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I. INTRODUCTION

Pattern recognition is a useful tool for the analysis of behavior of nonlinear complex systems
in absence of fundamental equations describing them. Using this methodology creates
possibility for a so-called "technical" analysis that involves a heuristic search for relationships
between available system information and its features inaccessible for direct measurements.

Let a set of objects, phenomena or processes, which are connected with the same or
similar systems, is considered. Certain information (for example, results of measurements) is
available about each element of the set, and there is some feature, possessed only by a part of
the elements. If possessing this feature by an element does not present evidently in the
information available, then a problem arises to distinguish elements that possess this feature.
This problem could be solved by constructing a model on the basis of mechanical, physical,
chemical or other scientific laws, which could explain the relationship between the available
information and the feature under consideration. But in many cases the complexity of the
system makes the construction of such model difficult or practically impossible and it is
natural to apply pattern recognition methods.

1.1 Examples of Problems to Apply Pattern Recognition Methods

Recognition of earthquake-prone areas (e.g., Gelfand et al., 1976). A seismic region is
considered. The problem is to determine in the region the areas where strong (with magnitude
M > MQ where MQ is a threshold specified) earthquakes are possible. The objects are the
selected geomorphological structures (intersections of lineaments, morphostructural nodes,
etc.) of the region. The possibility for a strong earthquake to occur near the object is the
feature under consideration. The available information is the topographical, geological,
geomorphological and geophysical data measured for the objects.

The problem as the pattern recognition one is to divide the selected structures into two
classes:

• structures where earthquakes with M > MQ may occur;
• structures where only earthquakes with M < Mo may occur.

Intermediate-term prediction of earthquakes (e.g., Keilis-Borok and Rotwain, 1990). A
seismic region is considered. The problem is to determine for any time t will a strong (with
magnitude M > MQ where MQ is a threshold specified) earthquake occur in the region within
the period (t, t + x). Here x is a given constant. The objects are moments of time. The
occurrence of a strong earthquake in time period x after the moment is the feature under
consideration. The available information is the values of functions on seismic flow calculated
for the moment t.

The problem as the pattern recognition one is to divide the moments of time into two
classes:

• moments, for which there is (or will be) a strong earthquake in the region within
the period (t, t + x);

• moments, for which there are not (or will not be) strong earthquakes in the region
within the period {t, t + x).

Recognition of strata filled with oil. The strata encountered by a borehole are considered. The
problem is to determine what do the strata contain: oil or water. The objects are the strata. The
filling of the strata with oil is the feature under consideration. The geological and geophysical
data measured for the strata are the available information.



The problem as the pattern recognition one is to divide the strata into two classes:
• strata, which contain oil;
• strata, which contain water.

Medical diagnostics. A specific disease is considered. The problem is to diagnose the disease
by using results of medical tests. The objects are examined people. The disease is the feature
under consideration. The available information is the data obtained through medical tests.

The problem as the pattern recognition one is to divide examined people into two
classes:

• people who have the disease;
• people who do not have it.

1.2 General Formulation of the Pattern Recognition Problem

One may give the general abstract formulation of the problem of pattern recognition as
follows.

The set W= { W } is considered, where objects w1 = (wi\ w-i, ... , wm'), i = 1, 2,... are
vectors with real (integer, binary) components. Below these components will be called
functions.

The problem is to divide the set W into two or more subsets, which differ in certain
feature or according to clustering themselves.

There are two kinds of pattern recognition problems and methods:
• classification without learning;
• classification with learning.

1.3 Classification without Learning (Cluster Analysis)

The set W is divided into groups (clusters, see Fig. 1) on the basis of some measure in the m-
dimensional space wi, vv2,..., vvm.
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FIGURE 1 Clustering of objects in two-dimensional space



Denote p(w, v) a distance between two m-dimensional vectors w = (w\, W2,..., wm) and
v = (vi, v2,..., vm).

To define classification and to estimate at the same time its quality the special function
is introduced. The best classification gives the extremum of this function.

