

Advanced School and Conference on Statistics and Applied Probability in Life Sciences

24 September - 12 October, 2007

Sampling bias in logistic models

Peter McCullagh

Department of Statistics University of Chicago Chicago IL 60637, USA

Sampling bias in logistic models

Peter McCullagh

Department of Statistics University of Chicago

Trieste, October 2007

Auto-generated units

www.stat.uchicago.edu/~pmcc/reports/bias.pdf

Peter McCullagh

5900

Outline

- Gaussian models
- Binary regression model
- Properties of conventional models
- 2 Auto-generated units
 - Point process model
- 3 Consequences of auto-generation
 - Sampling bias
 - Non-attenuation
 - Inconsistency
 - Estimating functions
 - Robustness
 - Interference

Arguments pro and con

うへつ

Gaussian models Binary regression model Properties of conventional models

Conventional regression model

Fixed set \mathcal{U} (usually infinite): u_1, u_2, \ldots subjects, plots,... Covariate $x(u_1), x(u_2), \ldots$ (non-random, vector-valued) Response $Y(u_1), Y(u_2), \ldots$ (random, real-valued)

Regression model:

For each sample u_1, \ldots, u_n with $\mathbf{x} = (x(u_1), \ldots, x(u_n))$ Distribution $p_{\mathbf{x}}(\mathbf{y})$ on \mathcal{R}^n depends on \mathbf{x}

Example:

$$\mathcal{D}_{\mathbf{x}}(\mathbf{y} \in \mathbf{A}; \theta) = \mathcal{N}_n(\mathbf{X}\beta, \sigma_0^2 \mathbf{I}_n + \sigma_1^2 \mathbf{K})(\mathbf{A})$$

 $A \subset \mathcal{R}^n$, $K_{ij} = K(x_i, x_j)$ block-factor models, spatial models, generalized spline models,...

Gaussian models Binary regression model Properties of conventional models

Binary regression model

Units: $u_1, u_2, ...$ subjects, patients, plots (labelled) Covariate $x(u_1), x(u_2), ...$ (non-random, \mathcal{X} -valued) Process η on \mathcal{X} (Gaussian, for example) Responses $Y(u_1), ...$ conditionally independent given η

$$logit pr(Y(u) = 1 | \eta) = \alpha + \beta x(u) + \eta(x(u))$$

Joint distribution

$$p_{\mathbf{x}}(\mathbf{y}) = E_{\eta} \prod_{i=1}^{n} \frac{e^{(\alpha + \beta x_i + \eta(x_i))y_i}}{1 + e^{\alpha + \beta x_i + \eta(x_i)}}$$

parameters
$$\alpha, \beta, K$$
. $K(x, x') = cov(\eta(x), \eta(x'))$.

590

▲□▶▲□▶▲目▶▲目▶

Gaussian models Binary regression model Properties of conventional models

Binary regression model: computation

Computational problem:

$$p_{\mathbf{x}}(\mathbf{y}) = \int_{\mathcal{R}^n} \prod_{i=1}^n \frac{e^{(\alpha + \beta x_i + \eta(x_i))y_i}}{1 + e^{\alpha + \beta x_i + \eta(x_i)}} \phi(\eta; K) d\eta$$

Options:

Taylor approx: Laird and Ware; Schall; Breslow and Clayton, McC and Nelder, Drum and McC,...

Laplace approximation: Wolfinger 1993; Shun and McC 1994 Numerical approximation: Egret

E.M. algorithm: McCulloch 1994 for probit models Monte Carlo: Z&L,...

590

<ロト < 回 > < 回 > < 回 > < 回 > .

Just a minute...

But ... $p_{\mathbf{x}}(\mathbf{y})$ is not the correct distribution!

Why not?

-1

▲□▶▲圖▶▲圖▶▲圖▶

Gaussian models

Binary regression model

Properties of conventional models

Gaussian models Binary regression model Properties of conventional models

Binary regression model (contd)

logit pr(
$$Y(u) = 1 | \eta$$
) = $\alpha + \beta x(u) + \eta(x(u))$

Approximate one-dimensional marginal distribution

logit pr(
$$Y(u) = 1$$
) = $\alpha^* + \beta^* x(u)$

 $|\beta^*| < |\beta|$ (parameter attenuation) Subject-specific approach versus population-average approach

$$E(Y(u)) = \frac{e^{\alpha^* + \beta^* x(u)}}{1 + e^{\alpha^* + \beta^* x(u)}}$$
$$\operatorname{cov}(Y(u), Y(u')) = V(x(u), x(u'))$$

590

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ →

PA more acceptable than SS?

