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Introduction: models and basic elements

Generalized models

Y : response variable X: covariate (univariate)

cond. distrib. of Y given X = x is from an exponential family distr.

fY |X(y|x) = exp
(
yθ(x)−b(θ(x))

φ + c(yi, φ)
)

b(·) and c(·) known functions; φ : known scale parameter

θ(·) unknown function

E(Y |X = x) = b′(θ(x)) = µ(x) Var(Y |X = x) = φ b′′(θ(x))

g(µ(x)) = η(x) g the link function

η(·) the predictor function, to be estimated

generalized linear models: η(x) = a linear function of x
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Examples

• Normal regression with additive errors: fY |X(y|x) ∼ N
(
µ(x);σ2

)

link function: g(t) = t (identity) predictor fct η(x) = µ(x)

• Logistic regression: fY |X(y|x) ∼ Bernoulli (1;µ(x))

0-1 response type of variable Y µ(x)= conditional probab.

link fct: g(t) = log
t

1 − t
(logit) predictor fct η(x) = log µ(x)

1−µ(x)

• Poisson regression: fY |X(y|x) ∼ Poisson (µ(x))

counts type of r.v. Y µ(x)= Poisson intensity function

link function: g(t) = log(t) predictor fct η(x) = log (µ(x))

McCullagh & Nelder (1989)

Trieste, Italy, September-October 2007 p.2



regression analysis:

from observations (x1, y1), (x2, y2), . . . , (xn, yn)

estimate the predictor function η(·)

• standard parametric model: η(x) = η(x; β)

ex.: generalized linear models; η(x; β) a function linear in β

• nonparametric estimation: several techniques

penalized log-likelihood:

maximize Zn(η) = 1
n

n∑

i=1

ℓ(yi, η(xi)) − λJ(η)

ℓ =log-likelihood J(·) is a roughness functional (penalty)

1st term: discourages the lack of fit of η to the data
2nd term: penalizes the roughness of η
λ > 0: smoothing parameter controling trade-off between 2 terms
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flexible estimation approach:

represent η(·) as a linear combination of known basis functions
h1(x), h2(x), · · · , hp(x)

η(x) =

p∑

k=1

βkhk(x) k = 1, . . . , p

AIM: estimate the coefficients β = (β1, . . . , βp)
T

examples of basis functions: wavelets, polynomial splines, ...

crucial choice: number p of basis functions

◦ small p: may not be flexible enough to capture variability of
data

◦ large p: may lead to overfitting

regularization: use a highly parametrized model and impose a
penalty on large fluctuations of fitted curve
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notations:

x = (x1, x2, · · · , xn) y = (y1, y2, · · · , yn) β = (β1, . . . , βp)
T

H(x) =




h1(x1) h2(x1) · · · hp(x1)

h1(x2) h2(x2) · · · hp(x2)
...

...
...

h1(xi) h2(xi) · · · hp(xi)
...

...
...

h1(xn) h2(xn) · · · hp(xn)




matrix of dim n× p

h(xi) = (h1(xi), h2(xi), · · · , hp(xi)) vector of dim 1 × p

objective function to be maximized in some function space

Zn(β) = 1
n

n∑

i=1

ℓ(yi,h(xi)β) − λJ(β) ≡ 1

n
Ly(β) − λJ(β)
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for given basisfunctions h1(·), · · · , hp(·), penalty function J(·) and
smoothing parameter λ

maximize Zn(β) = 1
n

n∑

i=1

ℓ(yi,h(xi)β) − λJ(β) ≡ 1

n
Ly(β) − λJ(β)

η(xi) = h(xi)β g(µ(xi)) = η(xi) = h(xi)β i = 1, · · · , n

allow p to be large, and control the risk of overfitting the data by using
an adequate penalty J on the coefficients

Eilers & Marx (1996), Ruppert & Carroll (2000), ...

what choice of basisfunctions?
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Truncated power basis

knot points t1 < t2 < · · · < tK

d integer, d ≥ 1

truncated power basis for polynomial of degree d regression
splines with knots t1 < t2 < · · · < tK

{
1, x, . . . , xd, (x− t1)

d
+, . . . , (x− tK)d+

}
z+ = max(z, 0)

continuous up to (d− 1)st derivative
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representation of a univariate function f in terms of these
(d+ 1 +K) basis functions

f(x) =

d∑

k=0

βkx
k +

K∑

j=1

βp+j(x− tj)
d
+

each coefficient βd+j is identified as a jump in the d-th derivative
of f at the corresponding knot (−→ easy interpretation )

sometimes not desirable because computationally less stable

de Boor (1978) and Dierckx (1993)
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B-splines basis de Boor (1978), Eilers & Marx (1996)