Examples of the functions. Let Wis a finite set. The following two functions can be
used.
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mk, Wj are the numbers of objects in the group numbered k and in the group numbered j
respectively; wl,w2,...,wmk are the objects of the group numbered k; \\\2,...,\mi are the
objects of the group numbered;.

After the groups are determined the next problem can be formulated: to find common
feature of objects, which belong to the same group.

1.4 Classification with Learning

If it is a priori known about some objects to what groups (classes) they belong, then this
information can be used to determine classification for other objects.

As a rule the set Wis, divided into two classes, say D and N.
The a priori examples of objects of each class are given. They are called the training

set Wo:
WoczW,
Wo = Do u No.
Here Do is the training set (the a priori examples) of objects belonging to class D, iVo is

the training set of objects belonging to class N.
The training set Wo is used to determine a priori unknown distribution of objects of the

set Wo between the classes D and N.



The result of the pattern recognition is twofold:
• the rule of recognition; it allows to recognize which class an object belongs to

knowing the vector w1 describing this object;
• the actual division of objects into separate classes according to this rule (Fig. 2):
W=DuN
or if there are objects with undefined classification then

Analysis of the obtained rule of recognition may give information for understanding
the connection between the feature, which differs the classes D and N, on one hand and
description of objects (components of vectors w1) on another.

Set l/l/and learning
subsets Dn and A/n

Result of classification
W=(DuN)uU

FIGURE 2 Classification with learning



II. EXAMPLES OF ALGORITHMS

Some algorithms used to solve problems of classification with learning are described below.

2.1 Statistical Algorithms

These algorithms are based on the assumption that distribution laws are different for vectors
from classes D and N (see Fig. 3). The samples Do and No are used to define the parameters of
these laws.

The recognition rule includes calculating for each object w1 an estimation of
conditional probabilities PD' and / V that the object belongs to class D and N respectively.
Classification of the objects according to these probabilities is performed as follows:

w'e D,

where e > 0 is a given constant.
w 'e U, if -e < PD

l - ZV < e,

N

FIGURE 3 Different distribution laws for classes D and N

Bayes algorithm. One can apply this algorithm in the case when each component of vectors w
may take only finite number of different values. If it is not so then discretization (see Section
3.1 below) should be made before application of the algorithm.

If the vectors of the set W are realizations of a certain random vector value then
according to Bayes formula

P(w = w; |w 6 D) P(w 6 D) = P(w 6 D|w = w') P(w = W)

It follows from (1) that

(1)



P'D = P(w 6 Dw = w') = - i >~ -.
D V I / p(w = w')

Similarly

Estimations of probabilities in the right side of these relations are given by following
approximate formulae, in which the samples Do and No are used:

P(w = w1 |w £ D) ~ P(w = w1 |w e Do),

P(w = w ' | w e TV) = p ( w = w ' | w e A ô),

P(w = w1) = p ( w = w1 | w e Do) P(w £ D) + P(w = W |w £ Â o) P(w £ N).

Probability P(w £ D) is a parameter of the algorithm and has to be given,
P(w £ TV) = 1 - P(vr £ D).

Note that if m is the number of components in vectors w and kj is the number of values
that component w, may take then the number of probabilities P(w = w' |w £ Do) (or P(w = w'
|w £ No)) that should be estimated is ki • k2 • ... • km. This number may be rather large even
more than the number of objects in the set Do (or No) that makes impossible calculating
probabilities F(w = w1 |w £ Do) (or P(w = w1 |w £ No)).

The situation is simpler then the components of the vectors may be considered as
independent random values. In this case

P(w = w1 | w £ Do) = P(wi = W |w £ Do) • P(w2 = w2
l |w £ Do) • ... • P(wm = wm

l |w £ Do)
and
P(w = w1 |w £ No) = Piwx = w\l |w £ No) • P(w2 = w2

l |w £ No) • ... • P(wm = wj |w £ No).

