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Statistical problems involving high-dimensional data

vectors

Multiple hypothesis testing problems not infrequently take the form:

We have a vector X = (X1, . . . ,Xp) of test statistics, of which the ith

permits us to test the hypothesis H0i that the mean, µi, of a population

equals zero, against the alternative H1i that µi > 0, or H2i that µi �= 0.

Classification problems can take the form:

Given vectors Xi = (Xi1, . . . ,Xip), for 1 ≤ i ≤ m, and

Yj = (Yj1, . . . , Yjp), for 1 ≤ j ≤ n, from populations ΠX and ΠY ,

respectively, construct a classifier that assigns a new data vector Z to either

ΠX or ΠY .

Some problems of signal detection are similar.



Questions we would like to answer

How does dependence among X1, . . . ,Xp affect the level accuracy and

power of simultaneous hypothesis tests?

In particular, if the dependence is short range, how does it impact on the

performance of classifiers or methods for signal detection? What if the

dependence is long range?

We shall discuss theoretical models that enable us to answer these

questions.

Our focus will be on multiple hypothesis testing, but similar models can be

used to respond to the same questions in the contexts of classification and

signal detection.



Models for high-dimensional data vectors

Generally, different data vectors can fairly be assumed to be independent,

but of course their components cannot.

Therefore we wish to model the strength of dependence among vector

components.

We shall use simple time-series models, noting that more complex models

often lead to similar conclusions.



Linear models

Arguably, the simplest models are linear in structure although

nonparametric in character; we do not make parametric assumptions about

the distribution of the disturbances.

For example, considering the components Xi of a single data vector

X = (X1, . . . ,Xp), we may write

Xi =
∑

k

θk εi+k ,

where the θk’s are constants and the random variables εi, for

−∞ < i < ∞, are independent and identically distributed.



Linear models (cont.)

A linear model for Xi is often appropriate when testing hypotheses about

a mean, in cases where the variance is known. More generally, “toy”

linear models provide insight into more sophisticated settings where the

actual test statistic is relatively complex.

In many of these more complex cases the main conclusions are identical to

those under the simple linear model.

For example, this is typically the case when the test statistic is of Student’s

t type, in particular when it incorporates an empirical scale correction.



Nonlinear, inhomogeneous models

Moreover, it is often straightforward to remove both homogeneity and

linearity, for example:

Xi = ri

∑
k

θk εsi

i+k ,

where the εi’s are now assumed to be nonnegative, and the constants ri and

si are also nonnegative.

All the results that we shall discuss have analogues in this setting.



Multiple hypothesis testing: mechanism

Suppose we conduct p tests, based on the respective values of X1, . . . ,Xp.

Here, Xi represents a test statistic computed from the ith of a sequence of

samples.

In particular, for 1 ≤ i ≤ p we reject the ith null hypothesis, H0i : µi = 0,

if Xi > t, say. If Xi ≤ t then we do not reject H0i.



Multiple hypothesis testing: literature

The literature on multiple testing procedures is vast, and only a part of it is

confined to statistics journals. Review-type contributions include those of

Hochberg and Tamhane (1987), Pigeot (2000), Dudoit, Shaffer and

Boldrick (2003), Bernhard, Klein and Hommel (2004) and Lehmann and

Romano (2005, Chap. 9).

Benjamini and Hochberg (1995) introduced an approach, which has

become very popular, to controlling false discovery rate. See also Simes

(1986), Hommell (1988), Hochberg (1988), Sarkar (1998) and Sen (1999).



Multiple hypothesis testing: literature (cont.)

Benjamini and Yekuteli (2001) specified conditions under which

simultaneous, dependent hypothesis tests, conducted as though they were

independent, give conservative results. Efron (2007) suggested correlation

corrections for large-scale simultaneous hypothesis testing.

Blair, Troendle and Beck (1996) proposed methods for controlling

family-wise error rates in multiple procedures, and Holland and Cheung

(2002) discussed robustness of family-wise error rate.



Multiple hypothesis testing: family-wise error rate

Let N , a random variable, denote the number of rejected hypotheses:

N =

p∑
i=1

I(Xi > t) . (1)

If each of H01, . . . ,H0p is correct, and if we view the sequence of p tests as

a test of the “simultaneous hypothesis” H0 that each of the component

hypotheses H0i is true, then the significance level of the simultaneous test

equals the probability that N ≥ 1.

This is the family-wise error rate (FWER) of the procedure. The

generalised family-wise error rate (GFWER) is the probability P0(N ≥ k)

of at least k false discoveries.



Multiple hypothesis testing: formula for error rate

(cont.)

For example, if 0 < α < 1 and we define β = − log(1 − α); if we choose

t, in (1), to satisfy

P0(X > t) =
β

p
+ o

(
p−1

)
; (2)

and if

the test statistics Xi are independent and identically distributed as X;

then the generalised family-wise error rate (GFWER) converges in

Poisson fashion:

P0(N ≥ k) →

∞∑
j=k

βj

j!
e−β .



Multiple hypothesis testing: formula for error rate

(cont.)

