| Y‘)’”,/I) :Zm:yi + Zn: E(y, ly, >c) :Zm:yl. +(n—m) (c+A)

i=m+1 i
memoryless

property
of the exp.

A = E(s | Y, A)=n" {Z y, +(n—m)(c+ ﬁ(t))} =
i=1

+(1—ﬁj(c+i):>i=y+(£—ljc

n m

M-step:




Non-monotonic bivariate normal

Example: Multivariate normal with non-
monotone missing data pattern:

Y ~MVN,(u,Z)




EM for non-monotonic bivariate normal

The "complete data" log-likelihood is given by
(1,2)=-n/2log(2x |Z)=1/2(y— 1) 7' (y = )

=—n/2log(27)—n/2In(c’ 02, —c2)—

2 2 2 2 2 2 2 2
|:011S22 =208, + 03,8, + 200,44 = 011 1,)8, + 20, 1y — O 14y)S, + 11y 01, =20, 4 1, + 14 O-zz)]

2 2 2
2(0110-22 _ 0-12)

which is clearly linear in the statistics s; = Z Vis Sy = Z ViYu Jok=12.
i=1 i=1




EM for non-monotonic bivariate normal

Assume WLOG that the first / observations are fully observed,

observations / +1,...,m are missing for Y2, and observations m +1,..., n are missing for Y1.

ThenE(S1|Y0bs) Zyzl_l_z yll E(S2|Y0bs) Zy12+zy12+zylz

i=m+l i=m+1 i=l+1

E(s, | Y") = Zy,ﬁZyll E(sy, | Y™) = Zy,ﬁz yﬂZylz

i=m+1 i=m+1 i=l+1

E(s, | Y") = Zy,lylz +Z VoD + Z PaVio

i=l+1 i=m+1




EM for non-monotonic bivariate normal

where j>il =LV | Yigs 152) = Biows + PrieaVins j>i2 =E; | Yis 1452) = By + Bt Vi
EDi | Yoot D) =V (i | Yigo i 2)+ E* (D | Y120 1, 2) = Oy + V1
and similarly 3, = o,,, + 7,

for

0_12

1810-2 =4 — o 1811-2 ’ (711-2 = 0, (1 0-12 /0-1 O-z)
22

O
1820-1 =H, — o 1821-1 ia 022-1 =0, (1 012 /01 02)
1




EM for non-monotonic bivariate normal

E-step: 5, = Zm £ 0 s = Zy,z £yt 5

i=m+1 i=m+1 i=l+1

(t+1) __ ~2(t+1) (t+1) __ 2 (t+1)
S11 Zyn"'z Yio s S Z)’;z"'z y12+zy

i=m+1 i=m+1 i=l+1

(t+1) (z+1) ~(t£])
Zyzlyz2+zyzly12 +Zy11 i2

i=[+1 i=m+1

where expectations are computed using current estimate ¢, 2.

M-step: lu(tH) _S1t+1) /n, ,[ISH) _ S2t+1) In

A2 (141) A (t+1) A2 (14]) ~ (1) A (14) A (t+1) A (t+])
o, =8 /n- [lul ]» 9y T /n_|:/u2 ]a G, =8, In—p ",




Imputation/Data Augmentation

- If proper, a general solution of MCAR, MAR, and
NMAR missingness mechanisms.

- Allows more readily for Bayesian approaches to be
developed/incorporated.

- Implementations tend to be parametric and model-

based.




Basic Principles of Imputation

Condition on observed variables.

Especially if predictive.

Even if not in the primary analyses of interest.
Impute jointly so as to preserve correlation
structures in the data.

Impute draws from the predictive distributions, not
means.

Impute multiply to allow assessment of imputation
variance.

(Little 1988)




Improper Imputation

“The idea of imputation is both seductive and dangerous. Itis
seductive because it can lull the user into the pleasurable state of
believing that the data are complete after all, and it is dangerous
because it lumps together situations where the problem is
sufficiently minor that it can be legitimately handled in this way
and the situations where standard estimators applied to the real
and imputed data have substantial biases.”