Therefore only 2k} conditional probabilities should be calculated for each component on the
condition that a vector belongs to the set Do and on the condition that it belongs to the set iV0.

2.2 Geometrical Algorithms

In these algorithms surfaces in the space wu w2,..., wm are constructed to separate classes D
and N (see Fig. 4).

Algorithm Hyperplane. This is an example of a geometrical algorithm.
The hyperplane F(w) = a0 + a\W\ + a2w2 + ... +amwm = 0 is constructed in the space w\,

w2,...,wm to separate the sets Do and No by the best way. It means that some function on the
hyperplnane has to have extremum value.

The example of the function is

Here w\w2 , . . . ,w"' are objects of Do, v\v2,...,v"2 are objects of No.
The recognition rule is formulated as follows:

w1 £ D, if P(W) > e,



where £ > 0 is a given constant.

w1 6 N, if P(W) < -£,
wj 6 U, if -£ < P(W) < £,

• • •
•

•
• •

•

FIGURE 4 Separation of objects from classes D (rhombs) and N (circles) in two-dimensional
space by a straight line.

2.3 Logical Algorithms

In these algorithms characteristic traits of classes D and N are searched using the sets Do and
No- Traits are Boolean functions on w\, wi,..., wm. The object w1 has the trait, if the value of
the corresponding function, calculated for it, is true, and does not have the trait, if it is false.
A trait is a characteristic trait of the class D, if the objects of the set Do have this trait more
often than the objects of the set NQ. A trait is a characteristic trait of the class N, if the objects
of the set No have this trait more often than objects of the set Do.

Using the searched characteristic traits the recognition rule is formulated as follows:
w1 6 D, if V - nN' > A + £,
w1 6 N, if nD' - HN1 < A - £,

w1 6 U, if A - £ < nD' - HIM1 < A + £.
Here nD

l and nN' are the numbers of characteristic traits of classes D and N, which the object
w' has, A and £ > 0 are given constants.

Logical algorithms are useful to apply in cases then the numbers of objects in sets Do
and No are small.

As a rule logical algorithms are applied to vectors with binary components. An
example of logical algorithm is the algorithm CORA-3. It is applied to geophysical problems,
in particular to the problems of recognition of earthquake-prone areas and intermediate-term
prediction of earthquakes. The detailed description of this algorithm can be found in Gelfand
et al. (1976) and is given below.



III. PRELIMINARY DATA PROCESSING

As it was mentioned above some pattern recognition algorithms (e.g., CORA-3) do classify
the vectors with binary components. Therefore, if the set W initially consists of vectors with
real components (functions) then prior to an algorithm application, the coding of objects in the
form of vectors with binary components has to be carried out. For this purpose, the
characteristics are discretized, i.e. ranges of their values are represented as the union of
disjoint parts. Then each of these parts is given accordingly by the value of a component of a
binary vector or by the combination of values of its several components.

After discretization the data become robust. For example, if a range of some function
is divided into three parts then only three gradations for this function ("small", "medium",
"large") are used after the discretization instead of its exact value. Do not regret the loss of
information. This makes results of recognition stable to variations of data.

3.1 Discretization

Let us consider some component (function) WJ of vectors (objects), which form the set W. Let
the range of values of the function is limited with the numbers x}

0 and x]
f (x}

0 < x]
f). The

procedure of discretization for the function WJ consists of dividing the range into kj intervals
by thresholds of discretization (Fig. 5):

yj yj y] I yj ^ yj ^ yj ^ ^ yj ^ yJ \

•̂ 1 ' 2 ' ' *'' k—\ \ 0 1 2 ' * k -\ f j

Assume that the value Wj1 of the function numbered j of the object numbered i belongs
to the interval numbered s, if xj_{ < Wj1 < xj, where x( +l - xJ

f. After discretization we

replace the exact value of the function by the interval, which contains this value.
Usually we divide the range of function values into two intervals ("small" and "large"

values) or into three intervals ("small", "medium" and "large" values).
Thresholds of discretization can be introduce manually on the basis of various

considerations for the nature of the given function.
The other way to determine the thresholds is to compute them so as to make the

numbers of objects with the function values within each interval (JC/1,, X}
S), S = 1, 2, ..., kj,

being roughly equal to each other. In this case one should specify the number of intervals &j
only. Then the thresholds of discretization may be calculated by using a special algorithm. All
objects together or only objects of Do and A^ may be considered. This type of discretization is
called here and below as objective or automatic.

Our purpose is to find such intervals where values of the function w-t for objects from
one class occur more often than for objects from another class.

r F i >
J y] y) TJ_TJ

j j

FIGURE 5 Discretization of the function



How informative is the function w, in a given discretization can be characterized as
follows.

Let us compute for each interval (x f
; , , xj) the numbers PS

D and PS
N (s= 1,2, ..., £j),

which give for the sets Do and No respectively the percent of objects, for which the value of
the function Wj falls within the interval numbered s.

Let us denote = max
l<s<k

P.-P.

In other words PS
D and PS

N are empirical histograms of the function Wj for the sets Do

and No, and Pm a x is the maximal difference of these histograms.
The larger is Pmax, the more informative is the function Wj.
Functions for which Pm a x < 20% are usually excluded.

Another criterion of the quality of a discretization is monotonous dependence of PS
D

and PS
N on s. Let kj = 3. Let us denote:

P° + Pf
pD pD
r3 rx

P? + P?

-Pi°

N pN_pN\
r 3 rl |

If PS
D changes monotonously with s, MD = 1; the larger is MD, more jerky is PS

D. This

is clear from Fig. 6. Similar statements are true for MN, PS
N .

The smaller are MD and MN, the better is the discretization of the function wy

Functions with both MD, MN ^ 3 are usually excluded.

Samples Do and No are often marginally small, so that their observed difference may

be random. Therefore the relation between functions Pf and PS
N after discretization should

be not absurd according to the problem under consideration, though they may be unexpected
indeed.

\PD p D i . i p D p D i _ i p D p D i

AfD=l, PS
D changes monotonously

\P°-P,

\p D-P D\.\p D-P D\-\p D-P Dl
MD>1, PS

D does not change monotonously

W:

FIGURE 6 Monotonous and non-monotonous changing of

10



3.2 Coding

With discretization thresholds determined, vectors w1 are coded into binary vectors. Only the
functions selected at the stage of discretization are considered for coding. At the stage of
coding /j components of binary vectors are determined for the function wy Number /j depends
on the number of thresholds as well as on the type of coding procedure applied to the function
Wj.

The following two types of coding are used.

1. / ("impulse") type. In this case /j = k}, i.e. the number of binary vector components
allocated for the coding of the function Wj is equal to the number of intervals into which the
range of its values is divided after discretization.

Let us denote as (Oi, (02, ..., toy the values of binary vector components, which code the
function wy If the value WJ1 of the function WJ for the object numbered i falls within the 5-th
interval of its discretization, i.e. xj

s_x < Wj1 < xJ
s , then we set

(Oi = (O2 = . . . = (Os-l = 0 , (Os = 1 , (Os+i = 0 = ... = CO|j = 0 .

2. 5 ("stair") type. In this case /j = kj - 1, i.e. the number of binary vector components,
allocated for the coding of a function, is equal to the number of the thresholds of
discretization. If the value Wj1 for the object numbered i falls within the 5-th interval of its
discretization, then we set

(Ol = (O2 = ... = (Os-i = 0 , (Os = (Os+i = ... = (Oy = 1 .

The case when the codes of the function Wj are constructed for kj = 3 is considered
below.

If the value WJ1 belongs to the first interval ( x^ < WJ1 < x() / type coding has the form:

100. S type coding for the same value Wj1 has the form: 11.
For the second interval (x( < Wj1 < x[) the codes are 010 (/ type) and 01 (5 type).

For the third interval (x{ < Wj1 < JC3
J ) they are 001 and 00 respectively.

Discretization and coding procedures transform the set of vectors W= { w1 }, i = 1, 2,
..., n, which correspond to all objects, into a set of vectors with / binary components. Here / =
Z'/j, where summation is implemented only over the functions left after discretization.

Thus, discretization and coding transform the initial problem in the form of the
classification within the finite set of /-dimensional vectors with binary components. These
vectors will be also called objects of recognition.

11



IV. ALGORITHM CORA-3

Algorithm CORA-3 (Bongard, 1967) operates in two stages:
- selection of characteristic traits (learning);
- voting.

4.1 Learning

In the learning stage, the algorithm determines characteristic traits for classes D and N using
vectors from sets Do and A .̂

Traits. A matrix A,

A =
h h h
Sl 82 tf 3

denotes a trait, where i\, i2, ij, 1 < i\ < i2 <i^<l are the numbers of binary vector components

and 8i, 82, 63 are their binary values. We say that a binary vector (an object) CO1 = (coi1, (O21, ...,

coi1) has the trait A if (rih = <!>,, (o'h = 52, (rih - 8V

Characteristic traits. Let W c W. Denote the number of vectors CO1 e W that have trait A by
K(W, A).

The algorithm has four free parameters kvki,k2,k2, which are nonnegative integers
used to define characteristic traits of the two classes.

Trait A is a characteristic trait of class D if
K(D0, A) > kx and K(N0, A)<h.
Trait A is a characteristic trait of class N if
K(N0, A) > k2 and K(D0, A)<k2.
Parameters ki and 2̂ are called selection thresholds for characteristic traits of classes D

and N respectively. Parameters ki and ki are called contradiction thresholds for characteristic
traits of classes D and N.

Equivalent, weaker, and stronger traits. The number of characteristic traits may be rather
large. Some of them occur on the same vectors from training sets. The algorithm distinguishes
such cases and does not include all characteristic traits in the final list.

Specifically, denote by £2(A) a subset of set Wsuch that co1 e £2(A) has trait A. Let, Ai
and A2 be two characteristic traits of class D. Trait Aj is weaker than trait A2 (or A2 is
stronger than Ai), if

Q(A0 n Do c Q(A2) n Do and (Q(A2) n D0)\(Q(A0 n Do) ± 0 .
This condition means that all vectors from Do that have Ai also possess A2; at the

same time there is at least one vector from Do, which has trait A2, and does not have Ai.
A similar definition is valid for characteristic traits of class N. Let A] and A2 be two

characteristic traits of class N. Then the Ai is weaker than trait A2 (or A2 is stronger than Ai)
if

Q(A0 n No c Q(A2) n Âo and (fl(A2) n iV0)\(fl(Ai) n Â o) * 0 .
Two characteristic traits Ai and A2 of class D are called equivalent if they are found on

the same vectors of set Do, i.e.,

12



Similarly, characteristics traits Ai and A2 of class JV are called equivalent if

The algorithm excludes from the lists of characteristic traits those that are weaker or
equivalent to a selected trait.

Thus, the learning stage results in the final list of qn and gN characteristic traits of
classes D and N. respectively. Any member of this list does not have weaker or equivalent
members.

4.2 Voting and Classification

In the second stage the algorithm performs voting and classification using the final list of
characteristic traits. For each vector (o1 € W, it calculates the number no' of characteristic traits
of class D, which the vector possesses, the number nN' of those of class N, and the difference
A; = HB - «N' called voting.

The classification is defined as follows.
Class D (set D) is formed from the vectors GO1, for which A; > A. The vectors, for which

A, < A, are included in class N (set N).
Here A is a parameter of the algorithm as well as kx,k\,k2, and ki.

This recognition rule corresponds to E = 0 in the description of logical algorithms
given above.

4.3 Algorithm CLUSTERS

Algorithm CLUSTERS is the modification of algorithm CORA-3 (Gelfand et al, 1976). It is
applied in the case when set Do consists of S subsets (subclasses):

Do = D o ' u D o
2 u . . . u D o

s ,
and it is known a priori that at least one element of each subclass belongs to class D but some
elements of set Do may belong to class N.

The learning stage of algorithm CLUSTERS differs from that of CORA-3 in the
following.

First, by definition, a subclass has a trait if it contains at least one vector with this trait.
Trait A is a characteristic trait of class D, if

^S(DO, A) > ki and K(N0, A) < h.
Here IC"(Do, A) is the number of subclasses that have the trait A.

Second, the definition of the weaker and equivalent traits for characteristic traits of
class D is different. A characteristic trait Ai of class D is weaker than a characteristic trait A2
of the same class if any subclass that has trait Ai also has A2 and there is at least one subclass,
which has trait A2 but does not have trait Ai. Traits Ai and A2 are equivalent if they are found
in the same subclasses.

Algorithm CLUSTERS forms the sets of characteristic traits of classes D and N like
CORA-3.

The stage of voting and classification is the same as in algorithm CORA-3.

13



V. ALGORITHM HAMMING

Another algorithm applied to geophysical problems is algorithm HAMMING
(Gvishiani and Kossobokov, 1981). There are also other possible applications of this
algorithm (e.g., Keilis-Borok andLichtman, 1981).

This algorithm operates also in two stages: learning and voting.

5.1 Learning

In the first stage (learning), the algorithm computes for each component (Ok (k = 1, 2,
..., 1) of binary vectors the following values:

qu(k\0) - the number of objects of the set Do, which have o\ = 0,
<7D(&|1) - the number of objects of the set Do, which have (Ok = 1,
qu(k\0) - the number of objects of the set No, which have o\ = 0,
#N(£|1) - the number of objects of the set No, which have (Dk = 1.
Then the relative number of vectors, for which this component equals to 1, is

determined for the set Do:

and for the set No:

A binary vector K = (K\, K%, ..., Kj) called the kernel of class D, is determined as
follows:

* [0, if aD

The calculation of the kernel K, whose components are more typical of set Do than of
completes the first stage.

NOTE: It may be more reliable to eliminate the components, for which
- (XN(£|1)| < e, where e is a small positive constant.

5.2 Voting and Classification

In the second stage, the algorithm computes Hamming's distances

from each vector co1 6 Wto the kernel of class D.

14



The classification is defined as follows.
Class D (set D) is formed from vectors co1, for which p; < R.
The vectors, for which pi > R, are included in class N (set N).
Here R is a parameter of the algorithm.
Algorithm HAMMING-1 is generalization of HAMMING. It operates with the

generalized Hamming's distance

Weights ^ > 0 (k = 1, 2, ...,/) are parameters of the algorithm. They can be assigned
arbitrarily or computed from objective considerations that reduce the danger of self-deception;
for example, by formula:

max

where maximum is taken over all components used in the given run of the algorithm.

15



VI. EVALUATION OF THE CLASSIFICATION RELIABILITY

Reliability of results of recognition is evaluated by several methods including control tests,
statistical analysis of the established classification and other techniques. These tests are
necessary to be sure in the obtained results. It is especially important in the case of small
samples Do and Afo. The tests illustrate - how reliable are the results of the pattern recognition.
However they do not provide a proof in the strict statistical sense if the training material is
small.

The following simplest tests are useful.
1. To save the part of objects from Wo for recognition only, not using it in learning.
2. To check the conditions: Do c D, A^ c N.
NOTE: Sometimes these conditions are not valid because sets DQ and NQ are not

"clear" enough. For example, in the case of recognition of earthquake-prone
areas objects of Do are structures where epicenters of earthquakes with M > Mo
are known and objects of Âo are structures where epicenters of such
earthquakes are not known. Objects of No may belong to the class D, because
in some areas earthquakes with M > Mo may be possible, though yet unknown.
Objects of Do may belong to the class N due to the errors in the catalog (in
epicenters and/or magnitude).

The examples of some other tests are listed below. These tests include some variation
of the objects, used components of vectors, numerical parameters etc. The test is positive if
the results of recognition are stable to these variations. Since the danger of self-deception is
not completely eliminated by these tests the design and implementation of new tests should be
pursued.

6.1 Using a Result of Classification as a Training Set (RTS test)

This test is an attempt to repeat the established classification W = D u N, using the resultant
sets D and N as the new training sets instead of Do and NQ. We usually consider this test as
successful if not more than 5% of the total number of objects are classified in the test
differently comparing with their initial classification. The "physical" idea of the test is rather
obvious and natural: if our classification is correct then such changing of training material
should not change the result of classification.

Note that algorithm CORA-3 allows easy repetition of initial classification if one takes

k\ =ki =0 and sufficiently small k\ and k2. Therefore, it is advisable to perform this test with

nonzero thresholds ki and ki. For example, k\ - k2 = 1, or ki = ki = 2, or the same as in the

initial classification. In the case of &i =&2 =0 the substantial information is carried with
maximum values of k\ and k2, under which the initial classification can be repeated.

In the case of any algorithm used to obtain the initial classification, it's advisable to
repeat it in making the test by using HAMMING algorithm. We consider success of RTS test
as the necessary condition for the classification obtained to pretend to be the problem solution.
In this sense RTS test is obligatory to check the reliability of the classification.

6.2 Stability Testing (ST tests)

These tests generalize RTS test. Their goal is to obtain the initial classification W = D u N,
using the various subsets Do' c D, AV c N as Do and No training sets. The test is considered
successful if the initial classification is rather stable while we change training material.
Usually we accept the result if not more than 10% of the total number of objects change their
classification in the result of the test. The choice of Do' and No used as training sets in ST test

16



can be different. For instance, in the case of recognition of earthquake-prone areas the region
at hand can be divided into two parts, and subsets DQ and NQ then formed from objects of the
sets D and N objects with preimages belong to one part. The other way of selecting Do' and
No can be based on voting results in the initial classification. If algorithm HAMMING (or
HAMMING-1) is used, the objects w1 e D close to the kernel K can be assigned to Do', and
those far from it are assigned to No'. When algorithm CORA-3 (or CLUSTERS) is used, the
objects w1 e D with larger values of Ai can be assigned to Do', whereas those with small Ai
form NQ.

Successful results of different ST tests are appealing indirect arguments favoring the
validity of an established classification. At the same time, a success in a single test with an
arbitrary choice of Do' and No is by no means a proof of reliability.

6.3 Sliding Control (SC test)

This test is designed for establishing classifications on the basis of the training sets (Do\w')

and (Ao\w'+"1), i = 1, 2, ..., m&x(n\,m). The idea of SC test is very clear. We just want to
check weather classification of the objects belonging to the training set is stable while they are

excluded from the training set. The first variant discards the objects W1 e Do and W1+n< e Ao,

the second variant resets them but discards the objects W2 6 Do and w2+n' e NQ, etc. If one
of sets Do or A'o (with a smaller number of objects) has already all its objects discarded once,
we proceed only with the other set. In case of algorithm CLUSTERS the whole subclasses are
excluded in turn from the set Do.

Formal criteria of success of the test is small value of ratio —— or —-.—p-̂ r- Here
A> A i

and mN show how many objects of Do and No respectively change classification after they
were excluded from learning. We usually consider SC test as successful if not above 20% of
objects in each of Do and NQ sets change their classification while neglecting.

This test is very similar to the well-known "jackknife" procedure, under which each
variant discards only one object, first from Do, and then from iVo. On the other hand SC is
preferable because it needs executing less variants of classification.

6.4 Voting by Equivalent Traits (VET test)

This test is applied only if classification is obtained by CORA-3 (or CLUSTERS) algorithm.
In both cases the result of classification depends on the choice of traits picked up from
equivalence groups. The VET test aims at evaluating the classification stability under such a
choice.

Let object w1 possesses u'Dj traits, which are equivalent to y-th trait of class D, and u'Nj

traits, which are equivalent to y-th trait of class N. We define on the bases of numbers u'Dj and

u'Nj the numbers of "votes" in favor of classes D and A' respectively as follows.

Lu J ' UN 2^ J
=i PD j=\ PN

Here pJ
D is the total number of traits equivalent to y-th trait of class D, pJ

N - the number of

traits equivalent to y-th trait of class N. In calculation of both numbers pJ
D and pJ

N y-th trait

itself is obviously included. In the test the set D is formed from the objects, which satisfy the

condition u'D - u'N > A and the rest of objects forms the set N.
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The results of the VET test are claimed successful if it is possible to find A such that
the total change in classification is less than 5% of the total number of recognition objects. We
consider a success of the VET test as a necessary precondition for claiming the validity of the
resultant classification obtained with CORA-3 or CLUSTERS.

6.5 Randomization of Data

These tests (Gvishiani and Kossobokov, 1981) are used to estimate the probability of an
erroneous classification and its nonrandomness in the absence of a control sample.

The sequence of intermixed problems is considered in these tests. An intermixed
problem is formulated on the basis of initial one by a random choice of n\ objects from given
n objects of the set W and also by a random choice nj objects from the rest of n - n\ objects of
the set W. These two new random training sets we symbolize as Do' and No'- Coding of the
objects in the form of binary vectors remains the same for an intermixed problem as it is in the
real one. In other words it means that we preserve the relationship between the characteristics,
which organic one to the set W as a whole. The total number
Cn' Cn

n\
 = n\l\nx! n2! (n - n{ - n2)l] of intermixed problems may be defined.

A pattern recognition algorithm is applied to each intermixed problem, and the
classification W = D u J V based upon the training sets Do' and JVO' is obtained in the given
intermixed problem. The condition that \D\ is not greater than the number of objects in the set
D obtained in the initial classification is imposed on the classification in the intermixed
problem.

Assume that F of intermixed problems have been formed and f\ among them
succeeded to include Do' c D. Then f\IF ratio may be used as the measure of the result to be
non-random. If the values of f\/F are small it obviously means that, it is complicated to obtain
a random result of the same quality as the real one. In this sense the small values of f\IF speak
for the fact that the real result obtained is non-random. On the other hand it cannot of course
be used as a necessary condition to proceed with the classification.

Gvishiani and Kossobokov (1981) showed that under some natural additional
requirements classifications in intermixed problems offer to define the upper estimate of
classification error probability for the original problem. This upper estimate is calculated by
the formula

p = \N\/n-vD/nl .

Here | N | is the average number of objects allocated to class N in the intermixed problems,

vD - the average number of objects from sets Do' allocated to N in the intermixed problems.

Naturally, a small value of p is the argument favoring the validity of classification

obtained for the original problem. If the estimation results in a large value (p > 0.5), it is
advisable to return to the original problem. Such a situation may indicate, for instance, an
insufficient size of Do. On the other hand, one should remember that p gives only the upper
estimation of the error probability, though its value is usually much less.

6.6 Result Replication Tests

These tests are the attempts to replicate the obtained result by altering the solution procedure
starting with some intermediate stage. The application of another pattern recognition
algorithm is used in the simplest example of such experiment. For example, classification was
established by performing CORA-3 algorithm, then, using that same coding of objects, an
attempt is made to repeat the classification by applying HAMMING algorithm. This test is
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usually considered as satisfactory one if not more than 20% of objects change their
classification.

When application of a simpler algorithm results in repeating almost entirely the initial
classification, its validation rises, of course. On the other hand replication of the classification
by another algorithm cannot be considered, of course, as the necessary condition for the result
to be valid.

The set of used components of binary vectors may be changed. In particular this may
include elimination of each used component in turn.

An attempt may be also made to repeat the classification altering discretization
thresholds for the functions describing the objects. Corresponding changes in coding of the
objects should be also made. New functions may be included in the description of the objects.
Then by replication of all subsequent stages of the problem consideration, a new classification
is established and its comparison with the initial is made.
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