In particular, if β = − log(1 − α) then the family-wise error rate converges

to α as p increases: P0(N ≥ 1) → α.

Here and in (2), P0 denotes probability computed under H0.

For the sake of simplicity we shall retain the assumption that, under the null

hypothesis, the test statistics Xi are (asymptotically) identically distributed,

and discuss the effect that lack of independence has on the FWER.

Subsequently we shall address the effects on false discovery rate (FDR);

the impact there is very similar to the effects on FWER.



Multiple hypothesis testing: formula for error rate

(cont.)

The case of non-identical null distributions of the test statistics can also be

treated. It differs from the identical-distribution context principally in

terms of complexity.



Main conclusions

1. Light-tailed test statistic distributions.

If the test statistic distribution is light tailed, decreasing like exp(−xγ)

where γ ≥ 1, then the difficulties caused by dependence decrease as p, the

number of simultaneous tests, increases.

In particular, the number of clusters of false discoveries declines, and the

distribution of critical-point exceedences closely resembles its counterpart

for independent data.

In this setting, methods that would normally be recommended only for

independent data can give very good control of family-wise error rate and

false-discovery rate.



Main conclusions (cont.)

2. Heavy-tailed test statistic distributions.

Only for relatively heavy-tailed data, where the tail of the marginal

distribution decreases more slowly than e−x, is this property violated.

In such cases, clusters of exceedences can occur, and methods based on the

assumption that test statistics are independent are not adequate for

controlling error rates.

The difficulty can be overcome by employing conservative methods

(e.g. based on Bonferroni bounds) or by modelling the distributions of

clusters.



Intuitive arguments

1. Light-tailed test statistic distributions.

In the case of light-tailed marginal distributions, exceedences above a high

level (appropriate when the number of simultaneous tests, p, is very large)

occur only because neighbouring disturbances εi are fortuitously aligned.

Indeed, since the tail is so light then it is highly unlikely that a single

disturbance is so great as to carry the process,

Xi =
∑

k

θk εi+k

close to, or over, the level for several different, neighbouring values of i.

Instead different, moderately large disturbances reinforce one another, by

chance, at a particular i.



Intuitive arguments (cont.)

1. Light-tailed test statistic distributions. (cont.)

However, at adjacent indices i the circumstances that led to alignment

change, and the propensity for level exceedence quickly diminishes or even

disappears.

Consequently, clusters of exceedences seldom arise. That is, the pattern of

exceedences appears as though it was produced by a sequence of

independent tests, and as a result, both generalised family-wise error rate,

and false-discovery rate, can be controlled by appealling to standard

arguments for independent tests.



Intuitive arguments (cont.)

2. Heavy-tailed test statistic distributions.

When test statistics have relatively heavy-tailed distributions, the

probability that a single disturbance is so great that it carries the value of a

test statistic over a high level, not just for one but for several consecutive

indices i, is relatively high.

In such cases clusters of exceedences can occur, and methods based on

independent data are not adequate for controlling error rates.



Intuitive arguments (cont.)

3. Small numbers of simultaneous tests.

The arguments and properties above, especially those in the light-tailed

setting, are applicable only to exceedences of very high levels.

Very high levels are relevant only when the number of simultaneous tests is

particularly large. Therefore the properties discussed above tend not to

be noticed in conventional multiple testing problems, where the number of

tests is relatively small.



Theoretical results: Assumptions

Assume that the test statistics Xi are generated as,

Xi =
∑

k

θk εi+k ,

where the εi’s are independent and identically distributed. Suppose too that,

θk ≥ 0 for each k, θk = 0 for all but a finite number of values of k,
and θk �= 0 for some k.

The constraint that θk ≥ 0 is imposed here only to remove the need to

impose conditions on the lower tail of the common distribution of the

errors εi. It does not materially influence the results.

Given β > 0, let t = t(p, β) be such that

P0(X > t) =
β

p
+ o

(
p−1

)
.



Theoretical results: Assumptions (cont.)

We consider first the case where the upper tail of the marginal distribution

of ε is light, and in particular decreases like exp(−xγ) for some γ ≥ 1.

Specifically, we assume that the density f of the distribution of ε satisfies,

as x → ∞, either

f(x) = exp
{
o
(
xγ

)}
exp

(
− C xγ

)
,

where γ > 1; or, in the case γ = 1,

f(x) ∼ C1 xC2 exp(−C x) ,

for constants C,C1 > 0 and C2 ≥ 0.



Theoretical results (1): Light-tailed test statistic dis-

tributions

Let 1 ≤ I1 ≤ I2 ≤ . . . denote the indices i for which Xi > t.

Theorem. Under the above conditions, and for each C > 0, the point

process I1 p−1, I2 p−1, . . ., restricted to the interval [0, C], converges

weakly, as p → ∞, to a homogeneous Poisson process on [0, C], with

intensity β.



Implications of theorem for GFWER

Recall that the generalised family-wise error rate (GFWER) is given by

P0(N ≥ k), where

N =
∑p

i=1 I(Xi > t)

is the number of false discoveries; and that, under the assumption that the

hypothesis tests are independent,

P0(N ≥ k) →

∞∑
j=k

βj

j!
e−β , (3)

where P0 denotes probability computed under the null hypothesis.