Gaussian models Binary regression model Properties of conventional models

Properties of conventional regression model

- (i) Population ${\mathcal U}$ is a fixed set of labelled units
- (ii) Two samples having same **x** also have same response distribution. (exchangeability, no unmeasured confounders,...)
- (iii) Distribution of Y(u) depends only on x(u), not on x(u')(no interference, Kolmogorov consistency)
- (iv) sample u_1, \ldots, u_n is a fixed set of units $\Rightarrow \mathbf{x}$ fixed No concept of random sampling of units
- (v) Does not imply independence of components: fitted value $E(Y(u')) \neq$ predicted E(Y(u') | data)

What if ... u_1, \ldots, u_n were generated at random?

 $\mathcal{O} \mathcal{O} \mathcal{O}$

Point process model

Point process model for auto-generated units

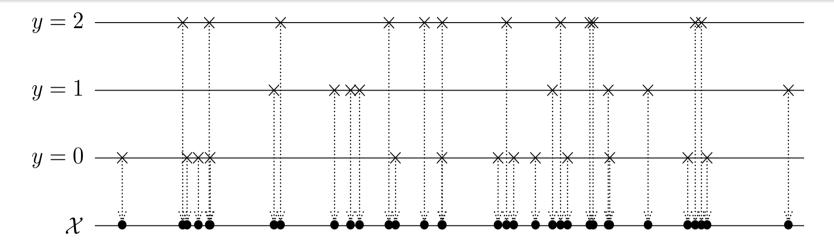


Figure 1: A point process on $\mathcal{C} \times \mathcal{X}$ for k = 3, and the superposition process on \mathcal{X} . Intensity $\lambda_r(x)$ for class r

x-values auto-generated by the superposition process with intensity $\lambda_{\bullet}(x)$. To each auto-generated unit there corresponds an *x*-value and a *y*-value. *y*-value Peter McCullagh Auto-generated units

Binary point process model

Intensity process $\lambda_0(x)$ for class 0, $\lambda_1(x)$ for class 1 Log ratio: $\eta(x) = \log \lambda_1(x) - \log \lambda_0(x)$ Events form a PP with intensity λ on $\{0, 1\} \times \mathcal{X}$. Conventional calculation (Bayesian and frequentist):

$$pr(Y = 1 | x, \lambda) = \frac{\lambda_1(x)}{\lambda_1(x)} = \frac{e^{\eta(x)}}{1 + e^{\eta(x)}}$$
$$pr(Y = 1 | x) = E\left(\frac{\lambda_1(x)}{\lambda_1(x)}\right) = E\left(\frac{e^{\eta(x)}}{1 + e^{\eta(x)}}\right)$$

Calculation is correct in a sense, but irrelevant...

 \ldots there might not be an event at x!

500

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ -

Point process model

Correct calculation for auto-generated units

pr(event of type r in dx | λ) = $\lambda_r(x) dx + o(dx)$ pr(event of type r in dx) = $E(\lambda_r(x)) dx + o(dx)$ pr(event in SPP in dx | λ) = $\lambda_{\cdot}(x) dx + o(dx)$ pr(event in SPP in dx) = $E(\lambda_{\cdot}(x)) dx + o(dx)$

$$\operatorname{pr}(Y(x) = r | \operatorname{SPP} \operatorname{event} \operatorname{at} x) = \frac{E\lambda_r(x)}{E\lambda_r(x)} \neq E\left(\frac{\lambda_r(x)}{\lambda_r(x)}\right)$$

Sampling bias:

Distn for fixed x versus distn for autogenerated x.

5900

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ →

Point process model

Two ways of thinking

First way: waiting for Godot! Fix $x \in \mathcal{X}$ and wait for an event to occur at x $pr(Y = 1 | \lambda, x) = \frac{\lambda_1(x)}{\lambda_{\bullet}(x)}$ $pr(Y = 1; x) = E\left(\frac{\lambda_1(x)}{\lambda_{\bullet}(x)}\right)$

Conventional, mathematically correct, but seldom relevant

Second way: come what may!

