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Introduction: models and basic elements

Generalized models

Y. response variable X covariate (univariate)

cond. distrib. of Y given X = z is from an exponential family distr.

o 91e) = exp (0D )

b(-) and ¢(-) known functions; ¢ : known scale parameter
6(-) unknown function
EY|X =z)=0(0(z)) = p(x)  Var(Y[X =z) = ¢0"(0(x))
g(u(x)) =n(x) g the link function
n(-) the predictor function, to be estimated

generalized linear models: n(z) = a linear function of z
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Examples

. Normal regression with additive errors:  fy | x(y|z) ~ N (u(x); 0?)
link function: g(t) =t (identity) predictor fct n(x) = u(x)

. Logistic regression:  fyx (y|z) ~ Bernoulli (1; u(x))

0-1 response type of variable Y w(x)= conditional probab.

link fct: g(¢t) = log (logit)  predictor fct n(x) = log p(w)

1 —¢ 1—p(z)
. Poisson regression:  fy | x(y|z) ~ Poisson (u(x))
counts type of r.v. Y u(x)= Poisson intensity function
link function: g(t) = log(t) predictor fct n(x) = log (u(x))

McCullagh & Nelder (1989)
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regression analysis:
from observations (z1,v1), (z2,92), ..., (Tn, yn)
estimate the predictor function ()
. standard parametric model: n(z) = n(x; 3)
ex.. generalized linear models; n(x; 3) a function linear in 3
« honparametric estimation: several techniques

penalized log-likelihood:

3

maximize  Z,(n) =+ L(yi,n(z;)) — A (n)

1

¢ =log-likelihood J(-) is a roughness functional (penalty)

1st term: discourages the lack of fit of n to the data
2nd term: penalizes the roughness of n
A > 0: smoothing parameter controling trade-off between 2 terms

Trieste, Italy, September-October 2007



flexible estimation approach:

represent n(-) as a linear combination of known basis functions
hl(x)a hg(ﬂj), o 7hp(x)

0@) = Bhn(e)  k=1,...p
k=1

AIM: estimate the coefficients 8 = (61,...,8,)"
examples of basis functions: wavelets, polynomial splines, ...

crucial choice: number p of basis functions

o small p: may not be flexible enough to capture variability of
data

o large p: may lead to overfitting

regularization: use a highly parametrized model and impose a
penalty on large fluctuations of fitted curve
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notations:

X:(x175€27”'7xn) yz(yl,yz,---,yn) B:(ﬁlv“wﬁp)T

{ hi(z1) ha(z1) -+ hp(z1) \
hi(z2)  ha(z2) hp(x2)
H(x) = h1(::137;) hg(:ﬂfz') N hp(;j) matrix of dimn x p
\ Pi(@n) ha(an) - hylza) )

h(CIZZ) = (hl (xz), hQ(ZCZ'), IR ,hp(iﬁz)) vector of dim 1 x D

objective function to be maximized in some function space

Ly(B8) — AJ(B)

1
n

Z(B) = 3 Y Ui h(z:)B) — A (B) =
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for given basisfunctions Ay (-),--- , hy(-), penalty function J(-) and
smoothing parameter A

maximize  Z,(B8) = 1) l(y;,h(z;)B) — AJ(B) =

n(z;) = h(z;)B g(pu(x;)) = n(x;) = h(x;)B t=1,---,n

allow p to be large, and control the risk of overfitting the data by using
an adequate penalty .J on the coefficients

Eilers & Marx (1996), Ruppert & Carroll (2000), ...

what choice of basisfunctions?
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Truncated power basis
Knot points t1 <ty < --- < tg

d integer, d > 1

truncated power basis for polynomial of degree d regression
splines with knots 1 <ty < --- < tg

{1,:1:, ot (r =t (e — tK)Slr} 21 = max(z,0)

continuous up to (d — 1)st derivative
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representation of a univariate function f in terms of these
(d+ 1+ K) basis functions

d K
fl@) =) B’ + > Bprjlz — 1)
k=0 j=1
each coefficient 344 ; Is identified as a jump in the d-th derivative

of f at the corresponding knot (— easy interpretation )

sometimes not desirable because computationally less stable

de Boor (1978) and Dierckx (1993)
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B-splines basis de Boor (1978), Eilers & Marx (1996)

