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Case-control association testing:

some preliminaries

• We consider a complex trait or disease (e.g. asthma, al-

coholism), which we treat as binary (affected/unaffected).

• Complex trait: may be influenced by multiple genetic

and non-genetic factors

• Goal: identify some of the genetic risk factors related

to the trait.

Terminology

• A person who has the disease may be called an af-
fected or a case.

• Control could be someone who does not have the dis-

ease or someone whose disease status is unknown (these

types are treated differently in the analysis).
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Terminology (continued)

• SNP (single nucleotide polymorphism) — site in genome

with single base-pair change that distinguishes some

individuals from others in same population,

e.g. AAGGCTAA vs. ATGGCTAA

• The two different variants at a SNP are called alleles.

• Genotype is the pair of alleles of an individual at a

SNP. Typically observe only number of copies of each

allele held by individual, e.g. i copies of allele A,

which is equivalent to 2-i copies of allele T, i = 0,1,2.

3



Case-control association testing

• For a given marker, compare the allele or genotype dis-

tributions of cases and controls.

• Null hypothesis is that there is no difference between

case and control allele/genotype distributions at the given

marker.

• E.g. consider classical χ2 test for association with a

biallelic marker, equivalent to test for independence in

2 × 2 table
Case Control

Allele 0 C00 C01
Allele 1 C10 C11

• This χ2 test is valid when alleles are independent within

and between individuals under the null hypothesis

4



Use of related individuals in case-control testing:
how it arises, why it can be desirable

• Families sampled for a linkage study may be included

in an association study.

– Linkage is co-inheritance of trait with allele or

genotype within a family.

– Linkage analysis of families with multiple affected

individuals may be used for coarse mapping of ge-

netic variants.

– Then population-based association used for finer-

scale mapping.

• Sampling individuals from families with multiple af-

fecteds may increase power to detect assocation with

complex traits because of enrichment for genetic cases.

– Complex diseases such as breast cancer and heart

disease have both genetic and non-genetic causes.

– Cases from families with multiple affecteds are more

likely to have predisposing genetic variants.
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Use of related individuals in case-control testing:

how it arises, why it can be desirable (cont.)

• Use of unaffected relatives of cases as controls can

provide some measure of protection against potential

problems of population substructure.

– Frequency of disease may differ across sub-populations,

frequency of allele or genotype may differ as well.

– Sub-population may be a hidden covariate contribut-

ing to false detection of association.

– Using related cases and controls makes this prob-

lem less likely.

• Founder populations, in which most or all individu-

als are related, can be particularly valuable for genetic

studies.
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Complex trait mapping
in founder populations

• Founder population: a population in which a recent

bottleneck has resulted in a large number of individu-

als all descended from a small number of founders

population size time

• Founder populations may be particularly useful for com-

plex trait mapping because of

– reduced genetic heterogeneity due to small number

of founders

– in some cases, reduced environmental heterogene-

ity

– linkage disequilibrium may exist over greater dis-

tances ⇒ less dense map required to detect associ-

ation
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Statistical issues that arise with use of
related individuals in case-control testing

• When some individuals in the samples are related, it

creates dependence among the observations.

• Both case-control status and allele/genotype run in fam-

ilies

• Type I error:

– application of standard methods can result in a dra-

matic increase in false detections (Newman et al.

2001; Bourgain et al. 2003).

• Power:

– information on relatedness can be used to increase

power

– explicitly taking into account the fact that there is

an enrichment for predisposing variants in affect-

eds with affected relatives can also increase power
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• We develop quasi-likelihood (QL) methods for case-

control association testing of genetic traits with related

individuals. Properties include:

– uses only first and second moments

– applicable to any sample of related individuals

– Type I error is corrected for the dependence

– weights depending on case-control status and rela-

tionships of individuals are used to optimize power

(maximize non-centrality parameter) within a lin-

ear class of statistics

– allows us to leave unspecified some parts of the

model of which we are ignorant =⇒ retains a ma-

jor part of the appeal of the original case-control

association test

– computationally feasible, even in large complex in-

bred pedigrees with multiple inbreeding loops

9



• More generally, QL inference methods can be used to

extend other types of classical population genetic in-

ference to founder populations, e.g.

– allele frequency estimation

– Armitage test for case-control association

– Hardy-Weinberg equilibrium test

• Agenda for remainder of talk:

– General QL approach

– 3 approaches for case-control association testing in

related individuals:

∗ correct the variance of the standard χ2 statistic:

Wχ2
corr

∗ QL approach under a simple model for case-

control differences: WQLS

∗ Improvement of power by more detailed consid-

eration of properties of a genetic trait: MQLS

– Simulations and an example
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Quasi-likelihood (QL) estimation

• Wedderburn (1974), Godambe (1960), Jarrett (1973),

McCullagh and Nelder (1989), Heyde (1997)

• Let Xn×1 be random with E(X) = µn×1 and

Var(X) = Vn×n, where

– µ is a known, twice differentiable function of un-

known parameter θm×1,

– V is a known differentiable function of θ (or some-

times known only up to unknown scale factor σ2

not depending on θ), V invertible.