It follows from the theorem that, provided γ ≥ 1 and the upper tail of the

marginal distribution decays like exp(−xγ) where γ ≥ 1, result (3) does

not require independence; it also holds under dependence.



False discovery rate (FDR)

The false-discovery rate approach (e.g. Benjamini and Hochberg, 1995)

involves a step-down procedure but can be framed in a similar way to

GFWER.

In particular, for i ≥ 1 let t1 > t2 > . . . denote a sequence depending on p

and with the property that

P0(X > ti) =
iβ

p
+ o

(
p−1

)
.

(Thus, the t defined earlier is here denoted by t1.)

Write Ni for the number of values Xi that lie in the interval (ti, ti−1],

where we take t0 = ∞.



False discovery rate (cont. 1)

The event that the step-down method of Benjamini and Hochberg (1995)

does not reject any of the hypotheses H0i, for 1 ≤ i ≤ k, is equivalent to

the event that, for each i in the latter range, Xi = X(p−j+1) ≤ tj , where

X(1) ≤ . . . ≤ X(p) represent the order statistics of the sequence

X1, . . . ,Xp.

For example, if k denotes the largest j for which X(p−j) ≤ tj−1, then H0i

is rejected for each i such that Xi = X(p−j+1), where 1 ≤ j ≤ k.



False discovery rate (cont. 2)

Therefore, to describe properties of the false-discovery rate approach, we

need to understand not just the distribution of N but more generally the

distribution of

N (k) =

p∑
i=1

I(Xi > tk) .

Note that N (k) = N1 + . . . + Nk, where

Ni =

p∑
j=1

I(ti ≤ Xj < ti−1) .



False discovery rate (cont. 3)

Under the assumption that the hypothesis tests are conducted

independently the variables N1, . . . , Nk are asymptotically independent

and Poisson-distributed with mean β.



False discovery rate (cont. 4)

Therefore, the probability that the null hypotheses corresponding to the k

largest values of Xi are all rejected under the FDR approach, when they are

in fact all correct, is given by,

P0

(
N (i) ≥ i for 1 ≤ i ≤ k

)

→ P
(
Q1 + . . . + Qi ≥ i for 1 ≤ i ≤ k

)
,

where Q1, . . . , Qk are independent and identically Poisson-distributed with

mean β.

(The probability on the right-hand side here is dominated by β, for each

k ≥ 1, although this is useful only if β < 1.)



False discovery rate (cont. 5)

From the previous transparency: Under the assumption that the hypothesis

tests are conducted independently,

P0

(
N (i) ≥ i for 1 ≤ i ≤ k

)

→ P
(
Q1 + . . . + Qi ≥ i for 1 ≤ i ≤ k

)
.

The theorem, valid for light-tailed marginal distributions, implies that this

result continues to hold under weak dependence.



Heavy-tailed marginals

We continue to assume that the test statistics Xi are generated as,

Xi =
∑

k

θk εi+k ,

where the θk’s are nonnegative and the εi’s are independent and identically

distributed.

If the tails of the distribution of ε decay like exp(−xγ) for some γ < 1, or

if they decay at a polynomial rate, then clustering of false discoveries can

occur.



Heavy-tailed marginals (cont. 1)

1. Heavy, but nevertheless exponential, tails

If the density f of the distribution of ε satisfies, as x → ∞,

f(x) ∼ C1 xC2 exp (−C xγ) ,

for constants γ < 1, C,C1 > 0 and C2 ≥ 0, then asymptotic clustering of

false discoveries occurs only if there is a tie for the largest value of θk; not

otherwise.



Heavy-tailed marginals (cont. 2)

To provide intuition we treat the case where θ1 = . . . = θr and each other

θk vanishes.

In this setting, having ε1 + . . . + εr > x implies that, with high probability,

one of the values of ε1, . . . , εr is very close to x, or greater than x, and the

other values are all significantly smaller than x. (Here and below we

assume that x is large.)

That is, just one of the εi’s is responsible for the level exceedence, and its

influence can persist, through weights in the moving average, to ensure that

εj+1 + . . . + εj+r > x for values of j other than simply j = 0.



Heavy-tailed marginals (cont. 3)

2. Marginal distributions with polynomially heavy tails

Here a suitable model is,

P (ε > x) ∼ C x−ρ

as x → ∞, where C, ρ > 0 are constants.

For each i such that θi > 0, let θi = θi1 ≥ . . . ≥ θiri
be a ranking of the ri,

say, nonzero values of θi+j that are not strictly greater than θi. Define

θ = 0 for j ≥ ri + 1, piq = θρ
iq − θρ

i,q+1.



Heavy-tailed marginals (cont. 4)

2. Marginal distributions with polynomially heavy tails (cont.)

For each integer q ≥ 1, put pq = (
∑

i piq)/(
∑

i θρ
i ). Let M0 denote a

random variable for which P (M0 ≤ q) = pq.

Then the distribution of M0 is the limiting distribution of cluster size for

false discoveries.