Dempster and Rubin (Incomplete Data

in Sample Surveys, volume 2, 1983)

Unconditional mean imputation
Conditional mean imputation
Hot Deck imputation




Unconditional mean imputation

- Impute 2" from Z'”, the available case mean.

Introduces bias in estimates of mean unless mechanism is MCAR.

Underestimates (cov)vatiance by (n(jk) _ 1) / )

where 5, (/01s the sample size of the available cases common to Z]

and Z,.

Can introduce correction factors for covariance, but MCAR
requirement often not met.




Conditional mean imputation

Assume Y ~MVN,(u,2) and compute estimates of
# and ¥ from the complete cases.
Use estimates to impute Z™ from Z”

Mean estimates are unbiased under MAR
mechanism.

Variance of Zstill underestimated by

(n'" 1)o7}, [(n—1)

Other problems: e.g., imputing conditional means
tends to underestimate tail distributions.

But if missing data proportion 1s small, an easy way
to correct for bias.




Hot deck imputation

b . ;
Use Z” as a “donot” to impute Z;".

Preserves distributional structure (marginal and
joint) of the data.

Unbiased under MCAR

MAR mechanism can be approximated by forming homogeneous
adjustment cells (i.e., MCAR mechanism within adjustment cell) and
carrying out imputations within cells, or by defining distance measure
metric and imputing from “nearest neighbors”.

Still need to account for imputation in inference.

Multiple imputation can account for the uncertainty in the imputed
values by imputing more than once.




Multiple Imputation

- Multiple imputation uses repeated imputations
under a stochastic model to induce correct
inference. More formally:

f(l9 70bs ) _ :f(@ 70bs ,Zmis )f(Zmis 70bs )dZmis

whete f (Z "z "bS) is a posterior predictive
distribution under an MAR selection model.

(Rubin 1987, Schater 1997).




Multiple Imputation: General algorithm

Let 0 be a parameter (or function of parameters) of
interest under the complete-data model, estimated

by a statistic O(Z).

; ; 5 i o mis obs
Obtain 7 imputations Z(})',...Z\» from (Z 4 )

Multiple-imputation point estimate of 0 is

N

o=m">0(z" 21"
t=1




Multiple Imputation: General algorithm

. If @ is scalar, asymptotic variance of ¢ is estimated
by the sum of the within-imputation and between-
imputation variance

T=U+(1+m")B

where

U=m"> Vir(d,,)
t=1

m

B=(m-1">.(0-6,)

i=1

Inference based on 7'*(0-0)" ~¢ where

U 2
V—(m—1)|:1+ (1+m1)B}




Missing Information

- The fraction of missing information about @ relative
to the complete data model is given by

3 (r+2)/(v+3)
N r+1

A

U

. (1+m™")B
variance due to non-response.

where ¥ = 1s the relative increase in




Number of Imputations

- Often, 7 can be small (usually 3-10) to obtain stable
inference about 6.

- Relative efficiency of a point estimate based on 7

imputations is given by (1+4/m)" If A=.5and
m=5, RE=0.95.




Heuristic Bayesian Justification

E|6|2° |=E,. .| E[6|Z]|z"

Var[0|Z]|z*" |+ Var,,. .| E[0]Z]|Zz*"

Zmis ’ZObS

Var[é? ZObS] =F

Zmis ‘ Zobs

- Adjust for finite 7 using # distribution and
Satterwaite approximation.

- Rubin (1987) shows that these results approximate
the observed-data postetior for 6 based on 7
imputations.




Multiple Imputation: Multivariate parameters

Alternative reference distribution for k-component
6. (Li, Raghunathan, and Rubin 1991; Schafer 1997,
p.112-114)

Let @ and U be the multivariate analogs of the
univariate case, and let

B=(m- 1)_1 Z(é - é(t) )(é 4 é(t))T
i=1

More stable estimate of variance is given by
T=1+m)U, r=(1+m")w(BU)/k

and D, =(0-6,)'T"(0-6,)/k has an F,, distribution
under H,:0=0,, where
v =4+(-DH1+A-2cr"', t=k(m-1).