SPP event occurs at x, a random point in \mathcal{X} joint density at (y, x) proportional to $E(\lambda_y(x)) = m_y(x)$ x has marginal density proportional to $E(\lambda_{\cdot}(x)) = m_{\cdot}(x)$

$$\operatorname{pr}(Y = 1 \mid x) = \frac{E\lambda_1(x)}{E\lambda_1(x)} \neq E\left(\frac{\lambda_1(x)}{\lambda_1(x)}\right)$$

Sampling bias Non-attenuation Inconsistency Estimating functions Robustness Interference

Log Gaussian illustration of sampling bias

$$\begin{aligned} \eta_0(x) &\sim & GP(0,K), & \lambda_0(x) = \exp(\eta_0(x)) \\ \eta_1(x) &\sim & GP(\alpha + \beta x,K), & \lambda_1(x) = \exp(\eta_1(x)) \\ \eta(x) &= \eta_1(x) - \eta_0(x) &\sim & GP(\alpha + \beta x, 2K), & K(x,x) = \sigma^2 \end{aligned}$$

One-dimensional sampling distributions:

$$\rho(x(u)) = \operatorname{pr}(Y(u) = 1) = E\left(\frac{e^{\alpha + \beta x(u) + \eta(x)}}{1 + e^{\alpha + \beta x(u) + \eta(x)}}\right)$$

$$\operatorname{logit}(\rho(x)) \simeq \alpha^* + \beta^* x \quad (|\beta^*| < |\beta|)$$

$$\pi(x) = \operatorname{pr}(Y = 1 \mid x \in \operatorname{SPP}) = \frac{E\lambda_1(x)}{E\lambda_1(x)} = \frac{e^{\alpha + \beta x + \sigma^2/2}}{e^{\sigma^2/2} + e^{\alpha + \beta x + \sigma^2/2}}$$

$$\operatorname{logit} \operatorname{pr}(Y = 1 \mid x \in \operatorname{SPP}) = \alpha + \beta x$$

Sampling bias Non-attenuation Inconsistency Estimating functions Robustness Interference

Explanation of sampling bias

Fix x, x' non-random points in \mathcal{X} No reason to think that $\lambda_{\cdot}(x) > \lambda_{\cdot}(x')$ versus $\lambda_{\cdot}(x') > \lambda_{\cdot}(x)$ Now let x^* be the point where first superposition event occurs Good reason to think that $\lambda_{\cdot}(x^*) > \lambda_{\cdot}(x)$

because x-values have density $\lambda_{\cdot}(x)$

Correct calculation for predetermined non-random **x**:

$$p_{\mathbf{x}}(\mathbf{y}) = E \prod_{j=1}^{n} \frac{\lambda_{y_j}(x_j)}{\lambda_{\boldsymbol{\cdot}}(x_j)}$$

Correct calculation for random autogenerated ${\boldsymbol x}$

$$p(\mathbf{y} \mid \mathbf{x}) = \frac{E \prod \lambda_{y_j}(x_j)}{E \prod \lambda_{\boldsymbol{\cdot}}(x_j)}$$
Peter McCullagh Auto-generated units

うへい

Sampling bias Non-attenuation Inconsistency Estimating functions Robustness Interference

Attenuation

Quota sampling: Conventional calculation for fixed subject *u*

logit pr(Y(u) = 1 | η , x) = $\alpha + \beta x(u) + \eta(x(u))$

implies marginally after integration

logit pr(Y(u) = 1; x) $\simeq \alpha^* + \beta^* x(u)$

with $\tau = |\beta^*|/|\beta| < 1$, sometimes as small as 1/3.

Calculation is correct for quota samples (x fixed) Both probabilities specific to unit u No averaging over units $u \in \mathcal{U}$ Nevertheless β is called the subject-specific effect β^* is called population averaged effect

Sampling bias Non-attenuation Inconsistency Estimating functions Robustness Interference

Attenuation

Quota sampling: Conventional calculation for fixed subject *u*

logit pr(Y(u) = 1 | η , x) = $\alpha + \beta x(u) + \eta(x(u))$

implies marginally after integration

logit pr(Y(u) = 1; x) $\simeq \alpha^* + \beta^* x(u)$

with $\tau = |\beta^*|/|\beta| < 1$, sometimes as small as 1/3.

Calculation is correct for quota samples (x fixed) Both probabilities specific to unit u

No averaging over units $u \in \mathcal{U}$ Nevertheless β is called the subject-specific effect β^* is called population averaged effect

Sampling bias Non-attenuation Inconsistency Estimating functions Robustness Interference

Attenuation

Quota sampling: Conventional calculation for fixed subject *u*

logit pr($Y(u) = 1 | \eta, x$) = $\alpha + \beta x(u) + \eta(x(u))$

implies marginally after integration

logit pr(Y(u) = 1; x) $\simeq \alpha^* + \beta^* x(u)$

with $\tau = |\beta^*|/|\beta| < 1$, sometimes as small as 1/3.