• Let U(θ) = DTV −1(X−µ), where Dij = ∂µi/∂θj

• U(θ) is QL score function.

• QL estimator (QLE) θ̂ of θ is a solution of U(θ) = 0.

• Matrix iθ = DTV −1D = Cov(U(θ)) = −E(∂U/∂θ)
plays similar role to Fisher information.

• Under regularity conditions, i
1/2
θ (θ̂− θ) is asymptot-

ically N(0, I), where(i1/2
θ )T i

1/2
θ = iθ.
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QL estimation: a few more details

• In special case when both of the following hold:

1. µ = Dθ, where D is known, i.e. µ is a linear

function of θ and

2. V = Ks(θ), where K is a known invertible ma-

trix and s is a possibly unknown scalar that may

depend on θ,

then the QL estimator for θ is same as generalized re-

gression estimator (DTK−1D)−1(DTK−1X).

• However, for some of the problems we are interested

in, both 1 and 2 fail to hold.

• More generally, θ̂ is not linear in X and can be ob-

tained by Newton-Raphson with Fisher scoring:

θ̂j+1 = θ̂j + (D̂T
j V̂ −1

j D̂j)
−1D̂T

j V̂ −1
j (X − µ̂j),

where D̂j = D|θ=θ̂j
, V̂j = V |θ=θ̂j

.
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• QL estimating equation is of linear type

H(θ)T (X − µ(θ)) = 0, where H and µ do not

depend on X . QLE is asymptotically optimal among

estimators obtained as solutions of linear estimating

equations (under regularity conditions).

QL score test

• Simple null hypothesis

– Suppose want to test null hypothesis H0 : θ = θ0
vs. alternative HA : θ �= θ0.

– Let ρ be the dimension of θ.

– By analogy with usual likelihood score test, con-

sider

W = U(θ0)
T i−1

θ0
U(θ0)

assuming iθ0
invertible.

– Compare to a χ2
ρ distribution asymptotically
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QL Score test: composite null hypothesis

• Set θ = (r, a) and consider testing null hypothesis

H0 : r = r0 vs. alternative HA : r �= r0.

• Let ρ be the dimension of r.

• Let

U(r, a) =

(
Ur(r, a)
Ua(r, a)

)
=

(
DT

r V −1(X − µ)
DT

a V −1(X − µ)

)
,

where Dr = ∂µ/∂r and Da = ∂µ/∂a.

• By analogy with usual likelihood score statistic for com-

posite null, consider

W = UT
r (r0, â0)i

rr(r0, â0)Ur(r0, â0),

where

– irr(θ) is the (r, r)th entry of i−1
θ

– â0 is the QLE of the nuisance parameter a when

r = r0, i.e. a = â0 is solution of

Ua(r0, a) = 0.

• Compare to a χ2
ρ distribution asymptotically
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Some terminology and notation

• IBD: identical by descent; a set of alleles is IBD if the

alleles are inherited copies of the same ancestral allele

• HBD: homozygous by descent; an individual is said to

be HBD at a locus if that individual’s two alleles are

IBD. This occurs when individuals are inbred.

• kinship coefficient: φij is the probability that a ran-

domly chosen pair of alleles, one each from individu-

als i and j are IBD at a given locus, conditional on the

genealogy connecting i and j

– For example, the kinship coefficient for siblings

or for parent-offspring is .25, for first cousins it is

.0625

• inbreeding coefficient: hi is the probability that in-

dividual i is HBD at a given locus, conditional on the

genealogy connecting i’s parents; hi = φmf , where

m and f are the parents of i
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Case-control association testing with relatives
Approach 1: Correct the variance of

the standard χ2 statistic

• For simplicity, consider a biallelic locus. All results

generalize to multiple alleles.

• Let Xj = 1
2(the number of alleles (0, 1, or 2) of type

1 held by individual j), j = 1, . . . n

• Let Dr be case indicator vector with Drj = 1 if j is

a case, 0 if j is a control.

• The standard Pearson’s χ2 statistic for the test of al-

lelic association can be written

Wχ2 =
n[

∑
j∈cases(Xj − X̄)]2

1
2X̄(1 − X̄)ncasencon

,

where ncase = 1TDr, and ncon = n − ncase.

• This statistic has the form W = ST [ ˆVaro(S)]−1S,

where S = V TX is linear in X .
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• Standard χ2 statistic has the form

W = ST [ ˆVaro(S)]−1S, where S = V TX .

