2-Numerical Methods for the Advection Equation

$$\frac{\partial q}{\partial t} + a \frac{\partial q}{\partial x} = 0$$

The Advection Equation: Theory

☐ 1st order partial differential equation (PDE) in (x,t):

$$\frac{\partial q(x,t)}{\partial t} + a(x,t)\frac{\partial q(x,t)}{\partial x} = 0$$

- □ Hyperbolic PDE: information propagates across the domain at finite speed → method of characteristics
- Characteristic are the solutions of the equation

$$\frac{dx}{dt} = a(x,t)$$

So that, along each characteristic, the solution satisfies

$$\frac{dq}{dt} = \frac{\partial q}{\partial t} + \frac{dx}{dt} \frac{\partial q}{\partial x} = 0$$

The Advection Equation: Theory

$$\frac{dq}{dt} = \frac{\partial q}{\partial t} + \frac{dx}{dt} \frac{\partial q}{\partial x} = 0$$
, with $\frac{dx}{dt} = a$

- ☐ The solution is constant along the characteristic curves. The solution at the point (x,t) is found by tracing the characteristic back to some inital point (x,0).
- ☐ This defines the physical domain of dependence

The Advection Equation: Theory

□ If a is constant: characteristics are straight parallel lines and the solution to the PDE is a uniform translation of the initial profile:

$$q(x,t) = \phi(x - at)$$

where $\phi(x) = q(x,0)$ is the initial condition

Numerical Methods for the Linear Advection Equation

$$\frac{\partial q}{\partial t} + a \frac{\partial q}{\partial x} = 0$$

- 2 popular methods for performing discretization:
 - > Finite Differences
 - Finite Volume
- ☐ For some problems, the resulting discretizations look identical, but they are distinct approaches.
- We begin using finite-difference as it will allow us to quickly learn some important ideas

Linear Advection Equation: Finite Difference

□ A finite-difference method stores the solution at specific points in space and time.

Associated with each grid point is a function value,

$$q_i = q(x_i)$$

■ We replace the derivatives in out PDEs with differences between neighboring points.

Linear Advection Equation: Finite Volumes

■ In a finite volume discretization, the unknown is the average value of the function:

$$\langle q \rangle_i = \frac{1}{\Delta x} \int_{x_{i-1/2}}^{x_{i+1/2}} q(x) dx$$

where $x_{i-1/2}$ is the position of the left edge zone i

Solving out conservation laws involves computing fluxes through the boundaries of these control volumes.

We start with the linear advection equation

$$\frac{\partial q(x,t)}{\partial t} + a \frac{\partial q(x,t)}{\partial x} = 0$$

with initial conditions (i.c.)

$$q(x,0) = q_0(x)$$

$$lacksquare$$
 and boundary conditions (b.c.) $\left\{ egin{array}{l} q(0,t)=q_l(t) \\ q(L,t)=q_r(t) \end{array}
ight.$

Actually, only one b.c. is needed since this is a 1st order equation. Which boundary depends on the sign of a.

■ We use a finite difference mesh:

■ We discretize the function q(x,t) by storing its value at each point in the finite-difference grid

$$q_i^n = q(x_i, t^n)$$

- Subscript "i" → grid location
- Superscript "n" → time level
- □ In addition to discretizing in space, we introduce time discretization. Thus $\Delta t^n = t^{n+1} t^n$

We need to approximate the derivatives in our PDE

$$\frac{\partial q(x,t)}{\partial t} + a \frac{\partial q(x,t)}{\partial x} = 0$$

- lacksquare In time, we use fwd derivative $\dfrac{\partial q(x,t)}{\partial t} pprox \dfrac{q_i^{n+1}-q_i^n}{\Delta t}$ since we want to use information from the previous time level
- ☐ In space, we use centered derivative, since it is more accurate:

$$\frac{\partial q(x,t)}{\partial x} \approx \frac{q_{i+1}^n - q_{i-1}^n}{2\Delta x}$$

$$lacksquare$$
 Putting all together: $\frac{q_i^{n+1}-q_i^n}{\Delta t}+a\left(rac{q_{i+1}^n-q_{i-1}^n}{2\Delta x}
ight)=0$

 \square and solving with respect to q_i^{n+1}

$$q_i^{n+1} = q_i^n - \frac{C}{2} (q_{i+1}^n - q_{i-1}^n)$$

where $C = a \frac{\Delta t}{\Delta x}$ is called the Courant number or the Courant-Friedrichs-Lewy (CFL) number.

- We call this method FTCS for forward in time, center in space.
- The value at the new time level depends only on quantities at the old time step \rightarrow explicit method

 \Box At t = 0, we prescribe a square pulse:

and prescribe periodic b.c.

☐ After one period, the solution looks like:

□ Oops!! Something isn't right... WHY ??

