The Abdus Salam

Advanced School and Conference on Statistics and Applied

 Probability in Life Sciences24 September-12 October, 2007

Generalized linear models and penalized likelihood regression

Irène Gijbels
Katholieke Universiteit Leuven
Department of Mathematics B-3001 Leuven, Belgium

Generalized linear models and penalized likelihood regression

Irène Gijbels
Department of Mathematics \& Leuven Statistics Research Centre

Katholieke Universiteit Leuven, Belgium

Joint work with Anestis Antoniadis and Mila Nikolova

Outline

\diamond Introduction: models and basic elements
\diamond Penalties and regularization
\diamond Optimization of the penalized likelihood
\diamond Statistical properties and Asymptotic analysis
\diamond Choice of regularization parameters
\diamond Simulations and example

Introduction: models and basic elements

Generalized models
Y : response variable $\quad X$: covariate (univariate)
cond. distrib. of Y given $X=x$ is from an exponential family distr.

$$
f_{Y \mid X}(y \mid x)=\exp \left(\frac{y \theta(x)-b(\theta(x))}{\phi}+c\left(y_{i}, \phi\right)\right)
$$

$b(\cdot)$ and $c(\cdot)$ known functions; $\quad \phi$: known scale parameter
$\theta(\cdot)$ unknown function
$E(Y \mid X=x)=b^{\prime}(\theta(x))=\mu(x) \quad \operatorname{Var}(Y \mid X=x)=\phi b^{\prime \prime}(\theta(x))$
$g(\mu(x))=\eta(x) \quad g$ the link function
$\eta(\cdot)$ the predictor function, to be estimated
generalized linear models: $\eta(x)=$ a linear function of x

Examples

- Normal regression with additive errors: $\quad f_{Y \mid X}(y \mid x) \sim \mathbf{N}\left(\mu(x) ; \sigma^{2}\right)$
link function: $g(t)=t \quad$ (identity) \quad predictor fct $\eta(x)=\mu(x)$
- Logistic regression: $\quad f_{Y \mid X}(y \mid x) \sim \operatorname{Bernoulli}(1 ; \mu(x))$

0-1 response type of variable $Y \quad \mu(x)=$ conditional probab.
link fct: $g(t)=\log \frac{t}{1-t}$ (logit) predictor fct $\eta(x)=\log \frac{\mu(x)}{1-\mu(x)}$

- Poisson regression: $\quad f_{Y \mid X}(y \mid x) \sim$ Poisson $(\mu(x))$
counts type of r.v. $Y \quad \mu(x)=$ Poisson intensity function

$$
\text { link function: } g(t)=\log (t) \quad \text { predictor fct } \eta(x)=\log (\mu(x))
$$

McCullagh \& Nelder (1989)
regression analysis:
from observations $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{n}, y_{n}\right)$
estimate the predictor function $\eta(\cdot)$

- standard parametric model: $\eta(x)=\eta(x ; \boldsymbol{\beta})$
ex.: generalized linear models; $\eta(x ; \boldsymbol{\beta})$ a function linear in $\boldsymbol{\beta}$
- nonparametric estimation: several techniques
penalized log-likelihood:

$$
\operatorname{maximize} \quad Z_{n}(\eta)=\frac{1}{n} \sum_{i=1}^{n} \ell\left(y_{i}, \eta\left(x_{i}\right)\right)-\lambda J(\eta)
$$

$$
\ell=\log \text {-likelihood } \quad J(\cdot) \text { is a roughness functional (penalty) }
$$

1st term: discourages the lack of fit of η to the data
2nd term: penalizes the roughness of η
$\lambda>0$: smoothing parameter controling trade-off between 2 terms
flexible estimation approach:
represent $\eta(\cdot)$ as a linear combination of known basis functions
$h_{1}(x), h_{2}(x), \cdots, h_{p}(x)$

$$
\eta(x)=\sum_{k=1}^{p} \beta_{k} h_{k}(x) \quad k=1, \ldots, p
$$

AIM: estimate the coefficients $\boldsymbol{\beta}=\left(\beta_{1}, \ldots, \beta_{p}\right)^{T}$
examples of basis functions: wavelets, polynomial splines, ...
crucial choice: number p of basis functions

