
2-Numerical Methods for the 
Advection Equation

∂q

∂t
+ a

∂q

∂x
= 0



The Advection Equation: Theory
1st order partial differential equation (PDE) in (x,t): 

Hyperbolic PDE: information propagates across the domain at 
finite speed method of characteristics
Characteristic are the solutions of the equation

So that, along each characteristic, the solution satisfies
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The Advection Equation: Theory

The solution is constant 
along the characteristic 
curves. The solution at the 
point (x,t) is found by tracing 
the characteristic back to 
some inital point (x,0).

This defines the 
physical domain of 
dependence
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The Advection Equation: Theory

If a is constant: characteristics are straight parallel lines 
and the solution to the PDE is a uniform translation of the 
initial profile:

where                                      is the initial condition

q(x, t) = φ(x− at)

φ(x) = q(x, 0)



Numerical Methods for the 
Linear Advection Equation

2 popular methods for performing discretization:

Finite Differences 
Finite Volume

For some problems, the resulting discretizations look 
identical, but they are distinct approaches.
We begin using finite-difference as it will allow us to quickly 
learn some important ideas
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Linear Advection Equation:
Finite Difference

A finite-difference method stores the solution at specific 
points in space and time. 

Associated with each grid point is a function value, 

We replace the derivatives in out PDEs with differences 
between neighboring points.

qi = q(xi)



Linear Advection Equation:
Finite Volumes

In a finite volume discretization, the unknown is the 
average value of the function:

where              is the position of the left edge zone i 

Solving out conservation laws involves computing fluxes 
through the boundaries of these control volumes. 
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Linear Advection Equation:

We start with the linear advection equation

with initial conditions (i.c.)

and boundary conditions (b.c.)

Actually, only one b.c. is needed since this is a 1st order 
equation. Which boundary depends on the sign of a.
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Linear Advection Equation:

We use a finite difference mesh:

We discretize the function q(x,t) by storing its value at each 
point in the finite-difference grid

Subscript “i” grid location
Superscript “n” time level
In addition to discretizing in space, we introduce time 
discretization. Thus 

qni = q(xi, t
n)

∆tn = tn+1 − tn



Linear Advection Equation:

We need to approximate the derivatives in our PDE

In time, we use fwd derivative 
since we want to use information from the previous time 
level
In space, we use centered derivative, since it is more 
accurate:
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Linear Advection Equation:

Putting all together:

and solving with respect to           : 

where                   is called the Courant number or the
Courant-Friedrichs-Lewy (CFL) number.
We call this method FTCS for forward in time, center in 
space.
The value at the new time level depends only on quantities 
at the old time step explicit method
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Linear Advection Equation:

At t = 0, we prescribe a square pulse:

and prescribe periodic b.c.



Linear Advection Equation:
After one period, the solution looks like:

Oops!! Something isn’t right… WHY ??



Linear Advection Equation:
stability analysis

Let’s perform an analysis of FTCS by expressing the solution 
as a Fourier series. Since the equation is linear, we only need 
to examine the behavior of a single mode. Consider a trial 
solution of the form:

This is a spatial Fourier expansion. Plugging in the difference 
formula:
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Linear Advection Equation:
stability analysis

Defining the amplification factor             one obtains

A method is well-behaved or stable if

But for FTCS one gets

Indipendently of the CFL number all Fourier modes increase 
in magnitude as time advances.

This method is unconditional unstable!!.
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Linear Advection Equation:
Let’s try a different approach. Consider the backward 
derivative:

Let’s apply the von Neumann stability analysis on the 
resulting discretized equation:

Solving for the amplification factor gives
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Linear Advection Equation:

Taking the norm, 

Recall that for stability one needs

But                               so  the stability condition is met 
when

Recalling the definition                     , one has for a > 0
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Linear Advection Equation:

Since the advection speed a is a parameter of the equation, 
Δx is fixed from the grid, this is a constraint on the time 
step:

Δt cannot be arbitrarily large.

In the case of nonlinear equations, the speed can vary in 
the domain and the maximum of a should be considered.

∆t ≤
∆x

a



Linear Advection Equation:

Repeating the argument for the fwd derivative,

Gives

If a > 0, the method will always be unstable
However, if a is negative, then this method is stable and the 
previous is unstable. 
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Linear Advection Equation:
What Have We Learned ?

The stable method is the one with the difference that makes 
use of the grid point where information is coming from. 

This type of discretization goes under the name “upwind”:

For a > 0 we want

The a < 0 we want

This is the first-order Godunov Method.
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Linear Advection Equation:
After one period, the solution looks like:

Much better now…
But we still see some smearing…



Equivalent Advection/Diffusion
Equation

A discretized P.D.E gives the exact solution to an 
equivalent equation with a diffusion term:

Consider

discretize w/ upwind

do Taylor expansion on and
The solution to the discretized equation is also the 
solution of 
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Linear Advection Equation:



Linear Advection Equation:
Conservative Form

Godunov method can be cast in conservative form, i.e.

by defining the “flux” function

In fact for a > 0, one has

and for a < 0
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C Implementation

Look advection.c