Gibbs sampling

- Obtain draws from posterior distribution of &|data
for g — (‘91,--»62 )Tby initializing @t ¢ drawing
6" from 6" ‘92(0),...,9;(’),data, 6y from
0 ‘91(”,...,9;0),data , and so forth. As T — oo,

6" ~6,...,0, |data. (Gelfand and Smith 1990;
Gelman and Rubin 1992)

- Data augmentation in a Bayesian framework is
simple in principle: obtain a draw of z*|9,z*"

then of 8|2°" , 7.




Gibbs sampling

- Obvious extension when utilizing Gibbs sampler.

0" |6s”,....6."  data, 2"

1 1 1
o’6",....00

data. Z™©®
9

q-1°

Zms(©) \9“) Jdata, Z"5©, ..., Z"©

75O \em ,data, Z"®, ..., Z"O




Convergence, autocorrelation.

How large does T have to be to truly obtain draws
from the posterior (convergence)?

Monitor by starting chains from widely separated
areas in the parameter space and see if converge
(ratio of between-to-within chain variance = 0).

Generally ratio of the square root of the total variance to
the within-chain variance < 1.1 is sufficient.
If draws have high autocorrelation, T'may need to
be in the thousands to obtain convergence.

Need imputations to be independent

Use widely separated draws from a single chain.
Use draws from independent chains.




Multivariate normal

- MV normal with non-monotonic missing data:
Y ~MVN,(1,%)

?
?
?
?
?
?
?
YD

- Assume a non-informative priof:
p(p,Z) o X[




2.
3.

Multivariate normal

Initialize by imputing missing elements via
conditional imputation and 1initialize Hoby a
draw from N,(¥,,C), where Cis the sample
covariance matrix from ¥, =", Yg)’)

Draw

3 () ‘ 13O ~ Iny— Wishart _(S), S = Z( yim) — y© )( yl_<0> — y©

Draw 4|2, ~ N, .2 /n)

Draw
mis (1) | (1) (1) ,(0) (0) (1)
yil ‘,Ll 92 9yz'2 "“’yip =~ N( 10.rest + ll.restyZ,...,p7O-1.rest)

(1) (0) 2(1)

@ M (1) 1)
10.rest lul _IBII.restIUZ,...,p

|
O SI0)) (D
Il.rest ~— 21,2,---,1? [227---717:2:---:1’:'

1
2() _ 2(D (1) (1) (1)
Olrest =011 — Z1,2,...,p [22,...,p,2,...,p] Z2,...,p,1



Multivariate normal

mis (1) mis (1)

Repeat 3. for », ...,

Cycle through 1.-4.; imputations are taken after
convergence and spaced far enough apart to
eliminate correlation.

Algorithms have been developed for a variety of
data models, including multinomial and mixed
normal and multinomial (“general location”

model).




NMAR Multiple Imputation

- MAR selection model can be extended to NMAR

selection model.

Raghunathan and Siscovick (1996) consider whether the risk of
sudden cardiac death is related to the use of thiazide diuretics using a
case control study, adjusting for a number of potential medical
confounders and smoking status.

Use multiple imputation to impute missing covariates.

Conduct sensitivity analysis with respect to smoking status (17%
missing) using non-ignorable imputation model that assumes
smokers are more likely to have known smoking status than non-
smokers.

Impute smoking with probability 0@, where ¢ 1s the probability
under ignorability and 0 < 0 <1 .




Sequential Imputation

- In practice, some datasets (e.g., health surveys) may
have dozens or even hundreds of variables with
missing data.

Complex missing data patterns: missing data may be structural (years
of smoking for non-smokers) or truly missing (years of smoking for
smokers).

Many different types of variables (continuous, categorical, count).

- Raghunathan et al. (2001) proposed sequential imputation as
a way to deal with these situations.