Linear Advection Equation: stability analysis

■ Let's perform an analysis of FTCS by expressing the solution as a Fourier series. Since the equation is linear, we only need to examine the behavior of a single mode. Consider a trial solution of the form:

$$q_i^n = A^n e^{Ii\theta}, I = (-1)^{1/2}, \theta = k\Delta x$$

□ This is a spatial Fourier expansion. Plugging in the difference formula:

$$q_i^{n+1} = q_i^n - \frac{C}{2} \left(q_{i+1}^n - q_{i-1}^n \right) \rightarrow A^{n+1} = A^n - \frac{C}{2} A^n \left(e^{I\theta} - q^{-I\theta} \right)$$

Linear Advection Equation: stability analysis

 \square Defining the amplification factor $\left|\frac{A^{n+1}}{A^n}\right|$ one obtains

$$\frac{A^{n+1}}{A^n} = 1 - \frac{C}{2} \left(e^{I\theta} - e^{-I\theta} \right) = 1 - IC \sin \theta$$

- lacksquare A method is well-behaved or *stable* if $\left| rac{A^{n+1}}{A^n} \right| \leq 1$
- lacksquare But for FTCS one gets $\left|rac{A^{n+1}}{A^n}
 ight|=1+C^2\sin^2\theta\geq 1$
- Indipendently of the CFL number all Fourier modes increase in magnitude as time advances.
- ☐ This method is unconditional unstable!!.

Let's try a different approach. Consider the backward derivative:

$$\frac{\partial q(x,t)}{\partial x} \approx \frac{q_i^n - q_{i-1}^n}{\Delta x}$$

Let's apply the von Neumann stability analysis on the resulting discretized equation:

$$\frac{q_i^{n+1} - q_i^n}{\Delta t} + a \left(\frac{q_i^n - q_{i-1}^n}{\Delta x} \right) = 0 \quad \text{with} \quad q_i^n = A^n e^{Ii\theta}$$

Solving for the amplification factor gives

$$\frac{A^{n+1}}{A^n} = 1 - C + C\cos\theta - I\sin\theta$$

- ullet Taking the norm, $\left| rac{A^{n+1}}{A^n}
 ight| = 1 2C(1-C)(1-\cos\theta)$
- \square Recall that for stability one needs $\left|\frac{A^{n+1}}{A^n}\right| \leq 1$
- lacksquare But $1-\cos heta \geq 0$ so the stability condition is met when

$$2C(1-C) \ge 0$$

 \square Recalling the definition $C = a \frac{\Delta t}{\Delta x}$, one has for a > 0

$$0 \leq a rac{\Delta t}{\Delta x} \leq 1$$
 Condition for stability

Since the advection speed a is a parameter of the equation, ∆x is fixed from the grid, this is a constraint on the time step:

$$\Delta t \leq \frac{\Delta x}{a}$$

- \square Δt cannot be arbitrarily large.
- □ In the case of nonlinear equations, the speed can vary in the domain and the maximum of a should be considered.

Repeating the argument for the fwd derivative,

$$\frac{q_i^{n+1} - q_i^n}{\Delta t} + a \left(\frac{q_{i+1}^n - q_i^n}{\Delta x} \right) = 0 \quad \text{with} \quad q_i^n = A^n e^{Ii\theta}$$

Gives

$$\left| \frac{A^{n+1}}{A^n} \right| = 1 + 2C(1-C)(1-\cos\theta)$$

- ☐ If a > 0, the method will always be *unstable*
- □ However, if a is negative, then this method is stable and the previous is unstable.

<u>Linear Advection Equation:</u> What Have We Learned?

- □ The stable method is the one with the difference that makes use of the grid point where information is coming from.
- This type of discretization goes under the name "upwind":

For a > 0 we want
$$q_i^{n+1} = q_i^n - \frac{a\Delta t}{\Delta x} \left(q_i^n - q_{i-1}^n\right)$$

$$ightharpoonup$$
 The a < 0 we want $q_i^{n+1} = q_i^n - rac{a\Delta t}{\Delta x} \left(q_{i+1}^n - q_i^n
ight)$

☐ This is the *first-order* <u>Godunov</u> <u>Method</u>.

After one period, the solution looks like:

- Much better now...
- ☐ But we still see some smearing...

Equivalent Advection/Diffusion Equation

- □ A discretized P.D.E gives the exact solution to an equivalent equation with a diffusion term:
- $egin{array}{ccc} \Box \ {
 m Consider} & rac{\partial q}{\partial t} + a rac{\partial q}{\partial x} = 0 \,, \quad a > 0 \end{array}$
 - \Box discretize w/ upwind $\frac{q_i^{n+1}-q_i^n}{\Delta t}+a\frac{q_i^n-q_{i-1}^n}{\Delta x}=0$
 - lacksquare do Taylor expansion on q_i^{n+1} and q_{i-1}^n
 - ☐ The solution to the discretized equation is <u>also</u> the solution of

$$\frac{\partial q}{\partial t} + a \frac{\partial q}{\partial x} = \frac{a\Delta x}{2} \left(1 - a \frac{\Delta t}{\Delta x} \right) \frac{\partial^2 q}{\partial x^2} + H.O.T.$$

<u>Linear Advection Equation:</u> Conservative Form

□ Godunov method can be cast in conservative form, i.e.

$$q_i^{n+1} = q_i^n - \frac{\Delta t}{\Delta x} \left(F_{i+1/2}^n - F_{i-1/2}^n \right)$$

by defining the "flux" function

$$F_{i+1/2}^{n} = \frac{a}{2} \left(q_{i+1}^{n} + q_{i}^{n} \right) - \frac{|a|}{2} \left(q_{i+1}^{n} - q_{i}^{n} \right)$$

lacksquare In fact for a > 0, one has $q_i^{n+1} = q_i^n - rac{a\Delta t}{\Delta x} \left(q_i^n - q_{i-1}^n
ight)$

$$\square$$
 and for a < 0
$$q_i^{n+1} = q_i^n - \frac{a\Delta t}{\Delta x} \left(q_{i+1}^n - q_i^n\right)$$

C Implementation

■ Look → advection.c