• Thus, Varo(S) = V T Varo(X)V

• With unrelated outbred individuals, Varo(X) = 1
2a(1−

a)In×n, where a = E(X) is the allele frequency

under the null hypothesis. Can approximate a by X̄

under the null.

• With related and possibly inbred individuals, Varo(X) =
1
2a(1−a)L, where Lij = 1+hi if i = j and 2φij

if i �= j, with hi and φij denoting inbreeding and

kinship coeffs, respectively.

• Then the corrected χ2 statistic is Wχ2
corr

= Wχ2 γ,

where

γ =
ncasencon

n(DT
r LDr − 2ncase

n 1TLDr + (ncase
n )21TL1)

.

• Compare to χ2
1 distribution under the null hypothesis

of no association between the locus and the trait.
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Case-control association testing with relatives
Approach 2: QL approach under simple model

• The corrected χ2 test works reasonably well, but can

we increase power with minimal additional effort?

• Let µ = E(X), and consider the simple model: µi =
a+r if i is a case, a if i is a control (constrain 0 < a < 1,

0 < a + r < 1)

• Null hypothesis is H0 : r = 0 vs. alternative HA :
r �= 0

• We have Varo(X) = 1
2a(1 − a)L

• Dr = ∂µ/∂r has Drj = 1 if j is a case and 0 if j is

a control

• Da = ∂µ/∂a = 1n×1

• Then we obtain QL score statistic WQLS =

[DT
r L−1(X − â01)]

2

â0(1 − â0)[DT
r L−1Dr − (DT

r L−11)2(1TL−11)−1]

where â0 = (1TL−11)−11TL−1X .
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Case-control association testing with relatives
Approach 2: QL approach under simple model (cont.)

• Both Wχ2
corr

and WQLS are of the form

W = ST [ ˆVaro(S)]−1S, where S = V TX is linear

in X . Call this class of statistics W .

• When the assumed model holds, i.e. µi = a+r if i is

a case, a if i is a control, then WQLS is optimal in the

sense that it maximizes the non-centrality parameter.

• Thus, WQLS should be more powerful than Wχ2
corr

under the assumed model.

• E.g., to compare the allele frequency in, say, Swedes

vs. Han Chinese, with related individuals in the sam-

ples, WQLS is much more powerful.

• Difficulty: our simple model does not take into account

the fact that in complex diseases, cases with affected

relatives are more likely to have a predisposing genetic

variant than are cases without affected relatives.

• As a result, WQLS can do worse than Wχ2
corr

for com-

plex trait mapping, because it downweights related cases

compared to cases with no relatives in the sample.
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Case-control association testing with relatives
Approach 3: QL approach with better model

• Initial model (frequency a + r in cases and a in con-

trols, i.e. µ = a+ rDr) was too simple to work well.

• We obtain slightly less simple model as follows:

– Consider a two-allele trait model specified by an

allele frequency a and penetrance parameters p0,

p1 = p0 + ε1, and p2 = p0 + ε2, where pi =
P{affected| have i copies of allele}.

– Let νj = E(Xj|Dr), calculated under the two-

allele model.

– Let ν = E(Xj|Drj = 1).

– Let
D̃r = lim

ε1,ε2→0

νj − a

ν − a
.

– Our model is µ = a + rD̃r.

– Intuitively: r ≈ ν − a, where ν is frequency in

cases (unconditional on affection statuses of rela-

tives) and a is population frequency.
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Case-control association testing with relatives
Approach 3: QL approach with better model (cont.)

• Model µ = a+rD̃r, where D̃r = limε1,ε2→0
νj−a
ν−a .

• D̃r turns out to have a simple form: D̃rj = Lδ

• Here, L is the matrix defined before with Lij = 1 +
hi if i = j and 2φij if i �= j, with hi and φij denot-

ing inbreeding and kinship coeffs, respectively.

• δ is the vector with jth entry = 1 if j is affected,

−Kp/(1 − Kp) if j is unaffected, and 0 if j’s status

is unknown (e.g. population-based control).

• Kp is the population prevalence of the trait; in prac-

tice, an estimate of Kp can be used, if available, or an

arbitrary number could be used.

• The MQLS is the QL score statistic based on this model:

MQLS =

[δT (X − â01)]
2

â0(1 − â0)[δTLδ − (δT1)2(1TL−11)−1]

where â0 = (1TL−11)−11TL−1X .
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Case-control association testing with relatives

Approach 3: QL approach with better model (cont.)

• We do not believe the simple model.

• Nonetheless, the resulting statistic captures the prop-

erty that in complex diseases, cases with affected rel-

atives are more likely to carry a genetic variant pre-

disposing to the trait than are cases without affected

relatives.