Calculation is correct for quota samples (*x* fixed) Both probabilities specific to unit *u* No averaging over units $u \in \mathcal{U}$ Nevertheless β is called the subject-specific effect β^* is called population averaged effect

Sampling bias Non-attenuation Inconsistency Estimating functions Robustness Interference

Attenuation

Quota sampling:

Conventional calculation for fixed subject u

logit pr($Y(u) = 1 | \eta, x$) = $\alpha + \beta x(u) + \eta(x(u))$

implies marginally after integration

logit pr(
$$Y(u) = 1; x$$
) $\simeq \alpha^* + \beta^* x(u)$

with $\tau = |\beta^*|/|\beta| < 1$, sometimes as small as 1/3.

Calculation is correct for quota samples (x fixed) Both probabilities specific to unit u No averaging over units $u \in \mathcal{U}$ Nevertheless β is called the subject-specific effect β^* is called population averaged effect

590

□▶ ◀┌ः ▶ ◀ ः ▶ ◀ ः ▶

Sampling bias Non-attenuation Inconsistency Estimating functions Robustness Interference

Non-attenuation

Sequential sampling for auto-generated units

logit pr(
$$Y(x) = 1 | \lambda$$
, event at x) = $\alpha + \beta x + \eta(x)$

implies marginally after integration

logit pr(
$$Y(x) = 1 | x$$
 in superposition) = $\alpha + \beta x$

Calculation is correct for autogenerated units

Both probabilities specific to unit at x

No averaging over units

No parameter attenuation for autogenerated units

- ∢ ∃ →

Sampling bias Non-attenuation Inconsistency Estimating functions Robustness Interference

Non-attenuation

Sequential sampling for auto-generated units

logit pr(
$$Y(x) = 1 | \lambda$$
, event at x) = $\alpha + \beta x + \eta(x)$

implies marginally after integration

logit pr(
$$Y(x) = 1 | x$$
 in superposition) = $\alpha + \beta x$

Calculation is correct for autogenerated units Both probabilities specific to unit at *x*

No averaging over units

No parameter attenuation for autogenerated units

Sampling bias Non-attenuation Inconsistency Estimating functions Robustness Interference

Non-attenuation

Sequential sampling for auto-generated units

logit pr(
$$Y(x) = 1 | \lambda$$
, event at x) = $\alpha + \beta x + \eta(x)$

implies marginally after integration

logit pr(
$$Y(x) = 1 | x$$
 in superposition) = $\alpha + \beta x$

Calculation is correct for autogenerated units Both probabilities specific to unit at *x* No averaging over units

No parameter attenuation for autogenerated units

Sampling bias Non-attenuation Inconsistency Estimating functions Robustness Interference

Non-attenuation

Sequential sampling for auto-generated units

logit pr(
$$Y(x) = 1 | \lambda$$
, event at x) = $\alpha + \beta x + \eta(x)$

implies marginally after integration

logit pr(
$$Y(x) = 1 | x$$
 in superposition) = $\alpha + \beta x$

Calculation is correct for autogenerated units Both probabilities specific to unit at *x* No averaging over units

No parameter attenuation for autogenerated units

Sampling bias Non-attenuation Inconsistency Estimating functions Robustness Interference

Consequences: inconsistency

Conventional Bayesian likelihood for predetermined x:

$$p_{\mathbf{x}}(\mathbf{y}) = E \prod_{j=1}^{n} \frac{\lambda_{y_j}(x_j)}{\lambda_{\boldsymbol{\cdot}}(x_j)}$$

'Correct' likelihood for auto-generated \boldsymbol{x}

$$p(\mathbf{y} | \mathbf{x}) = \frac{E \prod \lambda_{y_j}(x_j)}{E \prod \lambda_{x_j}(x_j)}$$

If conventional likelihood is used with autogenerated ${\boldsymbol x}$

parameter estimates based on $p_{\mathbf{x}}(\mathbf{y})$ are inconsistent bias is approximately $1/\tau > 1$

Peter McCullagh	Auto-generated units
-----------------	----------------------

Sampling bias Non-attenuation Inconsistency Estimating functions Robustness Interference

Consequences: estimating functions

Mean intensity for class r: $m_r(x) = E(\lambda_r(x))$ $\pi(x) = m_1(x)/m_1(x); \quad \rho(x) = E(\lambda_1(x)/\lambda_1(x))$

For predetermined x, $E(Y) = \rho(x)$

$$\sum_{x} h(x)(Y(x) - \rho(x))$$

(PA estimating function for $\rho(x)$)

For autogenerated x, $E(Y|x \in \text{SPP}) = \pi(x) \neq \rho(x)$

$$T = \sum_{x \in \text{SPP}} h(x)(Y(x) - \pi(x))$$

has zero mean for auto-generated **x**.