◦ normalized B-splines basis of order q with knots
0 < t1 < · · · < tK < 1: set of degree (q − 1) splines

{BqKj , j = 1, . . . , q +K}

◦ functions BqKj are positive and have local support: are non-zero
only on an interval which covers no more than q + 1 knots

◦ equivalently: at any point x there are no more than q B-splines
that are non-zero

◦ recursive relationship to describe B-splines; provides a very
stable numerical computation algorithm

◦ moderately large number of knots (usually between 20 and 40)
to ensure enough flexibility

◦ quadratic penalty based on differences of adjacent B-spline
coefficients to guarantee sufficient smoothness of fitted curves
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Figure 1: Illustration of B-spline constructed smooth curve.

dashed curves: scaled basis functions; heights are the coefficients

solid curve: resulting smooth curve as sum of scaled B-splines
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Penalized likelihood what choice of penalty function?

• quadratic regularization: J(β) = ‖β‖2
2

• in the setting of Bayesian MAP estimation and Markov random
fields (Geman & Clure (184, 1987), Besag (1974, 1989), ...):

J(β) =

r∑

k=1

γkψ(dTk β)

γk > 0 weights dk linear operators

◦ for ψ(·) convex: J pushes solution β̂ to be s.t. |dTk β̂| is small

◦ in particular: if dk are finite difference operators, neighboring
coefficients of β̂ are encouraged to have similar values (β̂
involves homogeneous zones)

◦ if dk = ek, then J encourages the components β̂k to have
small magnitude
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• choice of J(β) depends strongly on the basis functions used

• for a truncated power basis functions of degree d; coefficients of
basis functions at the knots involve jumps of d-th derivative (large
coeff. are associated with singularities in the fct):

J(β) =
∑

k

γkψ(βk) γk > 0

no reason that neighboring coefficients of β have close values

• example: ψ(·) = | · |

Mammen & Van de Geer (1997), Ruppert & Carroll (1997), Yu &

Ruppert (2001), Antoniadis & Fan (2001), ....
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Figure 2: Behavior of coeff. of function in a truncated power basis.
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• for B-splines basis: penalties on neighbor B-spline coeff. ensure
that neighboring coeff. do not differ too much from each other
when η is smooth

• absolute values of first order or second order differences are
maximum at singularity points of curve

• penalties such as J(β) =
r∑

k=1

γkψ(dTk β) are more adequate
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Figure 3: Behavior of coefficients of function in a B-splines basis.
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J(β) =
∑

k

γkψ(βk) J(β) =
r∑

k=1

γkψ(dTk β)

general type of penalty functions ψ(·)

⋄ L2 or quadratic penalty ψ(β) = |β|2 ridge type regression

⋄ L1 penalty ψ(β) = |β| LASSO type regression

Donoho & Johnstone (1994), Tibshirani (1996), Klinger (2000) ...

⋄ Lq (0 ≤ q ≤ 1) penalty ψ(β) = |β|q bridge regression

Frank & Friedman (1993), Ruppert & Carroll (1997), Fu (1998), Knight &

Fu (2000), Yu & Ruppert (2001), ...
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• usually: ψ symmetric around 0 and increasing on [0,+∞)

• ψ can be convex or non-convex, smooth or non-smooth

what is a good penalty function? Antoniadis & Fan (2001)

◦ gives an estimator that avoids excessive bias (unbiasedness)

◦ forces sparse solutions to reduce model complexity (sparsity)

◦ avoids unnecessary variation (stability)

◦ from computational viewpoint: resulting optimization problem
should be (easily) solvable

AIM: summarize and unify mean features of ψ(·) that determine es-
sential properties of maximizer β̂ of Zn(β)
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Convex

Smooth at zero Singular at zero

1. ψ(β) = |β|α, α > 1 6. ψ(β) = |β| ψ′(0+) = 1

2. ψ(β) =
p

α+ β2 7. ψ(β) = α2 − (|β| − α)2I{|β| < α}

3. ψ(β) = log(cosh(αβ)) ψ′(0+) = 2α

4. ψ(β) = β2 − (|β| − α)2I{|β| > α}.

5. ψ(β) = 1 + |β|/α− log (1 + |β|/α)

Nonconvex

Smooth at zero Singular at zero

8. ψ(β) = αβ2/(1 + αβ2) 12. ψ(β) = |β|α, α ∈ (0, 1) ψ′(0+) = ∞

9. ψ(β) = min{αβ2, 1} 13. ψ(β) = α|β|/(1 + α|β|) ψ′(0+) = α

10. ψ(β) = 1 − exp (−αβ2) 14. ψ(0) = 0, ψ(β) = 1, ∀β 6= 0 discont.

11. ψ(β) = − log

�
exp(−αβ2) + 1

�
15. ψ(β) = log(α|β| + 1) ψ′(0+) = α

16.

R β

0 ψ′(u)du ψ′(|β|)

= α{I{|β| ≤ α} +
(aα−|β|)+

(a−1)α
{|β| > α}}

a > 2
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Penalties and regularization

Smooth regularization: J(β) =

r∑

k=1

γkψ(dTk β)

• Convex penalties: typically consider J(β) = βTD(γ)β

D(γ) positive definite matrix; examples:

◦ D(γ) diagonal matrix with elements γk

J(β) =
∑

k

γkβ
2
k ψ(β) = β2 dk = ek

◦ D(γ) a banded matrix corresponding to a quadratic form of
finite differences of components of β
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how to solve the optimization problem?

⋄ for fixed λ and γ: estimator of β is obtained recursively by an
iterated re-weighted least squares algorithm (cfr generalized
linear models)

⋄ with quadratic regularization: more or less like classical maximum
penalized likelihood; may not be acceptable when the function to
recover is less regular

Trieste, Italy, September-October 2007 p.19



◦ in the later case use non-quadratic convex penalties

◦ EXAMPLE: hyperbolic potential ψ(t) =
√
α+ t2 is very

frequently used
is a smooth approximation to |t|, since ψ(t) → |t| as αց 0

◦ main characteristics of these functions (cfr 1—5 in Table 1):
ψ(·) has a strict minimum at zero and ψ′(·) is almost constant
(but > 0) except in a nhd of the origin

◦ when Ly is strictly concave and ψ is convex, or Ly is concave
and ψ is strictly convex, the penalized log-likelihood Zn(β) is
guaranteed to have a unique maximizer
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• Non-convex penalties

◦ typically ψ(t) is (nearly) constant for large values of |t| (cfr
8—11 in Table 2)

◦ main difficulty: the penalized log-likelihood Zn(β) is
non-concave and may exhibit a large number of local maxima

◦ no way to guarantee the finding of a global maximizer

◦ computational cost is generally high
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Non-smooth regularization: J(β) =

r∑

k=1

γkψ(dTk β)

to estimate less regular fct’s: use penalties that are singular at zero

• L1 LASSO penalty: ψ(β) = |β| non-smooth at zero, but convex
(−→ sparse solutions, asympt. optimal minimax estimators, ...)

• hyperbolic potential ψ(β) =
√
α+ β2 is a smooth version of the

LASSO penalty, also convex

• Smoothed Clipped Absolute Deviation (SCAD) penalty (cfr nr 16)

non-smooth, non-convex

solving the optimization problem?

non-convex penalties: difficult (or even impossible) task
convex non-smooth at the origin penalties: feasible task (see later)
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Optimization of the penalized likelihood

general: some elements from optimization theory

• the function β → −Zn(β) is said to be coercive if

lim
‖β‖→+∞

−Zn(β) = +∞

• since J(β) is nonnegative, function β → J(β) is bounded by below

if in addition β → Ly(β) is bounded above, then −Zn is coercive
if at least one of the two terms J or −Ly is coercive

• for Gaussian and Poisson nonp. GLM models, −Zn(β) is coercive

• for Bernoulli nonparametric GLM model, −Zn(β) is not coercive

the addition of a suitable penalty term (e.g. a quadratic term) to
J(β) makes −Zn(β) coercive (see e.g. Park & Hastie (2006))
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in general: existence and uniqueness of solutions

• if −Zn is coercive, for every c ∈ IR, the set {β : −Zn(β) ≤ c} is
bounded

• if Zn is continuous the value supβ Zn is finite and the set of the

optimal solutions {β̂ ∈ IRp : Zn(β̂) = supβ∈IRp Zn} is nonempty
and compact

• in general, beyond its global maxima, Zn may exhibit local maxima

• if in addition Zn is strictly concave, then for every y ∈ IRn, there is
a unique maximizer

• analyzing the maximizers of a non-concave Zn is much more
difficult

• in the Gaussian case with HTH invertible and J non-convex, the
regularity of local and global maximizers of Zn has been studied
by Durand & Nikolova (2005) and Nikolova (2005)
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assume: penalties are symmetric and nonnegative

consider 2 situations in our nonparametric GLM models:

Geman’s class of penalties and δ-class of penalties

⋄ Geman’s class of penalties: functions ψ satisfying

• ψ is in C2 and convex on [0,+∞[

• t→ ψ(
√
t) is concave [0,+∞[

• ψ′(t)/t→M <∞ as t→ ∞
• lim
tր0

ψ′(t)/t exists

we have shown the existence of a unique solution and discuss a
computational algorithm to find it (via half-quadratic optimization)

examples of such penalties: numbers 2, 3, 4 and 5 in Table 1
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⋄ δ-class of penalties: penalties with properties

• ψ is monotone increasing on [0,+∞[

• ψ is in C1 on IR\{0} and continuous in 0

• limt→0 ψ
′(t)t = 0

named δ-class: since it essentially consists of penalties that are
non smooth at the origin but can be approximated by a quadratic
function in a δ-nhd of the origin

for this class we will find an approximate solution to the
optimization problem and provide bias and variance expressions
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Optimalization with penalties in the δ-class

how to deal with nondifferentiabilty of such penalties?

approximate penalized log-likelihood Zn(β) by Zδ(β) by replacing
penalty J(β) =

∑

k

γkψ(βk) by Jδ(β) =
∑

k

γkψδ(βk)

ψδ : fct equal to ψ away from 0 (at a distance δ > 0) and a “smooth
quadratic” version of ψ in a δ-nhd of zero (e.g. Tishler & Zang (1982))

◦ define smooth version of ψ:

ψδ(s) =





ψ(s) if s > δ
ψ′(δ)
2δ s2 + [ψ(δ) − ψ′(δ)δ/2] if 0 ≤ s ≤ δ

◦ then

ψ′′
δ (s) =





ψ′′(s) if s > δ
ψ′(δ)
δ if 0 ≤ s ≤ δ

and for all s ≥ 0 limδ↓0 ψδ(s) = 0
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◦ score function for the approximate penalized log-likelihood Zδ(β)

uδ(β) = s(y,β) + λD(γ)gδ(β)

s(y,β) = (∂Ly(β)/∂βj)j=1,...,p

gδ(β) = (p× 1) vector with corresponding j-th component gδ(|βj |)

gδ(|βj |) =





−ψ′
δ(|βj |) if βj ≥ 0

+ψ′
δ(|βj |) if βj < 0

◦ for any β fixed:
lim
δ↓0

gδ(β) = g(β)

g(β) = (g(|β1|), . . . , g(|βp|))T with g(|βp|) = ψ′(βj |)I{βj 6= 0}

◦ score function uδ(β) converges to u(β) as δ ↓ 0, where

u(β) = s(y,β) + λD(γ)g(β)
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• β̂(δ), a root of approximate penalized score equations (i.e.
uδ(β̂(δ)) = 0)

• since penalty function ψδ is strictly convex, such an estimator
exists and is unique even in situations where the maximum
likelihood principle diverges

• fast computation of the estimator can be done by standard
Fisher scoring procedure
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Statistical properties & Asymptotic analysis

Bias and variance p < n for δ-class penalties

• sample bias and variance properties

• for fixed diagonal matrix D(γ) of weights and fixed penalization
parameter λ: let β∗ be a maximizer of the expected penalized
log-likelihood

• in case of uniqueness: equivalent to root of the expected
penalized score equation, i. e. E(u(β∗)) = 0

• what is the estimation error induced by our regularized procedure?

linear Taylor expansion

0 = uδ(β̂(δ)) ≈ uδ(β
∗)+{HL(β∗) + λD(γ)G(β∗; δ)} (β̂(δ)−β∗)

G(β∗; δ) = diag. matrix with entries ∂gδ(|βj |)/∂βj = ψ′′
δ (|βj |)
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we get : β̂(δ) − β∗ ≈ {HL(β∗) + λD(γ)G(β∗; δ)}−1
uδ(β

∗)

• since β∗ is a root of E(u(β)), we have E(uδ(β
∗)) = λD(γ)gδ(β

∗)

and therefore

• β̂(δ) has bias {HL(β∗) + λD(γ)G(β∗; δ)}−1
E(uδ(β

∗))

•

var(bβ(δ)) = {HL(β∗) + λD(γ)G(β∗; δ)}−1 var(s(y,β∗)) {HL(β∗) + λD(γ)G(β∗; δ)}−1

• bias and variance depend on the behavior of the eigenvalues of
{HL(β∗) + λD(γ)G(β∗; δ)}−1 and their limits as δ ↓ 0 with λ > 0

fixed (−→ detailed study)
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General Asymptotic Analysis

AIM: obtain asymptotic results of estimators β̂n minimizing

−Zn(β) = 1
n

n∑

i=1

ℓ(yi,h(xi)β) − λJ(β) ≡ 1

n
Ly(β) − λJ(β)

2 cases: p fixed and finite and p = pn and pn → ∞

case p fixed and finite

under regularity conditions (on the log-likelihood; cfr conditions that
guarantee normality of ordinary MLE)

an = λn max{γjψ′(|β0j |);β0j 6= 0} <∞

THEOREM: Let the probability density of our model satisfy the
regularity conditions. Assume λn → 0 as n→ ∞. If
bn := λn max{γj |ψ′′(|β0j |)|;β0j 6= 0} → 0, then there exists a
local minimizer β̂n of the penalized likelihood such that
‖β̂ − β0‖ = OP (n−1/2 + an)
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case p = pn and pn → ∞

for some non-concave penalized likelihood function; see e.g. Fan &

Peng (2004)

Regularity conditions (on penalty and on growth rate of dim. pn)

(a) lim infβ→0+ ψ′(β) > 0

(b) an = O(n−1/2)

(c) an = o((npn)
−1/2)

(d) bn = max1≤j≤pn
{γj |ψ′′(|βj |)|;βj 6= 0} → 0

(e) bn = oP (p
−1/2
n )

(f) exists C and D such that when x1 and x2 > Cλn,
λn|ψ′′(x1) − ψ′′(x2)| ≤ D|x1 − x2|

under such conditions previous theorem extends to case pn → ∞
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Choice of the regularization parameters

• L-curve approach adapted to Generalized linear model context
Belge, Kilmer & Miller (2002)

• Alternative approach

estimated predictor depends on scaling of basisfct’s

overcoming drawback by standardizing basisfct’s in advance

hj =
1

n

n∑

i=1

hj(xi) s̃2j =
1

n

n∑

i=1

[
hj(xi) − hj

]2

adjust threshold parameters γk appropriately: γk =
√
s̃2k

with this choice, any scaled version κ[H(x)]j would yield the
threshold γ̃k = |κ|γk

data-driven choices: γk =
√
s̃2k, select λ by Generalized Cross

Validation
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Simulations and example

test functions: with jumps or with discontinuities in derivatives

Quadratic loss

Gaussian noise

2 test functions: heavisine function and corner function

100 simulations in each experiment (same design points each time;
from uniform U(0, 1))

signal-to-noise ratio is 4 (=
√

Var(f(X))/σ2) n = 200
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4 procedures (all based on regression splines):

◦ Ridge regression (quadratic loss and L2 penalty on coeff.)

◦ LASSO regression (quadratic loss and L1 penalty on coeff.)

◦ SARS Spatially Adaptive Regression Splines (Zhou & Shen

(2001))

◦ Half-Quadratic regularization procedure (quadratic loss and
hyperbolic potential ψ(β) =

√
α+ β; convex and smooth)

truncated power basis of degree 3, with 40 equispaced knots;

threshold parameters selected adjusting to stdev of each basis
function; smoothing parameter λ selected by 10-fold GCV

for SARS procedure: default values of hyperparameters

measure of quality: MASE (η̂) =
1

n

n∑

i=1

(η̂(xi) − η(xi))
2
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Poisson regression

Yi ∼ Poisson(µ(xi)) µ(·) = exponential (heavisine function)

SARS not designed for treating Poisson distributed data

3 procedures:

◦ Ridge regression

◦ Half-Quadratic regularization procedure

◦ SPIC procedure by Imoto & Konishi (2003); B-splines procedure
based on an information criterion

truncated power basis of degree 3, with 40 equispaced knots;

threshold and smoothing parameters: as before

for SPIC procedure: B-splines with 30 knots; smoothing parameter
selected by SPIC procedure
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Analysis of AIDS data

AIDS data (Stasinopoulos & Rigby (1992))

concerns the quarter yearly frequency count of reported AIDS
cases in the UK from January 1983 to September 1990

after deseasonalising this time series, one suspects a break in the
relationship between the number of AIDS cases and the time
measured in quarter years

model Y (deseasonalised frequency of AIDS cases) by a Poisson
distribution with mean a polynomial spline function of x, the time
measured in quarter years

use half quadratic procedure (HQ) with spline basis based on 12
knots

seemingly a break point at about July 1987 as also suggested by
Stasinopoulos & Rigby (1992)
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Figure 6: Simulated data: Poisson regression; exp(heavisine)

function.
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