• Misspecification of the population prevalence Kp has

no effect on validity of the test.

• We use simulation studies to assess

– power of the method for multilocus trait models

(i.e. 2-allele model does not hold).

– power when Kp is drastically misspecified
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Simulations to assess power and Type I error

• 60 extended outbred pedigrees, each with 16 individu-

als in 3 generations, ascertained for multiple affecteds.

• 20 pedigrees with 4 affecteds each, 20 with 5, and 20

with 6

• Each individual from pedigree is included in study if

at least half of his first-degree relatives are affected

• Control sample includes 200 unrelated unaffecteds in

addition to the unaffected relatives in the pedigrees

• Models

– Model I: 2 unlinked causal SNPs with epistasis; 2

penetrance params.

– Model II: 2 unlinked causal SNPs with epistasis; 4

penetrance parameters

– Model III: 3 unlinked causal SNPs with epistasis;

2 penetrance parameters
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Power to Detect Association
(at .05 level, based on 5,000 simulated replicates)

Estimated Power

Model Wχ2
corr

WQLS MQLS

I-a 0.57 0.42 0.85

I-b 0.78 0.60 0.98

I-c 0.77 0.66 0.90

II-a 0.65 0.55 0.75

III-a 0.57 0.51 0.77

III-b 0.85 0.74 0.94

• Type I error verified at nominal level for each test.

• In each simulation

– Use of the MQLS drastically increases power.

– More than 1 causal locus is involved in true model.

– Assumptions used to derive MQLS are false.

• MQLS captures property that cases with affected rela-

tives are enriched for predisposing variants.

• MQLS seems to have high power under complex trait

models.
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Robustness of MQLS to misspecification of Kp

Power of MQLS

Assumed Kp Multiple of True Kp Estimated Power (s.e.)

0.039 1/2 0.78 (.006)

0.078 1 0.77 (.006)

0.156 2 0.79 (.006)

0.312 4 0.68 (.007)

0.390 5 0.46 (.007)

• Model has 3 unlinked causal SNPs with epistasis.

• True Kp is .078

• When assumed Kp is within a factor of 2 of true Kp,

there is no change in power in this case.

• Power of MQLS appears to be fairly robust to mis-

specification of Kp.
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Example: Testing for Association

With Alcoholism, Using Genome Screen Data

• Genetic Analysis Workshop (GAW) 14 data from Col-

laborative Study for the Genetics of Alcoholism (COGA)

• 143 pedigrees each with at least 3 affecteds

• 506 cases and 202 controls

• 10,081 autosomal SNPs analyzed

• In the MQLS, set Kp = .05, an estimate from the

National Institute on Alcohol Abuse and Alcoholism

(NIAAA).

• Binary phenotype (Affected with ALDX1 or “pure un-

affected”).
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Most significant SNPs in COGA Data Set
(p-value < 5.0e-5 by at least 1 test)

p-value

chr pos. nca nco p Wχ2
corr

WQLS MQLS

16 59.8 383 137 0.85 1.0e-4 1.2e-4 2.5e-7

6 153.7 397 144 0.85 1.6e-2 3.3e-1 9.2e-6

3 158.2 350 142 0.82 1.1e-2 7.2e-3 2.3e-5

7 123.7 419 159 0.84 1.8e-3 2.7e-5 3.7e-2

18 104.7 266 111 0.62 3.3e-1 8.3e-1 4.1e-5

18 95.8 394 143 0.67 8.7e-3 6.3e-3 4.6e-5

1 188.1 477 183 0.92 3.1e-2 3.7e-2 4.9e-5

Markers are tsc1750530, tsc1288916, tsc0175005, tsc0043946, tsc0046696,

tsc0054146, and tsc0275539, respectively.

• SNP on chromosome 16 is genome-wide significant

(p-value .008) after Bonferroni correction for 10,081

SNPs and 3 tests per SNP: 2.5e-7 ×10,081 × 3 =
7.6e-3

• The most significant results are generally obtained with

MQLS.
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Summary

• The QL framework provides a way to extend standard

testing and estimation methods to the situation when

sampled individuals are related.

• First moments under null and alternative and 2nd mo-

ments under null are required for our testing methods.

• Methods are very fast, even in complex inbred pedi-

grees.

• We currently use QL methods for a number of genetic

problems when samples contain related individuals:
– allele frequency estimation
– Hardy-Weinberg testing
– case-control association testing
∗ allelic tests (← discussed today)
∗ genotypic tests (analogue of Armitage trend test)

• For case-control association testing, use of modified

QLS greatly improves power

Extensions
• Analyze quantitative traits

• Incorporate covariates

• Extension to haplotype analysis when complete haplo-

type information is not available
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