Sampling bias Non-attenuation Inconsistency Estimating functions Robustness Interference

Consequences: robustness of PA

Bayes/likelihood has the right target parameter initially but ignores sampling bias in the likelihood estimates the right parameter inconsistently.

Population-average estimating equation establishes the wrong target parameter $\rho(x) = E(Y; x)$ misses the target because sampling bias is ignored but consistently estimates $\pi(x) = E(Y | x \in \text{SPP})$ because conventional notation E(Y | x) is ambiguous

PA is remarkably robust but does not consistently estimate the variance

500

▲□▶▲□▶▲目▶▲目▶

Sampling bias Non-attenuation Inconsistency Estimating functions Robustness Interference

variance calculation: binary case

 (\mathbf{y}, \mathbf{x}) generated by point process;

$$T(\mathbf{x},\mathbf{y}) = \sum_{x \in \mathrm{SPP}} h(x)(Y(x) - \pi(x))$$

$$E(T(\mathbf{x}, \mathbf{y})) = 0; \qquad E(T \mid \mathbf{x}) \neq 0$$

$$\operatorname{var}(T) = \int_{\mathcal{X}} h^{2}(x)\pi(x)(1 - \pi(x)) m_{\cdot}(x) dx$$

$$+ \int_{\mathcal{X}^{2}} h(x)h(x') V(x, x') m_{\cdot}(x, x') dx dx'$$

$$+ \int_{\mathcal{X}^{2}} h(x)h(x')\Delta^{2}(x, x')m_{\cdot}(x, x') dx dx'$$

V: spatial or within-cluster correlation;

 Δ : interference

590

Sampling bias Non-attenuation Inconsistency Estimating functions Robustness Interference

What is interference?

Physical interference: distribution of Y(u) depends on x(u')

Sampling interference for autogenerated units $m_r(x) = E(\lambda_r(x)); \quad m_{rs}(x, x') = E(\lambda_r(x)\lambda_s(x'))$ Univariate distributions: $\pi_r(x) = m_r(x)/m_.(x)$ Bivariate: $\pi_{rs}(x, x') = m_{rs}(x, x')/m_..(x, x')$ $\pi_{rs}(x, x') = \operatorname{pr}(Y(x) = r, Y(x') = s | x, x' \in SPP)$

Hence $\pi_{r.}(x, x') = pr(Y(x) = r | x, x' \in SPP)$ $\Delta_r(x, x') = \pi_{r.}(x, x') - \pi_r(x)$ No second-order sampling interference if $\Delta_r(x, x') = 0$

590

Autogeneration of units in observational studies

Q: Subject was observed to engage in behaviour *X*.

What form *Y* did the behaviour take?

Application	X	Y
Marketing	car purchase	brand
Ecology	Sex	activity class
Ecology	play	relatives or non-relatives
Traffic study	highway use	speed
Traffic study	highway speeding	colour of car/driver
Law enforcement	burglary	firearm used?
Epidemiology	birth defect	type of defect
Epidemiology	cancer death	cancer type

Units/events auto-generated by the process

590

▲□▶▲□▶▲目▶▲目▶

Auto-generation as a model for self-selection

Economics:

Event: single; in labour force; seeks job training Attributes (*Y*): (age, job training (Y/N), income)

Epidemiology:

Event: birth defect

Attributes: (age of M, type of defect, state)

Clinical trial:

Event: seeks medical help; diagnosed C.C.; informed consent;

Attributes: (age, sex, treatment status, survival)

What is the population of statistical units?

うへつ

<ロ > < 回 > < 回 > < 回 > < 回 > <

Mathematical considerations

Restriction: if $p_k()$ is the distribution for k classes, what is the distribution for k - 1 classes? Does restricted model have same form? Answer:

Weighted sampling

Closure under weighted or case-control sampling

Closure under aggregation of homogeneous classes

うくつ

<ロト < 団ト < 巨ト < 巨ト -

Mathematical considerations

Restriction: if $p_k()$ is the distribution for k classes, what is the distribution for k - 1 classes? Does restricted model have same form? Answer:

Weighted sampling

Closure under weighted or case-control sampling

Closure under aggregation of homogeneous classes

うへつ

<ロト < 団ト < 巨ト < 巨ト -

Mathematical considerations

Restriction: if $p_k()$ is the distribution for k classes, what is the distribution for k - 1 classes? Does restricted model have same form? Answer:

Weighted sampling

Closure under weighted or case-control sampling

Closure under aggregation of homogeneous classes

うへつ

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <