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1 Evolutionary dynamics of escape: a

motivating example

Figure 1: Electron micrograph of avian flu viruses.



Placed in to a new host, a virus can adjust to a hostile environment

via a sequence of mutations on say L particular nucleotide sites



Escape events: via a sequence of mutations the avian flu virus escapes

extinction causing an onset of Human Avian Influenza



Questions:

• introduce a simple stochastic model of virus reproduction and

mutation

• assuming mutations are rare find the asymptotics of the escape

probability for a population of viruses stemming from a single

wild-type virus

• describe a stochastic process of virus reproduction and mutation

given an escape event has occurred

Iwasa et al suggested using a branching process model:

particles reproduce asexually and independently

small population sizes, competition among particles can be ignored



2 Multitype Galton-Watson model

The network of 0-1 sequences of length L = 4, where the edges

represent single point mutations of probability µ � 1
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Let all the sequences with i ones have the same reproduction law

probability of having k offspring pi(k)

fitness as the mean offspring number mi =
∑∞

k=1 kpi(k)

Subcritical reproduction for all sequences except the escape one

0 < m1, . . . , mL < 1 < m0 < ∞

A multitype Galton-Watson model with L + 1 types

time is measured in generations

particle’s type i = the number of ones in the sequence

offspring’s type can differ due to mutation at one or several sites



The reproduction law with mutation

p
(µ)
i (k0, . . . , kL) = pi(k)

(
k

k0, . . . , kL

) (
q
(µ)
i0

)k0

. . .
(
q
(µ)
iL

)kL

where k = k0 + . . . + kL and

q
(µ)
ij = Pi(the given offspring becomes of type j).

Clearly,

q
(µ)
ii → 1, µ → 0

and for j < i

q
(µ)
ij ∼

(
i

j

)
µi−j . (1)



3 The two type case

Consider a GW process with two types of particles labelled by 0 and 1

• type 1 is the subcritical wild-type with m1 < 1

• type 0 is the escape type with m0 > 1.

Both backward and forward mutations are allowed, but our

asymptotical analysis confirms, that given mutations are rear, we can

neglect the backward mutations.

Moreover, the escape event can (and will) be treated as birth of at

least one virus of the escape type.

In this case the restriction m0 > 1 can be dropped.



We will allow for the mutation probability per birth

q
(µ)
10 = µa

(µ)
10 (k)

to depend on the offspring number k. We will assume uniform

convergence to a bounded function

a
(µ)
10 (k) → a10(k), µ → 0.

Assertion 1. If the constant

b10 =

∞∑
k=1

kp1(k)a10(k)

is strictly positive, then the probability of escape has asymptotics

Q
(µ)
10 ∼ µb10(1 − m1)

−1.



Assertion 2. Conditioned on escape, the GW process with types 0

and 1 stemming from a single particle of type 1

is asymptotically discribed by a decomposable GW process with types

10 and 11 stemming from a single 10 particle.

Type 10 particles form the stem lineage (stopping on the mutation

event) and type 11 particles form the side (no mutation) lineages

P10(ν10 = 1) = m1

P10(ν10 = 0) = 1 − m1

P10(ν11 = k|ν10 = 1) = kp1(k)
m1

P10(ν11 = k|ν10 = 0) = kp1(k)a10(k)
b10

P11(ν11 = k) = p1(k)
10 ���� ����		

�� ��
��
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11 11

11 11
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Remark 1. In the network model case q
(µ)
10 ∼ µ, so that Q

(µ)
10 ∼ µm1

1−m1

and P10(ν11 = k) = kp1(k)
m1

.

Remark 2. The size-biased reproduction law p̂(k) = kp(k)
m

characterizes the stem lineage in a subcritical reproduction conditioned

on non-extinction.

Two sampling designs to find the family size distribution

prospective p(k): pick a mother and count her children

retrospective p̂(k): pick a daughter and count her and her sisters

x

p̂(0) = 0, p̂(1) = 1
6

, p̂(2) = 2
6

, p̂(3) = 3
6

p(0) = p(1) = p(2) = p(3) = 1
4

, m = 3
2



4 A forward mutation model

Suppose we can distinguish between L + 1 types of particles, labelled

0, . . . , L with mean offspring numbers

0 < m1, . . . , mL < 1, 0 < m0 < ∞.

Type i particles can only produce particles of the types 0, . . . , i,

whatever is i ∈ [0, L].

Notice that this forward mutation model prohibits the reverse

mutations for the sake of simplicity.

As the asymptotic analysis of the two type case shows, a more general

model with reversed mutations should lead to the same asymptotic

behavior.



As in the two type case the forward mutation probabilities (j < i)

q
(µ)
ij = µi−ja

(µ)
ij (k)

may depend on the offspring number k. We will assume uniform

convergences to bounded functions

a
(µ)
ij (k) → aij(k), µ → 0.

Let the constants

bij =

∞∑
k=1

kpi(k)aij(k)

be positive for all j < i.



Define a matrix A = [Aij ]
L
i,j=0 by

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 . . . 0 0 . . . 0 0

b10
1−m1

0 . . . 0 0 . . . 0 0
...

...
...

...
...

...
...

...

bi0

1−mi

bi1

1−mi
. . .

bi,i−1

1−mi
0 . . . 0 0

...
...

...
...

...
...

...
...

bL0

1−mL

bL1

1−mL
. . .

bL,i−1

1−mL

bL,i

1−mL
. . .

bL,L−1

1−mL
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

In the network case due to (1) on page 8

aij(k) =

(
i

j

)
, bij =

(
i

j

)
mi



Assertion 3. The probability of escape Q
(µ)
i0 ∼ µiχi, where

χ1 = A10

χ2 = A20 + A21χ1

χ3 = A30 + A31χ1 + A32χ2

. . .

In terms of the matrix powers A
n = [A

(n)
ij ]Li,j=0 we can write

χi = A
(i)
i0

=

i−1∑
k=0

∑
0=j0<j1<j2<...<jk<i

Aijk
. . . Aj10.



Put χ0 = 1 and define a probability distribution on j = 0, . . . , i − 1 by

Bij =
χj

χi

Aij

Assertion 4. Conditioned on escape, the limit process is described by

a decomposable 2L-type GW process

Pi0(νi0 = 1) = mi

Pi0(νi0 = 0) = 1 − mi

Pi0(νj0 = 1|νi0 = 0) = Bij

Pi0(νi1 = k|νi0 = 0) = kpi(k)
mi

Pi0(νi1 = k|νj0 = 1) =
kpi(k)aij(k)

bij

Pi1(νi1 = k) = pi(k)

i0 ���� �� ����		
�� ��

��

i0 i0 j0 j0

j1i1 i1

i1 i1

i1

mi mi
(1-mi)Bij

mj



5 The time to escape

The asymptotically viable path of mutations is described by a Markov

chain {Y (n)}n≥0 with the transition matrix

D = [Dij ]
L
i,j=0, Dij = (1 − mi)Bij + mi1{i=j}.

For application purposes, it is important to study the waiting time Wi

to produce the escape type 0 starting from type i, that is the waiting

time until absorption at state 0

P (Wi ≤ n) = P (Y (n) = 0|Y (0) = i).

Wi is a sum of a random number of indep geometric random variables.



The Chapman-Kolmogorov equation yields a recursion for the

probability Pi(n) = P (Wi = n)

Pi(n) = miPi(n − 1) + (1 − mi)

i−1∑
j=1

BijPj(n − 1).

Turning to the expected waiting time Mi =
∑∞

n=1 nPi(n) we derive

Mi =
1

1 − mi

+

i−1∑
j=1

Bij + B
(2)
ij + . . . + B

(i−j)
ij

1 − mj

=
1

1 − mi

+

i−1∑
j=1

χj(Aij + . . . + A
(i−j)
ij )

χi(1 − mj)

since the matrix powers A
n and B

n are connected by B
(n)
ij =

χj

χi
A

(n)
ij .



Observe that the last formula is a weighted sum of the individual

waiting times E(Tj) = 1
1−mj

. The corresponding weight

χj

χi

(Aij + . . . + A
(i−j)
ij ) =

AijA
(j)
j0 + . . . + A

(i−j)
ij A

(j)
j0

A
(i)
i0

= P (Y (n) = j for some n)

gives the probability that the chain Y (n) visits the state j before it is

absorbed at 0.

In the case of ”neutral mutation” with mj = m, j = 1, . . . , L we get

ML =
1

1 − m

(
L −

AL0 + . . . + A
(L−1)
L0

χL

)
.



Finally, we describe a case where there is a simple formula for the

coefficients χi. Suppose that aij(k) ≡ ai(k) is the same for all

daughter types j given the mother type i. Then with simplified

notation bij = ci we obtain

χi =
ci

1 − mi

(
1 +

ci−1

1 − mi−1

)
. . .

(
1 +

c1

1 − m1

)
.

In this case we can also compute

P (Y (n) = j for some n) =
cj

1 + cj − mj

and the expected total time to escape becomes

ML =
1

1 − mL

+

L−1∑
j=1

cj

(1 + cj − mj)(1 − mj)
.



In particular, if aij(k) ≡ 1, then cj = mj and

ML =
1

1 − mL

+

L−1∑
j=1

mj

1 − mj

.

If furthermore mj ≡ m, then

χj = m(1 − m)−j

and

P (Y (n) = j for some n) = m.

In this special case the number of intermediate types has a binomial

distribution Bin(L − 1, m) and

ML =
1 + (L − 1)m

1 − m
.
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Thank you!