Sequential Imputation

Sequential imputation proceeds by ordering variables

¥,,....Y, in order of their fraction of missingness (lowest to
highest). (Let X denote the set of variables that have no
missing values.)

Begin by filling in the missing data using some reasonable
imputation technique (e.g., impute missing Y, conditional
on X and parameters 0; estimated from the complete-case
data, impute missing Y conditional on X, Y, and

parameters 6, estlmated from the complete-case data, etc.)




Sequential Imputation

Rather than drawing from the posterior distribution of 6
(conditional on Y°, Y™ and X)), and then imputing Y™
conditional on Y°>, X, and 0, we draw from the postetior
distribution of 0, given Y, Y™ and X , then impute Y™
given 0, and Y°bs, Y™, X, draw from the posterior
distribution of 0, given Y°, Y™ and X, then impute Y,™s
given 0, Yobs Ymis X “and so forth.

Could possible fail to preserve the joint distribution of the
elements of Y because the conditional densities from which
the draws are obtained are not compatible with any
multivariate distribution of Y | X.

In practice this does not appear to be a major issue.




Sequential Imputation

Example: Cigarette use.

Some subjects are missing smoking status (current smoker,
past smoker, never smoker), and thus have no data entered
on number of cigarettes currently smoked. Other subjects
are known to be current smokers but have missing data on
number of cigarettes smoked per day.

Impute smoking status, and for those imputed to be current
smokers as well as those known to be current smokers but
whose daily cigarette use 1s missing, impute daily cigarette
use.



Sequential Imputation

Let Y, represent smoking status.
Y, ~ MULTI(, 7,7, 75); log(m,/m)=X,B;, j=1.2,m,=(1+ > exp(X,3,))"

Regress Y,°" and the most recent imputation of Y™ on X to

obtain the MLLE of f=B, and the associated covariance matrix
\%

Compute B'=B+Tz, where T'T=V and z~N(0,]).

Compute B, = exp(X, ;) /(1+ Z exp(X,5)), j=12,and P,=1-) R

For all missing elements, let R, =0,R, =P,,R, =P, +P,,R,=1. Draw u, ~UNI

|

Impute ¥, =j where R, , | <u, <R,

[0,1].




Sequential Imputation

Let Y, represent cigarettes use among current smokers.

Y, ~POI(); log(4)=X,p

Regress Y,°P and the most recent imputation of Y,™$ on X and
Y,°b )Y, ™S to obtain the MLLE of B=B, and the associated
covariance matrix V.

Compute B'=B+Tz, where T'T=V and z~N(0,]).
Compute 4 = exp(X,[3,)

For all missing elements, generate Y., ~POI(1).




Congeniality

m What happens is the imputer and analyst are
different, or, more precisely, if the imputation model
and the analytic model do not correspond?

m This situation was addressed in Meng (Statistical
Science 1994), who coined the term
“uncongeniality” to describe this situation.




Congeniality

® When the imputation is made under the correct
model, inferences under an incorrect model will
tend to be conservative.

m When the imputation model itself 1s incorrect,
inferences may be conservative or anticonservative,

depending on the nature of the model failure.




Congeniality

Ex: X tully observed, Y partially observed, where
X ~UNI(0,b)
Y=e¢"+&, &~N(0,1)
Can show that
Cov(X,Y) 12]€(b-2)+b+2]
 Var(X) 2b°

As b-> 0, linear approximation improves; as b ->00, linear approximation fails.

Assume an MAR missingness mechanism for Y given by .

|
P(y observed | x) =——
x+1

Probability of response ~80% for b=.5, declining to 55% for b=2




Congeniality

B Imputation under correct model
X ~UNI(0,b)
Y=e"+g, &~N(0,1)

® Analysis under linear model
Y=a+ X +¢
iid

g~N(0,0%)

® Uncongenial, but imputation model correct




Congeniality

m 100 simulations of samples of size 100 under
different values of 4

Coverage of
Nominal

90% CI

96
96

98
98




Congeniality

®m Imputation and analysis under (incorrect) linear
model

m 100 simulations of samples of size under different
values of £

ﬁ Coverage of
True B Nominal
90% CI

1.29 92
1.69 o4
2.24 86

5.00 78




Congeniality

Because missing data is very common in population
surveys, uncongeniality is often an issue:

Imputation is made under Bayesian models that do
not easily accommodate complex sample design
considerations.