- small p : may not be flexible enough to capture variability of data
- large p : may lead to overfitting
regularization: use a highly parametrized model and impose a penalty on large fluctuations of fitted curve
notations:

$$
\mathbf{x}=\left(x_{1}, x_{2}, \cdots, x_{n}\right) \quad \mathbf{y}=\left(y_{1}, y_{2}, \cdots, y_{n}\right) \quad \boldsymbol{\beta}=\left(\beta_{1}, \ldots, \beta_{p}\right)^{T}
$$

$$
\mathbf{H}(\mathbf{x})=\left(\begin{array}{cccc}
h_{1}\left(x_{1}\right) & h_{2}\left(x_{1}\right) & \cdots & h_{p}\left(x_{1}\right) \\
h_{1}\left(x_{2}\right) & h_{2}\left(x_{2}\right) & \cdots & h_{p}\left(x_{2}\right) \\
\vdots & \vdots & & \vdots \\
h_{1}\left(x_{i}\right) & h_{2}\left(x_{i}\right) & \cdots & h_{p}\left(x_{i}\right) \\
\vdots & \vdots & & \vdots \\
h_{1}\left(x_{n}\right) & h_{2}\left(x_{n}\right) & \cdots & h_{p}\left(x_{n}\right)
\end{array}\right) \quad \text { matrix of } \operatorname{dim} n \times p
$$

$$
\mathbf{h}\left(x_{i}\right)=\left(h_{1}\left(x_{i}\right), h_{2}\left(x_{i}\right), \cdots, h_{p}\left(x_{i}\right)\right) \quad \text { vector of } \operatorname{dim} 1 \times p
$$

objective function to be maximized in some function space

$$
Z_{n}(\boldsymbol{\beta})=\frac{1}{n} \sum_{i=1}^{n} \ell\left(y_{i}, \mathbf{h}\left(x_{i}\right) \boldsymbol{\beta}\right)-\lambda J(\boldsymbol{\beta}) \equiv \frac{1}{n} L_{\mathbf{y}}(\boldsymbol{\beta})-\lambda J(\boldsymbol{\beta})
$$

for given basisfunctions $h_{1}(\cdot), \cdots, h_{p}(\cdot)$, penalty function $J(\cdot)$ and smoothing parameter λ
maximize $\quad Z_{n}(\boldsymbol{\beta})=\frac{1}{n} \sum_{i=1}^{n} \ell\left(y_{i}, \mathbf{h}\left(x_{i}\right) \boldsymbol{\beta}\right)-\lambda J(\boldsymbol{\beta}) \equiv \frac{1}{n} L_{\mathbf{y}}(\boldsymbol{\beta})-\lambda J(\boldsymbol{\beta})$
$\eta\left(x_{i}\right)=\mathbf{h}\left(x_{i}\right) \boldsymbol{\beta} \quad g\left(\mu\left(x_{i}\right)\right)=\eta\left(x_{i}\right)=\mathbf{h}\left(x_{i}\right) \boldsymbol{\beta} \quad i=1, \cdots, n$
allow p to be large, and control the risk of overfitting the data by using an adequate penalty J on the coefficients

Eilers \& Marx (1996), Ruppert \& Carroll (2000), ...
what choice of basisfunctions?

Truncated power basis

knot points $t_{1}<t_{2}<\cdots<t_{K}$
d integer, $d \geq 1$
truncated power basis for polynomial of degree d regression splines with knots $t_{1}<t_{2}<\cdots<t_{K}$

$$
\left\{1, x, \ldots, x^{d},\left(x-t_{1}\right)_{+}^{d}, \ldots,\left(x-t_{K}\right)_{+}^{d}\right\}
$$

$$
z_{+}=\max (z, 0)
$$

continuous up to $(d-1)$ st derivative
representation of a univariate function f in terms of these $(d+1+K)$ basis functions

$$
f(x)=\sum_{k=0}^{d} \beta_{k} x^{k}+\sum_{j=1}^{K} \beta_{p+j}\left(x-t_{j}\right)_{+}^{d}
$$

each coefficient β_{d+j} is identified as a jump in the d-th derivative of f at the corresponding knot $(\longrightarrow$ easy interpretation)
sometimes not desirable because computationally less stable
de Boor (1978) and Dierckx (1993)

- normalized B-splines basis of order q with knots $0<t_{1}<\cdots<t_{K}<1$: set of degree $(q-1)$ splines

$$
\left\{B_{K j}^{q}, j=1, \ldots, q+K\right\}
$$

- functions $B_{K j}^{q}$ are positive and have local support: are non-zero only on an interval which covers no more than $q+1$ knots
- equivalently: at any point x there are no more than q B-splines that are non-zero
- recursive relationship to describe B-splines; provides a very stable numerical computation algorithm
- moderately large number of knots (usually between 20 and 40) to ensure enough flexibility
- quadratic penalty based on differences of adjacent B-spline coefficients to guarantee sufficient smoothness of fitted curves

Figure 1: lllustration of B-spline constructed smooth curve.
dashed curves: scaled basis functions; heights are the coefficients solid curve: resulting smooth curve as sum of scaled B-splines

- quadratic regularization: $J(\boldsymbol{\beta})=\|\boldsymbol{\beta}\|_{2}^{2}$
- in the setting of Bayesian MAP estimation and Markov random fields (Geman \& Clure (184, 1987), Besag (1974, 1989), ...):

$$
J(\boldsymbol{\beta})=\sum_{k=1}^{r} \gamma_{k} \psi\left(d_{k}^{T} \boldsymbol{\beta}\right)
$$

$\gamma_{k}>0$ weights
d_{k} linear operators

- for $\psi(\cdot)$ convex: J pushes solution $\widehat{\boldsymbol{\beta}}$ to be s.t. $\left|d_{k}^{T} \widehat{\boldsymbol{\beta}}\right|$ is small
- in particular: if d_{k} are finite difference operators, neighboring coefficients of $\widehat{\boldsymbol{\beta}}$ are encouraged to have similar values ($\widehat{\boldsymbol{\beta}}$ involves homogeneous zones)
- if $d_{k}=e_{k}$, then J encourages the components $\widehat{\boldsymbol{\beta}}_{k}$ to have small magnitude
- choice of $J(\boldsymbol{\beta})$ depends strongly on the basis functions used
- for a truncated power basis functions of degree d; coefficients of basis functions at the knots involve jumps of d-th derivative (large coeff. are associated with singularities in the fct):

$$
J(\boldsymbol{\beta})=\sum_{k} \gamma_{k} \psi\left(\beta_{k}\right) \quad \gamma_{k}>0
$$

no reason that neighboring coefficients of β have close values

- example: $\psi(\cdot)=|\cdot|$

Mammen \& Van de Geer (1997), Ruppert \& Carroll (1997), Yu \& Ruppert (2001), Antoniadis \& Fan (2001),

Figure 2: Behavior of coeff. of function in a truncated power basis.

- for B-splines basis: penalties on neighbor B-spline coeff. ensure that neighboring coeff. do not differ too much from each other when η is smooth
- absolute values of first order or second order differences are maximum at singularity points of curve
- penalties such as $J(\boldsymbol{\beta})=\sum^{r} \gamma_{k} \psi\left(d_{k}^{T} \boldsymbol{\beta}\right)$ are more adequate

Figure 3: Behavior of coefficients of function in a B-splines basis.

$$
J(\boldsymbol{\beta})=\sum_{k} \gamma_{k} \psi\left(\beta_{k}\right) \quad J(\boldsymbol{\beta})=\sum_{k=1}^{r} \gamma_{k} \psi\left(d_{k}^{T} \boldsymbol{\beta}\right)
$$

general type of penalty functions $\psi(\cdot)$
$\diamond L_{2}$ or quadratic penalty $\psi(\beta)=|\beta|^{2} \quad$ ridge type regression
$\diamond L_{1}$ penalty $\psi(\beta)=|\beta| \quad$ LASSO type regression
Donoho \& Johnstone (1994), Tibshirani (1996), Klinger (2000) ...
$\diamond L_{q}(0 \leq q \leq 1)$ penalty $\psi(\beta)=|\beta|^{q} \quad$ bridge regression
Frank \& Friedman (1993), Ruppert \& Carroll (1997), Fu (1998), Knight \& Fu (2000), Yu \& Ruppert (2001), ...

- usually: ψ symmetric around 0 and increasing on $[0,+\infty)$
- ψ can be convex or non-convex, smooth or non-smooth
what is a good penalty function? Antoniadis \& Fan (2001)
- gives an estimator that avoids excessive bias (unbiasedness)
- forces sparse solutions to reduce model complexity (sparsity)
- avoids unnecessary variation (stability)
- from computational viewpoint: resulting optimization problem should be (easily) solvable

AIM: summarize and unify mean features of $\psi(\cdot)$ that determine essential properties of maximizer $\widehat{\boldsymbol{\beta}}$ of $Z_{n}(\boldsymbol{\beta})$

Smooth at zero

1. $\psi(\beta)=|\beta|^{\alpha}, \alpha>1$
2. $\psi(\beta)=\sqrt{\alpha+\beta^{2}}$
3. $\psi(\beta)=\log (\cosh (\alpha \beta))$
4. $\psi(\beta)=\beta^{2}-(|\beta|-\alpha)^{2} I\{|\beta|>\alpha\}$.
5. $\psi(\beta)=1+|\beta| / \alpha-\log (1+|\beta| / \alpha)$

Singular at zero

6. $\psi(\beta)=|\beta| \quad \psi^{\prime}\left(0^{+}\right)=1$
7. $\psi(\beta)=\alpha^{2}-(|\beta|-\alpha)^{2} I\{|\beta|<\alpha\}$ $\psi^{\prime}\left(0^{+}\right)=2 \alpha$

Smooth at zero	Singular at zero
8. $\psi(\beta)=\alpha \beta^{2} /\left(1+\alpha \beta^{2}\right)$	12. $\psi(\beta)=\|\beta\|^{\alpha}, \alpha \in(0,1) \quad \psi^{\prime}\left(0^{+}\right)=\infty$
9. $\psi(\beta)=\min \left\{\alpha \beta^{2}, 1\right\}$	13. $\psi(\beta)=\alpha\|\beta\| /(1+\alpha\|\beta\|) \quad \psi^{\prime}\left(0^{+}\right)=\alpha$
10. $\psi(\beta)=1-\exp \left(-\alpha \beta^{2}\right)$	14. $\psi(0)=0, \psi(\beta)=1, \forall \beta \neq 0$ discont.
11. $\psi(\beta)=-\log \left(\exp \left(-\alpha \beta^{2}\right)+1\right)$	15. $\psi(\beta)=\log (\alpha\|\beta\|+1) \quad \psi^{\prime}\left(0^{+}\right)=\alpha$
	16. $\int_{0}^{\beta} \psi^{\prime}(u) d u \quad \psi^{\prime}(\|\beta\|)$
	$=\alpha\left\{I\{\|\beta\| \leq \alpha\}+\frac{(a \alpha-\|\beta\|)_{+}}{(a-1) \alpha}\{\|\beta\|>\alpha\}\right\}$
$a>2$	

Penalties and regularization

Smooth regularization: $J(\boldsymbol{\beta})=\sum_{k=1}^{r} \gamma_{k} \psi\left(d_{k}^{T} \boldsymbol{\beta}\right)$

- Convex penalties: typically consider $J(\boldsymbol{\beta})=\boldsymbol{\beta}^{T} D(\boldsymbol{\gamma}) \boldsymbol{\beta}$
$D(\gamma)$ positive definite matrix; examples:
- $D(\gamma)$ diagonal matrix with elements γ_{k}

$$
J(\boldsymbol{\beta})=\sum_{k} \gamma_{k} \beta_{k}^{2} \quad \psi(\beta)=\beta^{2} \quad d_{k}=e_{k}
$$

- $D(\gamma)$ a banded matrix corresponding to a quadratic form of finite differences of components of β

how to solve the optimization problem?

\diamond for fixed λ and γ : estimator of β is obtained recursively by an iterated re-weighted least squares algorithm (cfr generalized linear models)
\diamond with quadratic regularization: more or less like classical maximum penalized likelihood; may not be acceptable when the function to recover is less regular

- in the later case use non-quadratic convex penalties
- EXAMPLE: hyperbolic potential $\psi(t)=\sqrt{\alpha+t^{2}}$ is very frequently used is a smooth approximation to $|t|$, since $\psi(t) \rightarrow|t|$ as $\alpha \searrow 0$
- main characteristics of these functions (cfr $1-5$ in Table 1): $\psi(\cdot)$ has a strict minimum at zero and $\psi^{\prime}(\cdot)$ is almost constant (but >0) except in a nhd of the origin
- when $L_{\mathbf{y}}$ is strictly concave and ψ is convex, or $L_{\mathbf{y}}$ is concave and ψ is strictly convex, the penalized \log-likelihood $Z_{n}(\boldsymbol{\beta})$ is guaranteed to have a unique maximizer
- Non-convex penalties
- typically $\psi(t)$ is (nearly) constant for large values of $|t|$ (cfr 8-11 in Table 2)
- main difficulty: the penalized log-likelihood $Z_{n}(\boldsymbol{\beta})$ is non-concave and may exhibit a large number of local maxima
- no way to guarantee the finding of a global maximizer
- computational cost is generally high

Non-smooth regularization: $J(\boldsymbol{\beta})=\sum_{k=1}^{r} \gamma_{k} \psi\left(d_{k}^{T} \boldsymbol{\beta}\right)$
to estimate less regular fct's: use penalties that are singular at zero

- L_{1} LASSO penalty: $\psi(\beta)=|\beta|$ non-smooth at zero, but convex $(\longrightarrow$ sparse solutions, asympt. optimal minimax estimators, ...)
- hyperbolic potential $\psi(\beta)=\sqrt{\alpha+\beta^{2}}$ is a smooth version of the LASSO penalty, also convex
- Smoothed Clipped Absolute Deviation (SCAD) penalty (cfr nr 16) non-smooth, non-convex
solving the optimization problem?
non-convex penalties: difficult (or even impossible) task convex non-smooth at the origin penalties: feasible task (see later)

Optimization of the penalized likelihood

general: some elements from optimization theory

- the function $\boldsymbol{\beta} \rightarrow-Z_{n}(\boldsymbol{\beta})$ is said to be coercive if

$$
\lim _{\|\boldsymbol{\beta}\| \rightarrow+\infty}-Z_{n}(\boldsymbol{\beta})=+\infty
$$

- since $J(\boldsymbol{\beta})$ is nonnegative, function $\boldsymbol{\beta} \rightarrow J(\boldsymbol{\beta})$ is bounded by below if in addition $\boldsymbol{\beta} \rightarrow L_{\mathbf{y}}(\boldsymbol{\beta})$ is bounded above, then $-Z_{n}$ is coercive if at least one of the two terms J or $-L_{\mathbf{y}}$ is coercive
- for Gaussian and Poisson nonp. GLM models, $-Z_{n}(\boldsymbol{\beta})$ is coercive
- for Bernoulli nonparametric GLM model, $-Z_{n}(\boldsymbol{\beta})$ is not coercive the addition of a suitable penalty term (e.g. a quadratic term) to $J(\boldsymbol{\beta})$ makes $-Z_{n}(\boldsymbol{\beta})$ coercive (see e.g. Park \& Hastie (2006))
in general: existence and uniqueness of solutions
- if $-Z_{n}$ is coercive, for every $c \in \mathbb{R}$, the set $\left\{\boldsymbol{\beta}:-Z_{n}(\boldsymbol{\beta}) \leq c\right\}$ is bounded
- if Z_{n} is continuous the value $\sup _{\boldsymbol{\beta}} Z_{n}$ is finite and the set of the optimal solutions $\left\{\widehat{\boldsymbol{\beta}} \in \mathbb{R}^{p}: Z_{n}(\widehat{\boldsymbol{\beta}})=\sup _{\boldsymbol{\beta} \in \mathbb{R}^{p}} Z_{n}\right\}$ is nonempty and compact
- in general, beyond its global maxima, Z_{n} may exhibit local maxima
- if in addition Z_{n} is strictly concave, then for every $\mathbf{y} \in \mathbb{R}^{n}$, there is a unique maximizer
- analyzing the maximizers of a non-concave Z_{n} is much more difficult
- in the Gaussian case with $\mathbf{H}^{T} \mathbf{H}$ invertible and J non-convex, the regularity of local and global maximizers of Z_{n} has been studied by Durand \& Nikolova (2005) and Nikolova (2005)
assume: penalties are symmetric and nonnegative
consider 2 situations in our nonparametric GLM models:

$$
\text { Geman's class of penalties and } \quad \underline{\delta-c l a s s} \text { of penalties }
$$

\diamond Geman's class of penalties: functions ψ satisfying

- ψ is in \mathcal{C}^{2} and convex on $[0,+\infty[$
- $t \rightarrow \psi(\sqrt{t})$ is concave $[0,+\infty[$
- $\psi^{\prime}(t) / t \rightarrow M<\infty$ as $t \rightarrow \infty$
- $\lim _{t \nearrow 0} \psi^{\prime}(t) / t$ exists
we have shown the existence of a unique solution and discuss a computational algorithm to find it (via half-quadratic optimization)
examples of such penalties: numbers 2, 3, 4 and 5 in Table 1
$\diamond \underline{\delta \text {-class }}$ of penalties: penalties with properties
- ψ is monotone increasing on $[0,+\infty[$
- ψ is in \mathcal{C}^{1} on $\mathbb{R} \backslash\{0\}$ and continuous in 0
- $\lim _{t \rightarrow 0} \psi^{\prime}(t) t=0$
named δ-class: since it essentially consists of penalties that are non smooth at the origin but can be approximated by a quadratic function in a δ-nhd of the origin
for this class we will find an approximate solution to the optimization problem and provide bias and variance expressions

Optimalization with penalties in the δ-class
how to deal with nondifferentiabilty of such penalties?
approximate penalized log-likelihood $Z_{n}(\boldsymbol{\beta})$ by $Z_{\delta}(\boldsymbol{\beta})$ by replacing penalty $J(\boldsymbol{\beta})=\sum_{k} \gamma_{k} \psi\left(\beta_{k}\right)$ by $J_{\delta}(\boldsymbol{\beta})=\sum_{k} \gamma_{k} \psi_{\delta}\left(\beta_{k}\right)$
ψ_{δ} : fct equal to ψ away from 0 (at a distance $\delta>0$) and a "smooth quadratic" version of ψ in a δ-nhd of zero (e.g. Tishler \& Zang (1982))

- define smooth version of ψ :

$$
\psi_{\delta}(s)=\left\{\begin{array}{lll}
\psi(s) & \text { if } & s>\delta \\
\frac{\psi^{\prime}(\delta)}{2 \delta} s^{2}+\left[\psi(\delta)-\psi^{\prime}(\delta) \delta / 2\right] & \text { if } & 0 \leq s \leq \delta
\end{array}\right.
$$

- then

$$
\psi_{\delta}^{\prime \prime}(s)=\left\{\begin{array}{lll}
\psi^{\prime \prime}(s) & \text { if } & s>\delta \\
\frac{\psi^{\prime}(\delta)}{\delta} & \text { if } & 0 \leq s \leq \delta
\end{array}\right.
$$

and for all $s \geq 0 \quad \lim _{\delta \downarrow 0} \psi_{\delta}(s)=0$

- score function for the approximate penalized log-likelihood $Z_{\delta}(\boldsymbol{\beta})$

$$
\left.s(\mathbf{y}, \boldsymbol{\beta})=\left(\partial L_{\mathbf{y}}(\boldsymbol{\beta}) / \partial \beta_{j}\right)_{j=1, \ldots, p}\right)
$$

$$
\mathbf{g}_{\delta}(\boldsymbol{\beta})=(p \times 1) \text { vector with corresponding } j \text {-th component } g_{\delta}\left(\left|\beta_{j}\right|\right)
$$

$$
g_{\delta}\left(\left|\beta_{j}\right|\right)=\left\{\begin{array}{lll}
-\psi_{\delta}^{\prime}\left(\left|\beta_{j}\right|\right) & \text { if } & \beta_{j} \geq 0 \\
+\psi_{\delta}^{\prime}\left(\left|\beta_{j}\right|\right) & \text { if } & \beta_{j}<0
\end{array}\right.
$$

- for any $\boldsymbol{\beta}$ fixed:

$$
\begin{gathered}
\lim _{\delta \downarrow 0} \mathbf{g}_{\delta}(\boldsymbol{\beta})=\mathbf{g}(\boldsymbol{\beta}) \\
\mathbf{g}(\boldsymbol{\beta})=\left(g\left(\left|\beta_{1}\right|\right), \ldots, g\left(\left|\beta_{p}\right|\right)\right)^{T} \text { with } g\left(\left|\beta_{p}\right|\right)=\psi^{\prime}\left(\beta_{j} \mid\right) I\left\{\beta_{j} \neq 0\right\}
\end{gathered}
$$

- score function $u_{\delta}(\boldsymbol{\beta})$ converges to $u(\boldsymbol{\beta})$ as $\delta \downarrow 0$, where

$$
u(\boldsymbol{\beta})=s(\mathbf{y}, \boldsymbol{\beta})+\lambda D(\gamma) \mathbf{g}(\boldsymbol{\beta})
$$

- $\widehat{\boldsymbol{\beta}}(\delta)$, a root of approximate penalized score equations (i.e. $\left.u_{\delta}(\widehat{\boldsymbol{\beta}}(\delta))=0\right)$
- since penalty function ψ_{δ} is strictly convex, such an estimator exists and is unique even in situations where the maximum likelihood principle diverges
- fast computation of the estimator can be done by standard Fisher scoring procedure

Statistical properties \& Asymptotic analysis

Bias and variance $p<n$ for δ-class penalties

- sample bias and variance properties
- for fixed diagonal matrix $D(\gamma)$ of weights and fixed penalization parameter λ : let $\boldsymbol{\beta}^{*}$ be a maximizer of the expected penalized log-likelihood
- in case of uniqueness: equivalent to root of the expected penalized score equation, i. e. $\mathbb{E}\left(u\left(\boldsymbol{\beta}^{*}\right)\right)=0$
- what is the estimation error induced by our regularized procedure?
linear Taylor expansion

$$
\begin{aligned}
& 0=u_{\delta}(\widehat{\boldsymbol{\beta}}(\delta)) \approx u_{\delta}\left(\boldsymbol{\beta}^{*}\right)+\left\{\mathbf{H}_{L}\left(\boldsymbol{\beta}^{*}\right)+\lambda D(\gamma) G\left(\boldsymbol{\beta}^{*} ; \delta\right)\right\}\left(\widehat{\boldsymbol{\beta}}(\delta)-\boldsymbol{\beta}^{*}\right) \\
& G\left(\boldsymbol{\beta}^{*} ; \delta\right)=\text { diag. matrix with entries } \partial g_{\delta}\left(\left|\beta_{j}\right|\right) / \partial \beta_{j}=\psi_{\delta}^{\prime \prime}\left(\left|\beta_{j}\right|\right)
\end{aligned}
$$

$$
\text { we get : } \widehat{\boldsymbol{\beta}}(\delta)-\boldsymbol{\beta}^{*} \approx\left\{\mathbf{H}_{L}\left(\boldsymbol{\beta}^{*}\right)+\lambda D(\boldsymbol{\gamma}) G\left(\boldsymbol{\beta}^{*} ; \delta\right)\right\}^{-1} u_{\delta}\left(\boldsymbol{\beta}^{*}\right)
$$

- since β^{*} is a root of $\mathbb{E}(u(\boldsymbol{\beta}))$, we have $\mathbb{E}\left(u_{\delta}\left(\boldsymbol{\beta}^{*}\right)\right)=\lambda D(\boldsymbol{\gamma}) \mathbf{g}_{\delta}\left(\boldsymbol{\beta}^{*}\right)$ and therefore
- $\widehat{\boldsymbol{\beta}}(\delta)$ has bias $\left\{\mathbf{H}_{L}\left(\boldsymbol{\beta}^{*}\right)+\lambda D(\gamma) G\left(\boldsymbol{\beta}^{*} ; \delta\right)\right\}^{-1} \mathbb{E}\left(u_{\delta}\left(\boldsymbol{\beta}^{*}\right)\right)$

$$
\operatorname{var}(\widehat{\boldsymbol{\beta}}(\delta))=\left\{\mathbf{H}_{L}\left(\boldsymbol{\beta}^{*}\right)+\lambda D(\boldsymbol{\gamma}) G\left(\boldsymbol{\beta}^{*} ; \delta\right)\right\}^{-1} \operatorname{var}\left(s\left(\mathbf{y}, \boldsymbol{\beta}^{*}\right)\right)\left\{\mathbf{H}_{L}\left(\boldsymbol{\beta}^{*}\right)+\lambda D(\boldsymbol{\gamma}) G\left(\boldsymbol{\beta}^{*} ; \delta\right)\right\}^{-1}
$$

- bias and variance depend on the behavior of the eigenvalues of $\left\{\mathbf{H}_{L}\left(\boldsymbol{\beta}^{*}\right)+\lambda D(\boldsymbol{\gamma}) G\left(\boldsymbol{\beta}^{*} ; \delta\right)\right\}^{-1}$ and their limits as $\delta \downarrow 0$ with $\lambda>0$ fixed (\longrightarrow detailed study)

General Asymptotic Analysis

AIM: obtain asymptotic results of estimators $\widehat{\boldsymbol{\beta}}_{n}$ minimizing
$-Z_{n}(\boldsymbol{\beta})=\frac{1}{n} \sum_{i=1}^{n} \ell\left(y_{i}, \mathbf{h}\left(x_{i}\right) \boldsymbol{\beta}\right)-\lambda J(\boldsymbol{\beta}) \equiv \frac{1}{n} L_{\mathbf{y}}(\boldsymbol{\beta})-\lambda J(\boldsymbol{\beta})$
2 cases: $\quad p$ fixed and finite and $\quad p=p_{n}$ and $p_{n} \rightarrow \infty$
case p fixed and finite
under regularity conditions (on the log-likelihood; cfr conditions that guarantee normality of ordinary MLE)
$a_{n}=\lambda_{n} \max \left\{\gamma_{j} \psi^{\prime}\left(\left|\beta_{0 j}\right|\right) ; \beta_{0 j} \neq 0\right\}<\infty$
THEOREM: Let the probability density of our model satisfy the regularity conditions. Assume $\lambda_{n} \rightarrow 0$ as $n \rightarrow \infty$. If $b_{n}:=\lambda_{n} \max \left\{\gamma_{j}\left|\psi^{\prime \prime}\left(\left|\beta_{0 j}\right|\right)\right| ; \beta_{0 j} \neq 0\right\} \rightarrow 0$, then there exists a local minimizer $\widehat{\boldsymbol{\beta}}_{n}$ of the penalized likelihood such that $\left\|\widehat{\boldsymbol{\beta}}-\beta_{0}\right\|=O_{P}\left(n^{-1 / 2}+a_{n}\right)$
case $p=p_{n}$ and $p_{n} \rightarrow \infty$
for some non-concave penalized likelihood function; see e.g. Fan \& Peng (2004)

Regularity conditions (on penalty and on growth rate of dim. p_{n})
(a) $\liminf _{\beta \rightarrow 0^{+}} \psi^{\prime}(\beta)>0$
(b) $a_{n}=O\left(n^{-1 / 2}\right)$
(c) $a_{n}=o\left(\left(n p_{n}\right)^{-1 / 2}\right)$
(d) $b_{n}=\max _{1 \leq j \leq p_{n}}\left\{\gamma_{j}\left|\psi^{\prime \prime}\left(\left|\beta_{j}\right|\right)\right| ; \beta_{j} \neq 0\right\} \rightarrow 0$
(e) $b_{n}=o_{P}\left(p_{n}^{-1 / 2}\right)$
(f) exists C and D such that when x_{1} and $x_{2}>C \lambda_{n}$,

$$
\lambda_{n}\left|\psi^{\prime \prime}\left(x_{1}\right)-\psi^{\prime \prime}\left(x_{2}\right)\right| \leq D\left|x_{1}-x_{2}\right|
$$

under such conditions previous theorem extends to case $p_{n} \rightarrow \infty$

Choice of the regularization parameters

- L-curve approach adapted to Generalized linear model context Belge, Kilmer \& Miller (2002)
- Alternative approach
estimated predictor depends on scaling of basisfct's
overcoming drawback by standardizing basisfct's in advance

$$
\bar{h}_{j}=\frac{1}{n} \sum_{i=1}^{n} h_{j}\left(x_{i}\right) \quad \widetilde{s}_{j}^{2}=\frac{1}{n} \sum_{i=1}^{n}\left[h_{j}\left(x_{i}\right)-\bar{h}_{j}\right]^{2}
$$

adjust threshold parameters γ_{k} appropriately: $\gamma_{k}=\sqrt{\widetilde{s}_{k}^{2}}$
with this choice, any scaled version $\kappa[\mathbf{H}(\mathbf{x})]_{j}$ would yield the threshold $\widetilde{\gamma}_{k}=|\kappa| \gamma_{k}$
data-driven choices: $\gamma_{k}=\sqrt{\widetilde{s}_{k}^{2}}$, select λ by Generalized Cross Validation

Simulations and example

test functions: with jumps or with discontinuities in derivatives

Quadratic loss
Gaussian noise
2 test functions: heavisine function and corner function
100 simulations in each experiment (same design points each time; from uniform $\mathrm{U}(0,1)$)
signal-to-noise ratio is $4\left(=\sqrt{\operatorname{Var}(f(X)) / \sigma^{2}}\right) \quad n=200$

4 procedures (all based on regression splines):

- Ridge regression (quadratic loss and L_{2} penalty on coeff.)
- LASSO regression (quadratic loss and L_{1} penalty on coeff.)
- SARS Spatially Adaptive Regression Splines (Zhou \& Shen (2001))
- Half-Quadratic regularization procedure (quadratic loss and hyperbolic potential $\psi(\beta)=\sqrt{\alpha+\beta}$; convex and smooth)
truncated power basis of degree 3, with 40 equispaced knots;
threshold parameters selected adjusting to stdev of each basis function; smoothing parameter λ selected by 10 -fold GCV
for SARS procedure: default values of hyperparameters
measure of quality: $\operatorname{MASE}(\widehat{\eta})=\frac{1}{n} \sum_{i=1}^{n}\left(\widehat{\eta}\left(x_{i}\right)-\eta\left(x_{i}\right)\right)^{2}$

Poisson regression
$Y_{i} \sim \operatorname{Poisson}\left(\mu\left(x_{i}\right)\right) \quad \mu(\cdot)=$ exponential (heavisine function)
SARS not designed for treating Poisson distributed data
3 procedures:

- Ridge regression
- Half-Quadratic regularization procedure
- SPIC procedure by Imoto \& Konishi (2003); B-splines procedure based on an information criterion
truncated power basis of degree 3, with 40 equispaced knots;
threshold and smoothing parameters: as before
for SPIC procedure: B-splines with 30 knots; smoothing parameter selected by SPIC procedure

Analysis of AIDS data

AIDS data (Stasinopoulos \& Rigby (1992))
concerns the quarter yearly frequency count of reported AIDS cases in the UK from January 1983 to September 1990
after deseasonalising this time series, one suspects a break in the relationship between the number of AIDS cases and the time measured in quarter years
model Y (deseasonalised frequency of AIDS cases) by a Poisson distribution with mean a polynomial spline function of x, the time measured in quarter years
use half quadratic procedure (HQ) with spline basis based on 12 knots
seemingly a break point at about July 1987 as also suggested by Stasinopoulos \& Rigby (1992)

Figure 4: Simulated example: Gaussian noise; heavis ine function.

Figure 5: Simulated example: Gaussian noise; corner function.

Figure 6: Simulated data: Poisson regression; exp (heavisine) function.

Figure 7: Simulated data: Poisson regression; exp (heavisine) function.

Figure 8: Half Quadratic penalized fit to the deseasonalized AIDS data.