©)

normalized B-splines basis of order ¢ with knots
0<t; <---<tg <1:setof degree (¢ — 1) splines

{Bi;i=1,...,a+ K}
functions B}J{j are positive and have local support: are non-zero
only on an interval which covers no more than ¢ + 1 knots

equivalently: at any point x there are no more than ¢ B-splines
that are non-zero

recursive relationship to describe B-splines; provides a very
stable numerical computation algorithm

moderately large number of knots (usually between 20 and 40)
to ensure enough flexibility

guadratic penalty based on differences of adjacent B-spline
coefficients to guarantee sufficient smoothness of fitted curves
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Figure 1: lllustration of B-spline constructed smooth curve.

dashed curves: scaled basis functions; heights are the coefficients

solid curve: resulting smooth curve as sum of scaled B-splines
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Penalized likelihood what choice of penalty function?
. quadratic regularization: J(3) = ||3||3

. In the setting of Bayesian MAP estimation and Markov random
fields (Geman & Clure (184, 1987), Besag (1974, 1989), ...):

J(B) = i(diB)
k=1

v, > 0 weights d;. linear operators
o for v (-) convex: J pushes solution 3 to be sit. |d£f3| is small

o In particular: if d; are finite difference operators, neighboring
coefficients of 3 are encouraged to have similar values (3
Involves homogeneous zones)

o If dj, = ey, then J encourages the components Bk to have
small magnitude
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. choice of J(3) depends strongly on the basis functions used

. for a truncated power basis functions of degree d; coefficients of
basis functions at the knots involve jumps of d-th derivative (large
coeff. are associated with singularities in the fct):

J(B) =D wv(B) >0

k

no reason that neighboring coefficients of 3 have close values
. example: ¥(-) = ||

Mammen & Van de Geer (1997), Ruppert & Carroll (1997), Yu &
Ruppert (2001), Antoniadis & Fan (2001), ....
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Figure 2: Behavior of coeff. of function in a truncated power basis.
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. for B-splines basis: penalties on neighbor B-spline coeff. ensure

that neighboring coeff. do not differ too much from each other
when 1 is smooth

. absolute values of first order or second order differences are
maximum at singularity points of curve

« penalties such as J(3) = Z v (di B) are more adequate
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Figure 3: Behavior of coefficients of function in a B-splines basis.
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J(B) = wt(B) J(B) = w(diB)

general type of penalty functions ()
o Lo or quadratic penalty ¢(3) = |8/ ridge type regression
o Ly penalty ¥(3) = || LASSO type regression
Donoho & Johnstone (1994), Tibshirani (1996), Klinger (2000) ...
o L, (0<¢q<1)penalty ¢(3) = |54 bridge regression

Frank & Friedman (1993), Ruppert & Carroll (1997), Fu (1998), Knight &
Fu (2000), Yu & Ruppert (2001), ...
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. usually: vy symmetric around O and increasing on [0, +00)

« 7 can be convex or non-convex, smooth or non-smooth

what is a good penalty function?  Antoniadis & Fan (2001)
o gives an estimator that avoids excessive bias (unbiasedness)
o forces sparse solutions to reduce model complexity (sparsity)
o avoids unnecessary variation (stability)

o from computational viewpoint: resulting optimization problem
should be (easily) solvable

AIM: summarize and unify mean features of v (-) that determine es-
sential properties of maximizer 3 of Z,,(3)
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Convex

Smooth at zero

Singular at zero

L (B) = 18]% a>1

2. 9(B) = Va+ 7

3. (B) = log(cosh(af))

4.9(B) = B2 — (18] — )*I{|B] > a}.
5. (B) =1+ |6l/a —log (1 +[8]/)

6. w(3) = 18] ¥'(0%) =1
7.9(8) = a2 — (18] - )21{|8] < a}
¥(0+) = 20

Nonconvex

Smooth at zero

Singular at zero

8. v(8) = af?/(1+ af?)

9. (8) = min{as?, 1}

10. (8) = 1 — exp (—a?)

11. $(8) = — log (exp(—af?) + 1)

12. 9(8) = |8]*, a € (0,1) ¥'(0F) = oo

13. (8) = alB|/(1 + lB]) ¥'(0F) =a

14. ¢ (0) =0, ¥(B) = 1,VB # 0 discont.

