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Shock Waves

A shock wave is a surface of discontinuity moving through a medium
at a speed larger than the speed of sound upstream. The change in the
fluid properties upon passing the shock can be investigated using simple
conservation laws.

In a fluid flow, conservation laws are usually expressed in the form of
continuity equations. Instead of the usual differential form, the continuity
equations can also be expressed as relations between quantities on two
sides of an arbitrary stationary surface: the mass flux, the momentum flux
and the energy flux must be continuous through the surface. For a surface
normal to the local fluid velocity ~v, these relations can be expressed as:[

ρv
]

= 0 (mass conservation)[
P + ρv2

]
= 0 (momentum conservation)[

v
(
u + P + ρv2/2

)]
= 0 (energy conservation)

Here v= |~v|, P is the local pressure and u is the internal energy per unit
volume. u + P is the enthalpy, or heat function per unit volume of the fluid.
The square brackets represent the difference between the enclosed quantity
evaluated on two sides of the stationary surface. For an adiabatic index
(ratio of specific heats) γ, u = P/(γ − 1), and hence the energy relation can
be written as [

v
(
γP/(γ − 1) + ρv2/2

)]
= 0

Using the mass conservation equation, this can be further simplified to[
γP/(γ − 1)ρ + v2/2

]
= 0

We can apply these relations to the quantities upstream and downstream
of a shock wave, once we move to a reference frame in which the surface of
discontinuity is at rest (fig. 1). In this frame, the upstream fluid approaches
the discontinuity at a speed v1 and the downstream fluid leaves the shock
with a speed v2. Let ρ1 and ρ2 be the densities on the two sides respectively,
and P1 and P2 the corresponding pressures. In this frame, we can then write

ρ1v1 = ρ2v2
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These are known as the shock jump conditions or Rankine-Hugoniot relations.
Note that in the rest frame of the unshocked fluid, v1 is the speed of
propagation of the shock, and v1 − v2 is the speed with which the shocked
fluid is seen to move forward.

Figure 1: A shock wave discontinuity in (a) the reference frame of the
unshocked medium and (b) in a reference frame where the surface of
discontinuity is at rest. The shock advances into the unshocked fluid at
speed v1. In the rest frame of the shock, the upstream medium approaches
it at speed v1. The shocked fluid moves away from the discontinuity at
speed v2 = ρ1v1/ρ2. The shocked fluid therefore approaches the unshocked
fluid at a speed vrel =v1−v2.

We will be interested in very strong shocks, for which the upstream
medium can be approximated as a cold (T ∼ 0) fluid. The upstream
pressure can therefore be neglected in comparison with all other quantities
appearing in the jump conditions. Setting P1 = 0 in the above equations,
and defining the Compression Ratio

R ≡
v1

v2
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one obtains from the above:

ρ2

ρ1
= R

P2

ρ2
= v2

1
R − 1

R2

1 =
2γ
γ − 1

R − 1
R2 +

1
R2

The third equation is a quadratic in R and can be easily solved to yield

R =
γ + 1
γ − 1

where we have ignored the trivial solution R = 1 which is valid in the
case of no discontinuity in flow. For a monatomic gas with three degrees
of freedom, γ = 5/3 and hence R = 4. This shows that on crossing a
strong shock the density of the fluid jumps by a factor of 4. Noting that
P2/ρ2 = kT2/(µmp), one can estimate the postshock temperature:

T2 =
µmp

k
v2

1
R − 1

R2

for R = 4,

T2 =
3

16
µmp

k
v2

1

which gives T2 ∼ 107 K for v = 1000 km/s. Clearly, gas shocked in a young
supernova remnant, where the expansion speed of the blast wave is several
thousand km/s, is hot enough to produce X-rays. X-ray spectroscopy of this
hot gas is now the subject of detailed study by contemporary X-ray satellites
Chandra and XMM-Newton. One of the important results emerging from
such studies is the composition of the matter ejected in the supernova
explosion.

As a supernova remnant (SNR) expands, it sweeps up more and more
matter. The kinetic and thermal energy is shared with all the swept-up
matter and hence the expansion slows down. When the swept-up matter
dominates the dynamics and radiation losses from the material are small,
the dynamics of the blast wave is governed by only two dimensional
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parameters: the energy of the blast wave E0 and the external density ρ. In
such a situation the expansion would have a self-similar solution, with the
radius of the blast wave proportional to the only possible combination of
these parameters that yields a dimension of length:

R ∝
(

E0

ρ

)1/5

t2/5

This is known as the “Sedov-Taylor” expansion law, originally derived to
explain the behaviour of the expanding blast waves of atmospheric nuclear
detonations. The speed of the blast wave then falls as

v ∝ t−3/5

This power-law behaviour is applicable only at times t > t0 when the
swept-up mass 4πR3ρ/3 exceeds the originally ejected mass Mej in the
explosion. Until t = t0 the expansion is practically uniform, at a constant
speed equal to the initial speed v0. The value of t0 is then given by

t0 =

(
3Mej

4πρ

)1/3 1
v0

which evaluates to about 250 y for Mej = 2M�, v0 = 1000 km/s and a typical
interstellar density of 1 atom per cm3. We have then the scaling law

v = v0

( t
t0

)−3/5

and the evolution of the postshock temperature, for typical parameters
adopted above,

T2 ≈ 107 K
(

t
250 y

)−6/5

As the temperature falls to T < 104 K, line radiation becomes copious,
causing a serious drain of blast wave energy. The blast wave stagnates and
eventually disperses into the interstellar medium. The typical lifetime of a
supernova remnant can be estimated from the above, as the time required
for the postshock temperature to fall to ∼ 104 K. This works out to be a few
times 105 y.
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Shock Acceleration of Cosmic Rays

Shock waves in astrophysical situations are thought to be the main con-
tributors to the acceleration process of the very high energy electrons and
nuclei that are observed as the so-called “Cosmic Rays”. The mechanism,
called Diffusive Shock Acceleration, proceeds as follows.

Astrophysical shocks are mostly “collisionless”. The momentum exchange
between the shocked matter and newly swept-up matter is normally ac-
complished by the local magnetic field. Magnetic fields are ubiquitous
in astrophysics, at any point there are relatively large scale components
along with irregularities of small scale. Small-scale, tangled fields may
have a substantial strength and act as “magnetic mirrors” for even high
energy particles. In postshock regions, magnetic fields can be amplified by
turbulent motions.

Let us consider a non-relativistic shock, with speed vsh, and relativistic
particles, with energy E = pc (p=momentum), present in a given region.
The speed of these particles are much higher than the shock speed, and
they hardly notice the shock as a discontinuity. However, they do scatter
from the magnetic irregularities on both sides of the shock.

Scattering with a magnetic irregularity is energy-conserving in the rest
frame of the irregularity. Repeated scatterings of this kind with many
such irregularities in a medium randomize the momentum of the particle,
and establish an isotropic distribution in the rest frame of the medium.
Around the shock, then, we have such isotropic distribution of the high-
energy particles established, separately, both upstream and downstream
of the shock. These two distributions then approach each other with a
speed

vrel = vsh −
vsh

R
=

R − 1
R

vsh

where R is the compression ratio.

In either distribution of the high energy particles, the average velocity of the
whole distribution of particles is equal to the velocity of the local medium,
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but the speed of random motion is very nearly c, as the particles are
relativistic. Since this is much larger than the shock speed, these particles
can easily cross the shock front from either side, namely, from upstream
to downstream and vice versa. Since the two media approach each other
at vrel, upon crossing the shock the particles will find their momentum
isotropized by scattering with magnetic irregularities approaching at speed
vrel with respect to the rest frame of the previous distribution. This process
increases the average energy of the particles, with a particle gaining energy
every time a shock crossing occurs.

If the particle has an energy E in the local rest frame before shock crossing,
in the frame of the medium encountered after shock crossing its energy is
seen to be, by Lorentz transformation,

E′ = γrel(E + vrelpx)

where px is the x-component of the momentum and the x-axis is chosen
to be along vrel. We note that the Lorentz factor γrel ≡ (1 − vrel

2/c2)−1/2 is
very close to 1 for the non-relativistic shocks under discussion. Writing
px = p cosθ = E cosθ/c, we find that the gain in energy in each shock
crossing is

∆E = E′ − E = E
vrel

c
cosθ

i.e.
∆E
E

=
vrel

c
cosθ =

R − 1
R

vsh

c
cosθ

Noting that the flux of particles arriving at an angle θ is proportional to
c cosθ sinθdθ, we find a flux-weighted fractional energy gain per shock
crossing:

〈
∆E
E

〉
=

R − 1
R

vsh

c

∫ π/2

0
cos2 θ sinθdθ∫ π/2

0
cosθ sinθdθ

=
2
3

R − 1
R

vsh

c

Defining a “cycle” as two crossings of the shock, downstream to upstream
and back to downstream, we find the fractional energy gain per cycle

η ≡
〈
∆E
E

〉
cycle

=
4
3

R − 1
R

vsh

c
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All particles which cross into the downstream region will, however, not be
able to cross the shock back to upstream, since the downstream medium
moves away from the shock front at a speed v2 = vsh/R. Since the average
speed of the particles in the distribution is very close to c, the flux of par-
ticles crossing into the downstream region, according to standard kinetic
theory, is nc/4 where n is the number density of the particles. In the down-
stream medium, the particles are advected away from the shock front with
a flux nv2. Hence the probability of a particle escaping the acceleration
zone in any cycle is given by

Pesc =
nv2

nc/4
=

4
R

vsh

c

Starting with N0 particles at energy E0, after n cycles the energy of the
particles will become

En = E0(1 + η)n

And the number of particles to survive n cycles would be

Nn = N0(1 − Pesc)n

Some of these particles will go on for more cycles and gain more energy.
The number Nn thus stands for the cumulative number of particles with
energy E > En. Taking logarithm and dividing the above two expressions
one can eliminate n, and the resulting distribution can be written as

N(> E) = E−x where x = −
ln(1 − Pesc)

ln(1 + η)

Since both Pesc and η are much smaller than unity, we could expand the
logarithms and keep only the first order term, giving

x =
Pesc

η
=

3
R − 1

which depends only on the compression ratio of the shock.

The differential energy distribution of these particles can be written from
the above as

N(E)dE = E−pdE
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where
p = 1 + x =

R + 2
R − 1

for a non-relativistic strong shock R = 4, giving p = 2, close to the observed
power-law energy spectrum of Cosmic Rays, as well as of non-thermal
synchrotron-emitting ultrarelativistic electrons in a variety of astrophysical
situations. Interstellar shocks generated by supernovae are thought to
be the prime acceleration sites for Cosmic rays. The fact that supernova
remnants can accelerate particles to very high energies and produce power-
law energy distributions is evident from the strong non-thermal radio
emission seen in them. Recently, the non-thermal component of the X-ray
emission has also been discovered in supernova remnants, and indeed the
ultrarelativistic particles responsible for this emission are seen to lie very
close to the advancing shock.
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Figure 2: X-ray image of a 300 year-old supernova remnant Cas A taken
with the Chandra observatory. The image is taken in three different X-ray
energy bands and superposed in false colour. The outer red filaments are
rich in Iron. (Credit: John Hughes et al, Rutgers University)
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Figure 3: A large, 20,000 year-old supernova remnant Cygnus Loop im-
aged in optical light. The filaments produce strong emission in optical
recombination lines such as Hα (red) and forbidden metal lines (green)
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Figure 4: X-ray image of the remnant of a supernova seen to have exploded
in the year 1006AD. The blue rims of the SNR in this false-colour image
indicate non-thermal X-ray emission, locating the acceleration sites of the
ultrarelativistic particles.