Complete data analysis can then employ techniques
(inearization, replication methods) that account for
the complex sample design (clustering, unequal
probability of selection) in the analysis.

®m An open area for research.




Multiple Imputation with Hot Deck

® Rubin and Schenker (1986) suggest using a
Bayvesian bootstrap technique to obtain a proper
imputation procedure in a hot-deck setting

® Suppose each element in the population takes one of

the values d,...,d with probability g,.,...,0,
m If an improper prior of the form p(@)=]],6;"

is used, then
p@|y)= Hkﬁ,f"_l where

n, = number of times an observation y takes on the value g,

which 1s a Dirichlet distribution with parameters »,




Multiple Imputation with Hot Deck

Draw g*from the posterior distribution of 4,...,6,,

then draw Y™ from Y** with probability 9" .

Standard hot deck imputation (sampling each
unique value with replacement with probability g, jn

does not account for the uncertainty in the empirical
distribution function.

Can extend by stratifying by adjustment cells.

Complex sample design? Stratification, clustering,
unequal probability of selection.




An Example of MI in Practice:
Multiple Imputation in the Presence of Outliers
(Elliott and Stettler 2006)

m To ascertain the prevalence of pediatric obesity in medically
underserved areas, the Healthy For Life Survey obtained data
from a probablhty sample of chﬂdren using Health Resource
and Service Administration (HSRA) supported Community

Health Centers at least once during Calendar year 2001
(Stettler et al. 2005).

Compute body-mass index (BMI) and Box-Cox transform as
a function of age and gender; if BMI " "z-score" exceeds 95th
percentile of reference population, child is classified as obese.




An Example of EM in Practice:
Multiple Imputation in the Presence of Outliers

m Abstract height and weight during last visit to the health
clinic in 2001.

® One-fourth of height data missing.

m Height measured only sporadically; less likely to be observed among
older children and children seen more frequently at the clinic.

m Use multiple imputation to reduce bias and inefficiency
associated with a complete-case analysis.

= Potentially problematic: data overdispersed and included incorrectly
recorded or abstracted elements.

= Failure to account for abstraction errors may cause insufficient

standardization between centers to be interpreted as unequal risk for
pediatric obesity.




An Example of EM in Practice:
Multiple Imputation in the Presence of Outliers

m Standardization in multi-center studies is expensive; propose
analytic alternative to outlier correction when extensive
training impossible.

Treat outliers as belonging to an unknown “latent class™ of high-
variance subject

Impute latent class along with height data

Drop “outlier” class before complete-data analysis

Can extend “latent variance class’ to account for overdispersion n

height/weight data

Allows for uncertainty in whether or not a subject is an outlier to be
carried through the inference.




Accounting for the Complex Sample Design

® Include design variables in mean model

= Consider association between posterior distribution of
latent class membership and probability of selection

m Use standard design-based analyses at the complete-data
stage of analysis to further enhance robustness.

® Use of MI to compute obesity estimates relies more
heavily on the empirical distribution of the data than a
fully model-based approach.




“Complete Data” mixture model

Zi| Cy =k ~ Ngilppy, Ty
Cy ~MULTIH 1, py,....pxc)
where Z; is a g-dimensional outcome of interest, uy; = .3‘"1 i
i=1,....8,| By |< - <| Zg |.

s Nean of each subject depends on p covariates x;, and a
covariance given by his or her latent variance class membership
given by Cy.

o Class K is the “clerical error” class with the largest variability.

Azsume that responses with clerical errors have the same

mean but larger variability than other responses.