15. 9(8) = log(a|B| + 1) /(0F) = a

16. [ ' (w)du ' (|8])

= o{I{|8] < o} + L2228 {15 > 0}
a > 2

Trieste, Italy, September-October 2007
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Penalties and regularization

Smooth regularization: | J(3) = nyw(dfﬁ)
k=1

. Convex penalties: typically consider | J(8) = 8 D(~)3

D(~) positive definite matrix; examples:

o D(~) diagonal matrix with elements ~;

JB) = whi (B =5 di=es
k

o D(+) a banded matrix corresponding to a quadratic form of
finite differences of components of 3

Trieste, Italy, September-October 2007



how to solve the optimization problem?

o for fixed \ and ~: estimator of 3 is obtained recursively by an
iterated re-weighted least squares algorithm (cfr generalized
linear models)

¢ with quadratic regularization: more or less like classical maximum
penalized likelihood; may not be acceptable when the function to
recover is less regular
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o In the later case use non-quadratic convex penalties

o EXAMPLE: hyperbolic potential ¥ (t) = v a + t? is very
frequently used
IS a smooth approximation to |t|, since ¢ (t) — [t| as a \, 0

o main characteristics of these functions (cfr 1—5 in Table 1):
Y (+) has a strict minimum at zero and /() is almost constant
(but > 0) except in a nhd of the origin

o when Ly is strictly concave and v is convex, or Ly, IS concave
and v is strictly convex, the penalized log-likelihood Z,,(3) is
guaranteed to have a unigque maximizer

Trieste, Italy, September-October 2007
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. Non-convex penalties

o typically ¢(t) is (nearly) constant for large values of |¢| (cfr
8—11 in Table 2)

o main difficulty: the penalized log-likelihood Z,,(3) is
non-concave and may exhibit a large number of local maxima

o Nno way to guarantee the finding of a global maximizer

o computational cost is generally high
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Non-smooth regularization: | J(8) = vaﬁ(d{ﬂ)
k=1

to estimate less regular fct's: use penalties that are singular at zero

« L, LASSO penalty: ¢(8) = |8| non-smooth at zero, but convex
(— sparse solutions, asympt. optimal minimax estimators, ...)

. hyperbolic potential /(8) = v/« + 2 is a smooth version of the
LASSO penalty, also convex

« Smoothed Clipped Absolute Deviation (SCAD) penalty (cfr nr 16)

non-smooth, non-convex

solving the optimization problem?

non-convex penalties: difficult (or even impossible) task
convex non-smooth at the origin penalties: feasible task (see later)
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Optimization of the penalized likelihood

general: some elements from optimization theory

. the function 8 — —Z,,(3) is said to be coercive if

lim —Z, = 400
|1Bl|—+o0 (B)

since J(3) is nonnegative, function 3 — J(8) is bounded by below

if in addition 3 — Ly (3) is bounded above, then —Z,, is coercive
If at least one of the two terms J or —Ly IS coercive

. for Gaussian and Poisson nonp. GLM models, —Z,,(3) is coercive

for Bernoulli nonparametric GLM model, —Z,,(3) is not coercive

the addition of a suitable penalty term (e.g. a quadratic term) to
J(B) makes —Z,,(3) coercive (see e.g. Park & Hastie (2006))

Trieste, Italy, September-October 2007
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In general. existence and uniqueness of solutions

. if—Z, is coercive, for every c € IR, theset {3 : —Z,(8) < c}is
bounded

. If Z,, Is continuous the value Supﬁ » IS finite and the set of the

optimal solutions {B e IRP: Z, ([3) = SUPge rr 4n } IS NONEMPLY
and compact

« In general, beyond its global maxima, Z,, may exhibit local maxima

« If in addition Z,, is strictly concave, then for every y € IR", there is
a unigque maximizer

. analyzing the maximizers of a non-concave Z,, is much more
difficult

. in the Gaussian case with H? H invertible and .J non-convex, the
regularity of local and global maximizers of Z,, has been studied
by Durand & Nikolova (2005) and Nikolova (2005)
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assume: penalties are symmetric and nonnegative

consider 2 situations in our nonparametric GLM models:

Geman'’s class of penalties and 0-class of penalties

¢ Geman'’s class of penalties: functions ¢ satisfying

e 7 isin C? and convex on [0, +oo]

o t — 1(1/t) is concave [0, +oo|

o V' (t)/t > M <ocoast— o
o .

o %5% Y'(t)/t exists

we have shown the existence of a unique solution and discuss a
computational algorithm to find it (via half-quadratic optimization)

examples of such penalties: numbers 2, 3, 4 and 5 in Table 1
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¢ 0-class of penalties: penalties with properties

e 1) iS monotone increasing on [0, +-o0o|
e ¢ isinC! on IR\{0} and continuous in 0

o limy_o ¢/ ()t = 0

named J-class: since it essentially consists of penalties that are
non smooth at the origin but can be approximated by a quadratic
function in a 9-nhd of the origin

for this class we will find an approximate solution to the
optimization problem and provide bias and variance expressions
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Optimalization with penalties in the )-class
how to deal with nondifferentiabilty of such penalties?

approximate penalized log-likelihood Z,,(3) by Zs(3) by replacing
penalty J(8) = > vt (Bk) by J5(8) = Y s (Bk)
k k

s - fct equal to ¢ away from O (at a distance ¢ > 0) and a “smooth
guadratic” version of v in a d-nhd of zero (e.g. Tishler & Zang (1982))

o define smooth version of .

ba(s) = () if s>6
U0 2 4 [(8) —¢/(8)5/2) If 0<s<d

o then

//(){ P'(s) it s>0

S) — /
’ YO i g<s<d

and forall s >0 limgs|o¢s(s) =0

Trieste, Italy, September-October 2007
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o score function for the approximate penalized log-likelihood Z;(3)

us(B) = s(y, B8) + AD(v)gs(B)
s(y,B) = (0Ly(B)/0B;)j=1,...p
g5(3) = (p x 1) vector with corresponding j-th component g;s(|5;|)

gs(|16;]) = _wg(|ﬁg|) if 5;,>0
] +¢(§(|6]|) If 5j<0

o for any 3 fixed:
lim g5(8) = g(B)

510
g(8) = (g(IA]); - -, 9(18p]))" with g(|8,]) = ¥'(8;])1{8; # 0}

o score function us(3) converges to u(3) as ¢ | 0, where

u(B) = s(y,B) + AD(v)g(B)
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. B(é), a root of approximate penalized score equations (i.e.

us(B(0)) = 0)
« Since penalty function 5 Is strictly convex, such an estimator

exists and is unigue even in situations where the maximum
likelihood principle diverges

. fast computation of the estimator can be done by standard
Fisher scoring procedure
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Statistical properties & Asymptotic analysis

Bias and variance p < n for )-class penalties
« Sample bias and variance properties

. for fixed diagonal matrix D(~) of weights and fixed penalization
parameter \: let 3" be a maximizer of the expected penalized
log-likelihood

. in case of unigueness: equivalent to root of the expected
penalized score equation, i. e. E(u(8%)) =0
. What is the estimation error induced by our regularized procedure?

linear Taylor expansion

P

0 = us(B(8)) ~ us (B")+{HL(B") + AD(7)G(B":)} (B(5)~B")
G(B7;9) = diag. matrix with entries dgs(|5;])/08; = ¥5 (15;])

Trieste, Italy, September-October 2007
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we get: | B(8) — 8" ~ {HL(8") + A\D()G(B%:8)} " us(87)

. since p* is aroot of E(u(3)), we have E(us(8")) = AD(~v)gs(8”)
and therefore

. B(6) has bias | {H.(8") + AD(v)G(8":0)} " E(us(8"))

var(B(6)) = {HL(8") + AD(7)G(B8*;6)} ' var(s(y, 8)) {HL(B") + AD(7)G(8*;6)} "

« Dbias and variance depend on the behavior of the eigenvalues of
{H.(8%) + AD(7)G(B8*;6)} " and their limits as § | 0 with A > 0
fixed (— detailed study)
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General Asymptotic Analysis

