

Advanced School and Conference on Statistics and Applied Probability in Life Sciences

24 September - 12 October, 2007

Generalized linear models and penalized likelihood regression

Irène Gijbels Katholieke Universiteit Leuven Department of Mathematics B-3001 Leuven, Belgium

Generalized linear models and penalized likelihood regression

Irène Gijbels

Department of Mathematics & Leuven Statistics Research Centre

Katholieke Universiteit Leuven, Belgium

Joint work with Anestis Antoniadis and Mila Nikolova

Outline

- Introduction: models and basic elements
- ◊ Penalties and regularization
- Optimization of the penalized likelihood
- Statistical properties and Asymptotic analysis
- ◊ Choice of regularization parameters
- ◊ Simulations and example

Introduction: models and basic elements

Generalized models

Y: response variable

X: covariate (univariate)

cond. distrib. of Y given X = x is from an exponential family distr.

$$f_{Y|X}(y|x) = \exp\left(\frac{y\theta(x) - b(\theta(x))}{\phi} + c(y_i, \phi)\right)$$

 $b(\cdot)$ and $c(\cdot)$ known functions; ϕ : known scale parameter

 $\theta(\cdot)$ unknown function

 $E(Y|X = x) = b'(\theta(x)) = \mu(x) \qquad \text{Var}(Y|X = x) = \phi \, b''(\theta(x))$

 $g(\mu(x)) = \eta(x)$ g the link function

 $\eta(\cdot)$ the predictor function, to be estimated

generalized <u>linear</u> models: $\eta(x) = a$ linear function of x

Examples

- Normal regression with additive errors: $f_{Y|X}(y|x) \sim N(\mu(x); \sigma^2)$ link function: g(t) = t (identity) predictor fct $\eta(x) = \mu(x)$
- Logistic regression: $f_{Y|X}(y|x) \sim \text{Bernoulli}(1; \mu(x))$
 - 0-1 response type of variable $Y = \mu(x)$ = conditional probab.

link fct:
$$g(t) = \log \frac{t}{1-t}$$
 (logit) predictor fct $\eta(x) = \log \frac{\mu(x)}{1-\mu(x)}$

• Poisson regression: $f_{Y|X}(y|x) \sim \text{Poisson}(\mu(x))$

counts type of r.v. Y $\mu(x)$ = Poisson intensity functionlink function: $g(t) = \log(t)$ predictor fct $\eta(x) = \log(\mu(x))$

McCullagh & Nelder (1989)

regression analysis:

from observations $(x_1, y_1), (x_2, y_2), ..., (x_n, y_n)$

estimate the predictor function $\eta(\cdot)$

• standard parametric model: $\eta(x) = \eta(x; \beta)$

ex.: generalized linear models; $\eta(x; \beta)$ a function linear in β

• nonparametric estimation: several techniques

penalized log-likelihood:

maximize
$$Z_n(\eta) = \frac{1}{n} \sum_{i=1}^n \ell(y_i, \eta(x_i)) - \lambda J(\eta)$$

 ℓ =log-likelihood $J(\cdot)$ is a roughness functional (penalty) 1st term: discourages the lack of fit of η to the data 2nd term: penalizes the roughness of η $\lambda > 0$: smoothing parameter controling trade-off between 2 terms

flexible estimation approach:

represent $\eta(\cdot)$ as a linear combination of known basis functions $h_1(x), h_2(x), \cdots, h_p(x)$

$$\eta(x) = \sum_{k=1}^{p} \beta_k h_k(x) \qquad k = 1, \dots, p$$

AIM: estimate the coefficients $\boldsymbol{\beta} = (\beta_1, \dots, \beta_p)^T$

examples of basis functions: wavelets, polynomial splines, ...

crucial choice: number p of basis functions

- small p: may not be flexible enough to capture variability of data
- $\circ~$ large p: may lead to overfitting

regularization: use a highly parametrized model and impose a penalty on large fluctuations of fitted curve

notations:

$$\mathbf{x} = (x_1, x_2, \cdots, x_n) \qquad \mathbf{y} = (y_1, y_2, \cdots, y_n) \qquad \boldsymbol{\beta} = (\beta_1, \dots, \beta_p)^T$$
$$\mathbf{H}(\mathbf{x}) = \begin{pmatrix} h_1(x_1) & h_2(x_1) & \cdots & h_p(x_1) \\ h_1(x_2) & h_2(x_2) & \cdots & h_p(x_2) \\ \vdots & \vdots & & \vdots \\ h_1(x_i) & h_2(x_i) & \cdots & h_p(x_i) \\ \vdots & \vdots & & \vdots \\ h_1(x_n) & h_2(x_n) & \cdots & h_p(x_n) \end{pmatrix} \qquad \text{matrix of dim } n \times p$$

 $\mathbf{h}(x_i) = (h_1(x_i), h_2(x_i), \cdots, h_p(x_i))$ vector of dim $1 \times p$

objective function to be maximized in some function space

$$Z_n(\boldsymbol{\beta}) = \frac{1}{n} \sum_{i=1}^n \ell(y_i, \mathbf{h}(x_i)\boldsymbol{\beta}) - \lambda J(\boldsymbol{\beta}) \equiv \frac{1}{n} L_{\mathbf{y}}(\boldsymbol{\beta}) - \lambda J(\boldsymbol{\beta})$$

for given basisfunctions $h_1(\cdot), \cdots, h_p(\cdot)$, penalty function $J(\cdot)$ and smoothing parameter λ

maximize
$$Z_n(\boldsymbol{\beta}) = \frac{1}{n} \sum_{i=1}^n \ell(y_i, \mathbf{h}(x_i)\boldsymbol{\beta}) - \lambda J(\boldsymbol{\beta}) \equiv \frac{1}{n} L_{\mathbf{y}}(\boldsymbol{\beta}) - \lambda J(\boldsymbol{\beta})$$

$$\eta(x_i) = \mathbf{h}(x_i)\boldsymbol{\beta}$$
 $g(\mu(x_i)) = \eta(x_i) = \mathbf{h}(x_i)\boldsymbol{\beta}$ $i = 1, \cdots, n$

allow p to be large, and control the risk of overfitting the data by using an adequate penalty J on the coefficients

Eilers & Marx (1996), Ruppert & Carroll (2000), ...

what choice of basisfunctions?

Truncated power basis

knot points $t_1 < t_2 < \cdots < t_K$

d integer, $d\geq 1$

truncated power basis for polynomial of degree *d* regression splines with knots $t_1 < t_2 < \cdots < t_K$

$$\{1, x, \dots, x^d, (x - t_1)^d_+, \dots, (x - t_K)^d_+\}$$

$$z_+ = \max(z, 0)$$

continuous up to (d-1)st derivative

representation of a univariate function f in terms of these (d+1+K) basis functions

$$f(x) = \sum_{k=0}^{d} \beta_k x^k + \sum_{j=1}^{K} \beta_{p+j} (x - t_j)_+^d$$

each coefficient β_{d+j} is identified as a jump in the *d*-th derivative of *f* at the corresponding knot (\longrightarrow easy interpretation)

sometimes not desirable because computationally less stable

de Boor (1978) and Dierckx (1993)

B-splines basis

de Boor (1978), Eilers & Marx (1996)

 \circ normalized B-splines basis of order q with knots $0 < t_1 < \cdots < t_K < 1$: set of degree (q - 1) splines

 $\{B_{Kj}^{q}, j = 1, \dots, q + K\}$

- functions B_{Kj}^q are positive and have local support: are non-zero only on an interval which covers no more than q + 1 knots
- \circ equivalently: at any point x there are no more than q B-splines that are non-zero
- recursive relationship to describe B-splines; provides a very stable numerical computation algorithm
- moderately large number of knots (usually between 20 and 40) to ensure enough flexibility
- quadratic penalty based on differences of adjacent B-spline coefficients to guarantee sufficient smoothness of fitted curves

Figure 1: Illustration of B-spline constructed smooth curve.

dashed curves: scaled basis functions; heights are the coefficients solid curve: resulting smooth curve as sum of scaled B-splines

Penalized likelihood

- quadratic regularization: $J(\beta) = \|\beta\|_2^2$
- in the setting of Bayesian MAP estimation and Markov random fields (Geman & Clure (184, 1987), Besag (1974, 1989), ...):

$$J(\boldsymbol{\beta}) = \sum_{k=1}^{r} \gamma_k \psi(d_k^T \boldsymbol{\beta})$$

- $\gamma_k > 0$ weights d_k linear operators
 - \circ for $\psi(\cdot)$ convex: J pushes solution $\widehat{\beta}$ to be s.t. $|d_k^T \widehat{\beta}|$ is small
 - in particular: if d_k are finite difference operators, neighboring coefficients of $\hat{\beta}$ are encouraged to have similar values ($\hat{\beta}$ involves homogeneous zones)
 - if $d_k = e_k$, then J encourages the components $\hat{\beta}_k$ to have small magnitude

- choice of $J(\beta)$ depends strongly on the basis functions used
- for a truncated power basis functions of degree d; coefficients of basis functions at the knots involve jumps of d-th derivative (large coeff. are associated with singularities in the fct):

$$J(\boldsymbol{\beta}) = \sum_{k} \gamma_k \psi(\beta_k) \qquad \gamma_k > 0$$

no reason that neighboring coefficients of β have close values

• example: $\psi(\cdot) = |\cdot|$

Mammen & Van de Geer (1997), Ruppert & Carroll (1997), Yu & Ruppert (2001), Antoniadis & Fan (2001),

Figure 2: Behavior of coeff. of function in a truncated power basis.

- for B-splines basis: penalties on neighbor B-spline coeff. ensure that neighboring coeff. do not differ too much from each other when η is smooth
- absolute values of first order or second order differences are maximum at singularity points of curve

• penalties such as $J(\beta) = \sum_{k=1}^{r} \gamma_k \psi(d_k^T \beta)$ are more adequate

Figure 3: Behavior of coefficients of function in a B-splines basis.

$$J(\boldsymbol{\beta}) = \sum_{k} \gamma_{k} \boldsymbol{\psi}(\boldsymbol{\beta}_{k}) \qquad \qquad J(\boldsymbol{\beta}) = \sum_{k=1}^{r} \gamma_{k} \boldsymbol{\psi}(\boldsymbol{d}_{k}^{T} \boldsymbol{\beta})$$

general type of penalty functions $\psi(\cdot)$

- ♦ L_2 or quadratic penalty $\psi(\beta) = |\beta|^2$ ridge type regression
- ♦ L_1 penalty $\psi(\beta) = |\beta|$ LASSO type regression

Donoho & Johnstone (1994), Tibshirani (1996), Klinger (2000) ...

 $◊ L_q$ (0 ≤ q ≤ 1) penalty $ψ(β) = |β|^q$ bridge regression

Frank & Friedman (1993), Ruppert & Carroll (1997), Fu (1998), Knight & Fu (2000), Yu & Ruppert (2001), ...

- usually: ψ symmetric around 0 and increasing on $[0, +\infty)$
- ψ can be convex or non-convex, smooth or non-smooth

what is a good penalty function? Antoniadis & Fan (2001)

- gives an estimator that avoids excessive bias (unbiasedness)
- forces sparse solutions to reduce model complexity (sparsity)
- avoids unnecessary variation (stability)
- from computational viewpoint: resulting optimization problem should be (easily) solvable

AIM: summarize and unify mean features of $\psi(\cdot)$ that determine essential properties of maximizer $\hat{\beta}$ of $Z_n(\beta)$

Convex	
Smooth at zero	Singular at zero
1. $\psi(\beta) = \beta ^{\alpha}, \ \alpha > 1$	6. $\psi(\beta) = \beta \psi'(0^+) = 1$
2. $\psi(\beta) = \sqrt{\alpha + \beta^2}$	7. $\psi(\beta) = \alpha^2 - (\beta - \alpha)^2 I\{ \beta < \alpha\}$
3. $\psi(\beta) = \log(\cosh(\alpha\beta))$	$\psi'(0^+) = 2\alpha$
4. $\psi(\beta) = \beta^2 - (\beta - \alpha)^2 I\{ \beta > \alpha\}.$	
5. $\psi(\beta) = 1 + \beta /\alpha - \log(1 + \beta /\alpha)$	

Nonconvex	
Smooth at zero	Singular at zero
8. $\psi(\beta) = \alpha \beta^2 / (1 + \alpha \beta^2)$	12. $\psi(\beta) = \beta ^{\alpha}, \alpha \in (0, 1) \psi'(0^+) = \infty$
9. $\psi(\beta) = \min\{\alpha\beta^2, 1\}$	13. $\psi(\beta) = \alpha \beta / (1 + \alpha \beta) \psi'(0^+) = \alpha$
10. $\psi(\beta) = 1 - \exp(-\alpha\beta^2)$	14. $\psi(0) = 0, \ \psi(\beta) = 1, \forall \beta \neq 0$ discont.
11. $\psi(\beta) = -\log\left(\exp(-\alpha\beta^2) + 1\right)$	15. $\psi(\beta) = \log(\alpha \beta + 1) \psi'(0^+) = \alpha$
	16. $\int_0^\beta \psi'(u) du \psi'(eta)$
	$= \alpha \{ I\{ \beta \le \alpha\} + \frac{(a\alpha - \beta)_+}{(a-1)\alpha} \{ \beta > \alpha\} \}$
	a > 2

Penalties and regularization

Smooth regularization:
$$J(\boldsymbol{\beta}) = \sum_{k=1}^{r} \gamma_k \psi(d_k^T \boldsymbol{\beta})$$

• Convex penalties: typically consider $\int J(\boldsymbol{\beta}) = \boldsymbol{\beta}^T D(\boldsymbol{\gamma}) \boldsymbol{\beta}$

 $D(\boldsymbol{\gamma})$ positive definite matrix; examples:

 $\circ D(\boldsymbol{\gamma})$ diagonal matrix with elements γ_k

$$J(\boldsymbol{\beta}) = \sum_{k} \gamma_k \beta_k^2 \qquad \psi(\boldsymbol{\beta}) = \boldsymbol{\beta}^2 \qquad d_k = e_k$$

 $\circ~D(\gamma)$ a banded matrix corresponding to a quadratic form of finite differences of components of β

how to solve the optimization problem?

- ◊ for fixed λ and γ: estimator of β is obtained recursively by an iterated re-weighted least squares algorithm (cfr generalized linear models)
- with quadratic regularization: more or less like classical maximum penalized likelihood; may not be acceptable when the function to recover is less regular

- in the later case use non-quadratic convex penalties
 - EXAMPLE: hyperbolic potential $\psi(t) = \sqrt{\alpha + t^2}$ is very frequently used is a smooth approximation to |t|, since $\psi(t) \rightarrow |t|$ as $\alpha \searrow 0$
 - main characteristics of these functions (cfr 1—5 in Table 1):
 ψ(·) has a strict minimum at zero and ψ'(·) is almost constant
 (but > 0) except in a nhd of the origin
 - when L_y is strictly concave and ψ is convex, or L_y is concave and ψ is strictly convex, the penalized log-likelihood $Z_n(\beta)$ is guaranteed to have a unique maximizer

- Non-convex penalties
 - typically $\psi(t)$ is (nearly) constant for large values of |t| (cfr 8—11 in Table 2)
 - main difficulty: the penalized log-likelihood $Z_n(\beta)$ is non-concave and may exhibit a large number of local maxima
 - no way to guarantee the finding of a global maximizer
 - computational cost is generally high

Non-smooth regularization: $J(\boldsymbol{\beta}) = \sum_{k=1}^{r} \gamma_k \psi(d_k^T \boldsymbol{\beta})$

to estimate less regular fct's: use penalties that are singular at zero

- L_1 LASSO penalty: $\psi(\beta) = |\beta|$ non-smooth at zero, but convex (\longrightarrow sparse solutions, asympt. optimal minimax estimators, ...)
- hyperbolic potential $\psi(\beta)=\sqrt{\alpha+\beta^2}$ is a smooth version of the LASSO penalty, also convex
- Smoothed Clipped Absolute Deviation (SCAD) penalty (cfr nr 16) non-smooth, non-convex

solving the optimization problem?

non-convex penalties: difficult (or even impossible) task convex non-smooth at the origin penalties: feasible task (see later)

Optimization of the penalized likelihood

general: some elements from optimization theory

• the function $\boldsymbol{\beta} \to -Z_n(\boldsymbol{\beta})$ is said to be coercive if

$$\lim_{\|\boldsymbol{\beta}\|\to+\infty} -Z_n(\boldsymbol{\beta}) = +\infty$$

- since J(β) is nonnegative, function β → J(β) is bounded by below if in addition β → L_y(β) is bounded above, then -Z_n is coercive if at least one of the two terms J or -L_y is coercive
- for Gaussian and Poisson nonp. GLM models, $-Z_n(\beta)$ is coercive
- for Bernoulli nonparametric GLM model, -Z_n(β) is not coercive the addition of a suitable penalty term (e.g. a quadratic term) to J(β) makes -Z_n(β) coercive (see e.g. Park & Hastie (2006))

in general: existence and uniqueness of solutions

- if $-Z_n$ is coercive, for every $c \in I\!\!R$, the set $\{\beta : -Z_n(\beta) \le c\}$ is bounded
- if Z_n is continuous the value $\sup_{\beta} Z_n$ is finite and the set of the optimal solutions $\{\widehat{\beta} \in I\!\!R^p : Z_n(\widehat{\beta}) = \sup_{\beta \in I\!\!R^p} Z_n\}$ is nonempty and compact
- in general, beyond its global maxima, Z_n may exhibit local maxima
- if in addition Z_n is strictly concave, then for every $\mathbf{y} \in I\!\!R^n$, there is a unique maximizer
- analyzing the maximizers of a non-concave \mathbb{Z}_n is much more difficult
- in the Gaussian case with H^TH invertible and J non-convex, the regularity of local and global maximizers of Z_n has been studied by Durand & Nikolova (2005) and Nikolova (2005)

assume: penalties are symmetric and nonnegative

consider 2 situations in our nonparametric GLM models:

<u>Geman's class</u> of penalties and <u> δ -class</u> of penalties

 $\diamond~$ Geman's class of penalties: functions ψ satisfying

- ψ is in \mathcal{C}^2 and convex on $[0, +\infty[$
- $t \to \psi(\sqrt{t})$ is concave $[0, +\infty[$
- $\psi'(t)/t \to M < \infty$ as $t \to \infty$
- $\lim_{t \nearrow 0} \psi'(t)/t$ exists

we have shown the existence of a unique solution and discuss a computational algorithm to find it (via half-quadratic optimization)

examples of such penalties: numbers 2, 3, 4 and 5 in Table 1

- \diamond <u> δ -class</u> of penalties: penalties with properties
 - ψ is monotone increasing on $[0,+\infty[$
 - ψ is in C^1 on $I\!\!R \setminus \{0\}$ and continuous in 0
 - $\lim_{t\to 0} \psi'(t)t = 0$

named δ -class: since it essentially consists of penalties that are non smooth at the origin but can be approximated by a quadratic function in a δ -nhd of the origin

for this class we will find an approximate solution to the optimization problem and provide bias and variance expressions

Optimalization with penalties in the δ -class

how to deal with nondifferentiability of such penalties?

approximate penalized log-likelihood $Z_n(\beta)$ by $Z_{\delta}(\beta)$ by replacing penalty $J(\beta) = \sum_k \gamma_k \psi(\beta_k)$ by $J_{\delta}(\beta) = \sum_k \gamma_k \psi_{\delta}(\beta_k)$

 ψ_{δ} : fct equal to ψ away from 0 (at a distance $\delta > 0$) and a "smooth quadratic" version of ψ in a δ -nhd of zero (e.g. Tishler & Zang (1982))

 $\circ~$ define smooth version of $\psi :$

$$\psi_{\delta}(s) = \begin{cases} \psi(s) & \text{if } s > \delta \\ \frac{\psi'(\delta)}{2\delta}s^2 + [\psi(\delta) - \psi'(\delta)\delta/2] & \text{if } 0 \le s \le \delta \end{cases}$$

• then

$$\psi_{\delta}^{\prime\prime}(s) = \begin{cases} \psi^{\prime\prime}(s) & \text{if } s > \delta \\ \frac{\psi^{\prime}(\delta)}{\delta} & \text{if } 0 \le s \le \delta \end{cases}$$

and for all $s \ge 0$ $\lim_{\delta \downarrow 0} \psi_{\delta}(s) = 0$

 \circ score function for the approximate penalized log-likelihood $Z_{\delta}(\beta)$

$$u_{\delta}(\boldsymbol{\beta}) = s(\mathbf{y}, \boldsymbol{\beta}) + \lambda D(\boldsymbol{\gamma}) \mathbf{g}_{\delta}(\boldsymbol{\beta})$$

$$s(\mathbf{y},\boldsymbol{\beta}) = (\partial L_{\mathbf{y}}(\boldsymbol{\beta})/\partial \beta_j)_{j=1,\dots,p}$$

 $\mathbf{g}_{\delta}(\boldsymbol{\beta}) = (p \times 1)$ vector with corresponding *j*-th component $g_{\delta}(|\beta_j|)$

$$g_{\delta}(|\beta_{j}|) = \begin{cases} -\psi_{\delta}'(|\beta_{j}|) & \text{if } \beta_{j} \ge 0\\ +\psi_{\delta}'(|\beta_{j}|) & \text{if } \beta_{j} < 0 \end{cases}$$

 \circ for any β fixed:

$$\lim_{\delta \downarrow 0} \mathbf{g}_{\delta}(\boldsymbol{\beta}) = \mathbf{g}(\boldsymbol{\beta})$$

 $\mathbf{g}(\boldsymbol{\beta}) = (g(|\beta_1|), \dots, g(|\beta_p|))^T \text{ with } g(|\beta_p|) = \psi'(\beta_j|)I\{\beta_j \neq 0\}$

◦ score function $u_{\delta}(\beta)$ converges to $u(\beta)$ as $\delta \downarrow 0$, where

$$u(\boldsymbol{\beta}) = s(\mathbf{y}, \boldsymbol{\beta}) + \lambda D(\boldsymbol{\gamma}) \mathbf{g}(\boldsymbol{\beta})$$

- $\hat{\beta}(\delta)$, a root of approximate penalized score equations (i.e. $u_{\delta}(\hat{\beta}(\delta)) = 0$)
- since penalty function ψ_{δ} is strictly convex, such an estimator exists and is unique even in situations where the maximum likelihood principle diverges
- fast computation of the estimator can be done by standard Fisher scoring procedure

Statistical properties & Asymptotic analysis

Bias and variance p < n for δ -class penalties

- sample bias and variance properties
- for fixed diagonal matrix D(γ) of weights and fixed penalization parameter λ: let β^{*} be a maximizer of the expected penalized log-likelihood
- in case of uniqueness: equivalent to root of the expected penalized score equation, i. e. $\mathbb{E}(u(\pmb{\beta}^*))=0$
- what is the estimation error induced by our regularized procedure?
 linear Taylor expansion

 $0 = u_{\delta}(\widehat{\boldsymbol{\beta}}(\delta)) \approx u_{\delta}(\boldsymbol{\beta}^*) + \{\mathbf{H}_L(\boldsymbol{\beta}^*) + \lambda D(\boldsymbol{\gamma})G(\boldsymbol{\beta}^*;\delta)\} (\widehat{\boldsymbol{\beta}}(\delta) - \boldsymbol{\beta}^*)$

 $G(\beta^*; \delta)$ = diag. matrix with entries $\partial g_{\delta}(|\beta_j|)/\partial \beta_j = \psi_{\delta}''(|\beta_j|)$

we get :
$$\left| \widehat{\boldsymbol{\beta}}(\delta) - \boldsymbol{\beta}^* \approx \left\{ \mathbf{H}_L(\boldsymbol{\beta}^*) + \lambda D(\boldsymbol{\gamma}) G(\boldsymbol{\beta}^*; \delta) \right\}^{-1} u_\delta(\boldsymbol{\beta}^*)$$

- since β^* is a root of $\mathbb{E}(u(\beta))$, we have $\mathbb{E}(u_{\delta}(\beta^*)) = \lambda D(\gamma) \mathbf{g}_{\delta}(\beta^*)$ and therefore
- $\widehat{\boldsymbol{\beta}}(\delta)$ has bias $\left\{ \mathbf{H}_{L}(\boldsymbol{\beta}^{*}) + \lambda D(\boldsymbol{\gamma})G(\boldsymbol{\beta}^{*};\delta) \right\}^{-1} \mathbb{E}(u_{\delta}(\boldsymbol{\beta}^{*}))$

 $\operatorname{var}(\widehat{\boldsymbol{\beta}}(\delta)) = \{\mathbf{H}_{L}(\boldsymbol{\beta}^{*}) + \lambda D(\boldsymbol{\gamma})G(\boldsymbol{\beta}^{*};\delta)\}^{-1}\operatorname{var}(s(\mathbf{y},\boldsymbol{\beta}^{*})) \{\mathbf{H}_{L}(\boldsymbol{\beta}^{*}) + \lambda D(\boldsymbol{\gamma})G(\boldsymbol{\beta}^{*};\delta)\}^{-1}$

bias and variance depend on the behavior of the eigenvalues of
 {H_L(β^{*}) + λD(γ)G(β^{*};δ)}⁻¹ and their limits as δ ↓ 0 with λ > 0
 fixed (→ detailed study)

General Asymptotic Analysis

AIM: obtain asymptotic results of estimators $\hat{\boldsymbol{\beta}}_n$ minimizing $-Z_n(\boldsymbol{\beta}) = \frac{1}{n} \sum_{i=1}^n \ell(y_i, \mathbf{h}(x_i)\boldsymbol{\beta}) - \lambda J(\boldsymbol{\beta}) \equiv \frac{1}{n} L_{\mathbf{y}}(\boldsymbol{\beta}) - \lambda J(\boldsymbol{\beta})$

2 cases: p fixed and finite and $p = p_n$ and $p_n \to \infty$

case \boldsymbol{p} fixed and finite

under regularity conditions (on the log-likelihood; cfr conditions that guarantee normality of ordinary MLE)

$$a_n = \lambda_n \max\{\gamma_j \psi'(|\beta_{0j}|); \beta_{0j} \neq 0\} < \infty$$

THEOREM: Let the probability density of our model satisfy the regularity conditions. Assume $\lambda_n \to 0$ as $n \to \infty$. If $b_n := \lambda_n \max\{\gamma_j | \psi''(|\beta_{0j}|) |; \beta_{0j} \neq 0\} \to 0$, then there exists a local minimizer $\hat{\beta}_n$ of the penalized likelihood such that $\|\hat{\beta} - \beta_0\| = O_P(n^{-1/2} + a_n)$

case $p = p_n$ and $p_n \to \infty$

for some non-concave penalized likelihood function; see e.g. Fan & Peng (2004)

Regularity conditions (on penalty and on growth rate of dim. p_n)

- (a) $\liminf_{\beta \to 0^+} \psi'(\beta) > 0$ (b) $a_n = O(n^{-1/2})$ (c) $a_n = o((np_n)^{-1/2})$ (d) $b_n = \max_{1 \le j \le p_n} \{\gamma_j | \psi''(|\beta_j|) |; \beta_j \ne 0\} \to 0$ (e) $b_n = o_P(p_n^{-1/2})$
- (f) exists C and D such that when x_1 and $x_2 > C\lambda_n$, $\lambda_n |\psi''(x_1) - \psi''(x_2)| \le D|x_1 - x_2|$

under such conditions previous theorem extends to case $p_n \to \infty$

Choice of the regularization parameters

- *L*-curve approach adapted to Generalized linear model context Belge, Kilmer & Miller (2002)
- Alternative approach

estimated predictor depends on scaling of basisfct's overcoming drawback by standardizing basisfct's in advance

$$\overline{h}_j = \frac{1}{n} \sum_{i=1}^n h_j(x_i) \qquad \qquad \widetilde{s}_j^2 = \frac{1}{n} \sum_{i=1}^n \left[h_j(x_i) - \overline{h}_j \right]^2$$

adjust threshold parameters γ_k appropriately: $\gamma_k = \sqrt{\tilde{s}_k^2}$ with this choice, any scaled version $\kappa[\mathbf{H}(\mathbf{x})]_j$ would yield the threshold $\tilde{\gamma}_k = |\kappa| \gamma_k$

data-driven choices: $\gamma_k = \sqrt{\tilde{s}_k^2}$, select λ by Generalized Cross Validation

Simulations and example

test functions: with jumps or with discontinuities in derivatives

Quadratic loss

Gaussian noise

2 test functions: heavisine function and corner function

100 simulations in each experiment (same design points each time; from uniform U(0,1))

signal-to-noise ratio is 4 (= $\sqrt{Var(f(X))/\sigma^2}$) n = 200

4 procedures (all based on regression splines):

- Ridge regression (quadratic loss and L_2 penalty on coeff.)
- LASSO regression (quadratic loss and L_1 penalty on coeff.)
- SARS Spatially Adaptive Regression Splines (Zhou & Shen (2001))
- Half-Quadratic regularization procedure (quadratic loss and hyperbolic potential $\psi(\beta) = \sqrt{\alpha + \beta}$; convex and smooth)

truncated power basis of degree 3, with 40 equispaced knots;

threshold parameters selected adjusting to stdev of each basis function; smoothing parameter λ selected by 10-fold GCV

for SARS procedure: default values of hyperparameters

measure of quality:
$$\left| \mathsf{MASE}\left(\widehat{\eta}\right) = \frac{1}{n} \sum_{i=1}^{n} \left(\widehat{\eta}(x_i) - \eta(x_i)\right)^2 \right|$$

Poisson regression

 $Y_i \sim \text{Poisson}(\mu(x_i))$ $\mu(\cdot) = \text{exponential (heavisine function)}$

SARS not designed for treating Poisson distributed data

3 procedures:

- Ridge regression
- Half-Quadratic regularization procedure
- SPIC procedure by Imoto & Konishi (2003); B-splines procedure based on an information criterion

truncated power basis of degree 3, with 40 equispaced knots;

threshold and smoothing parameters: as before

for SPIC procedure: B-splines with 30 knots; smoothing parameter selected by SPIC procedure

Analysis of AIDS data

AIDS data (Stasinopoulos & Rigby (1992))

concerns the quarter yearly frequency count of reported AIDS cases in the UK from January 1983 to September 1990

after deseasonalising this time series, one suspects a break in the relationship between the number of AIDS cases and the time measured in quarter years

- model Y (deseasonalised frequency of AIDS cases) by a Poisson distribution with mean a polynomial spline function of x, the time measured in quarter years
- use half quadratic procedure (HQ) with spline basis based on 12 knots

seemingly a break point at about July 1987 as also suggested by Stasinopoulos & Rigby (1992)

Figure 4: Simulated example: Gaussian noise; heavisine function.

Figure 5: Simulated example: Gaussian noise; corner function.

Figure 6: Simulated data: Poisson regression; exp(heavisine) function.

Х

Figure 7: Simulated data: Poisson regression; exp(heavisine) function.