“Complete Data” mixture model: priotrs

pi3) ~ N0, V;)
plEg) ~INV —WISHART(2,5,), k=1,... K
i, .., pr) ~ DIRTCHLET(1,...,1)




Missing Data

*C. are missing for all subjects

* Allow some components of Z. to be missing under missing
at random (MAR) assumption (Rubin 1978): conditional on
the observed elements of Z., the missingness status of the
clements of Z. is unrelated to their value.




Model Estimation

Gibbs sampler data augmentation algorithm (impute

missing elements of Z, and the completely unobserved C, at

each step of the algorithm).




Multiple Imputation

Take m independent draws of Z““""F given by replacing the missing
elements of Z with their imputed values, analyze using standard

complete data procedures, and combine (Rubin 1987):

T

Q=m'Y Q7).

t=1

where

I}_?lfﬂ(ﬂ? - Q) .y trs




Multiple Imputation

U+ (1+m B

m
_m._l Zi;};’i_ (Q (Zr.c}mp{f}))
t=1

m

(m—1)~" Z[Q —Q (Zf-‘-ﬂ”w{t)) )Q

t=1

N U ’
(m —1) [1 T —I—-m.—l)B}

Delete subjects assigned to the Kth latent class when computing

(2( Zn:“.mnp (t) ) ‘




Application to the Healthy for Life Project

*Probability sample of children aged 2-11 served at one
of 141 HRSA-supported Community Health Centers in
the eastern United States and Puerto Rico during
calendar year 2001.

*Stratified sample of 30 centers, with second-stage
sample of approximately 100 children/center stratified

by age (2-5 vs. 6-11).

*Inverse probability-of-selection case weights were post-
stratified to known age group-region (US mainland
urban, suburban, and rural, Puerto Rico (PR) urban and
non-urban, and New York City Chinatown) totals.




Application to the Healthy for Life Project

*Dropped 373 cases because of unknown age, gender, or
both height and weight information; additional 3 cases
dropped because of unknown weight information (to
simplity analysis). 2,474 cases remained, of which 606
were missing height data.

*Improve normality approximation via " z-score" or
Box-Cox transformation (Weiss et al. 2004)




Modeling Healthy for Life Project

x; consists of age group-by-center dummy variables, to
accommodate within-center correlation systematic association

between BMI and the probability of selection.
Restrict pp, = /22— =pfor k=1

11k T22k

Assume
Vs = 100015

p(log ;i) ™ N(0,4) j =1,2,k =1,
p(p) ~U(=1,1)

Sk = 5l




Choosing the number of classes

e Both AIC and BIC suggest that the 3-class model provides the best fit to

the data.




Imputation 1 Imputation 2

Imputation 4
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Effect of Outliers

It height data is missing and an older child incorrectly noted
as younger, the resulting weight z-score would be extremely

large, likely yielding a large BMI after height imputation, and
potentially classifying a non-obese child as obese; the reverse
is true 1f a younger child is incorrectly noted as older.

Since children are more likely than not to be non-obese, the
net effect of age transcription errors should be to inflate
obesity rates among younger children, and deflate to a much
lesser degree obesity rates among older children.

Analysis of 2.5% and 97.5% quantiles suggested that younger
children tended to have large BMI outliers and older children
tended to have small BMI outliers, consistent with clerical
Errors in age.

Overall impact modest.




Software

Horton and Lipsitz (2001) provide an overview of currently
available software for multiple imputation.
SOLAS 3.0 (http://www.statsol.ie/solas/solas.htm)

Generally designed for regression models

Utilizes both predictive distribution and predictive mean matching to obtain
imputations, a “hot-deck”-like MI procedure (Rubin 1987).

Earlier versions did not presetrve correlation structure.

SAS V 9.1

PROC ML.

Easy to combine results.

Little control over model; generally requires MVN assumption.
Joe Schafer’s free software for multiple imputation

(http:/ /www.stat.psu.edu/ ~jls/misoftwa.html#top)
Multivariate normal

Categorical

Mixed normal and categorical (general location)
Clustered multivariate normal.
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