AIM: obtain asymptotic results of estimators Bn minimizing

~Zu(B) = 13" Uy, h(@)B) — M () = —Ly(8) — M(8)

n
2 cases:. p fixed and finite and p = p, and p,, — oo

case p fixed and finite

under regularity conditions (on the log-likelihood; cfr conditions that
guarantee normality of ordinary MLE)

an = A max{y;9’'(|80;]); Boj # 0} < o0

THEOREM: Let the probability density of our model satisfy the
regularity conditions. Assume \,, — 0 as n — oc. If
by, := An max{";|¥" (|B0;])|; Bo; # 0} — 0, then there exists a

AN

local minimizer 3,, of the penalized likelihood such that
18 — Boll = Op(n=*/2% + ay,)
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case p = p,, and p,, — o0

for some non-concave penalized likelihood function; see e.g. Fan &
Peng (2004)

Regularity conditions (on penalty and on growth rate of dim. p,,)
(@) liminfz_ o+ 9" (8) >0
(b) a, = O(n=?)
() an = o((np,)~"/?)
(d) bn = maxi<;<p, {7;[¥"(|6;])]; B; # 0} — 0
(&) b = op(pa?)
(f) exists C' and D such that when x; and x5 > CA,,,
A9 (21) — " (22)| < Dl|z1 — 22|

under such conditions previous theorem extends to case p,, — o©
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Choice of the regularization parameters

. L-curve approach adapted to Generalized linear model context
Belge, Kilmer & Miller (2002)
. Alternative approach
estimated predictor depends on scaling of basisfct’s
overcoming drawback by standardizing basisfct’s in advance

— l — l — — 12
hj = — > () 5 = - > [hj(x) = hy]
1=1 1=1
adjust threshold parameters ~;, appropriately: i = +/$7

with this choice, any scaled version x[H(x)],; would yield the
threshold v = |k |V

data-driven choices: v, = /5%, select X\ by Generalized Cross
Validation
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Simulations and example

test functions: with jumps or with discontinuities in derivatives

Quadratic loss
Gaussian noise
2 test functions: heavisine function and corner function

100 simulations in each experiment (same design points each time;
from uniform U(0, 1))

signal-to-noise ratio is 4 (= y/Var(f(X))/o?) n = 200

Trieste, Italy, September-October 2007
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4 procedures (all based on regression splines):
o Ridge regression (quadratic loss and L, penalty on coeff.)
o LASSO regression (quadratic loss and L penalty on coeff.)

o SARS Spatially Adaptive Regression Splines (Zhou & Shen
(2001))

o Half-Quadratic regularization procedure (quadratic loss and
hyperbolic potential v (3) = v/a + 3; convex and smooth)

truncated power basis of degree 3, with 40 equispaced knots;

threshold parameters selected adjusting to stdev of each basis
function; smoothing parameter \ selected by 10-fold GCV

for SARS procedure: default values of hyperparameters

n

measure of quality: | MASE () = %Z (A(zs) — n(z))?

1=1
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Poisson regression
Y; ~ Poisson(u(x;)) w(+) = exponential (heavisine function)
SARS not designed for treating Poisson distributed data

3 procedures:
o Ridge regression
o Half-Quadratic regularization procedure
o SPIC procedure by Imoto & Konishi (2003); B-splines procedure
based on an information criterion
truncated power basis of degree 3, with 40 equispaced knots;

threshold and smoothing parameters: as before

for SPIC procedure: B-splines with 30 knots; smoothing parameter
selected by SPIC procedure
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Analysis of AIDS data
AIDS data (Stasinopoulos & Rigby (1992))

concerns the quarter yearly frequency count of reported AIDS
cases in the UK from January 1983 to September 1990

after deseasonalising this time series, one suspects a break in the
relationship between the number of AIDS cases and the time
measured in quarter years

model Y (deseasonalised frequency of AIDS cases) by a Poisson
distribution with mean a polynomial spline function of x, the time
measured in quarter years

use half quadratic procedure (HQ) with spline basis based on 12
knots

seemingly a break point at about July 1987 as also suggested by
Stasinopoulos & Righy (1992)
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LASSO RIDGE
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Figure 5: Simulated example: Gaussian noise; corner function.
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Data
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Figure 6: Simulated data: Poisson regression; exp(heavisine)
function.
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Figure 7. Simulated data: Poisson regression; exp(heavisine)
function.
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Figure 8: Half Quadratic penalized fit to the deseasonalized AIDS

data.
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