2-Numerical Methods for the
Advection Eguation
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The Advection Eguation: Theory

] 1st order partial differential equation (PDE) in (x,t):

Oq(x,t) 8q(az t)

57 Fa(x,t) =0

1 Hyperbolic PDE: information propagates across the domain at
finite speed - method of characteristics

J Characteristic are the solutions of the equation

d
d—f = a(x,t)

] So that, along each characteristic, the solution satisfies
dq dq  dx dq

- " dt Ox
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The Advection Eguation: Theory

dq _9q , dwdq _ da

dt Ot dt Oxr dt
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O, with

] The solution Is constant
along the characteristic
curves. The solution at the Physical domain of dependence
point (x,t) is found by tracing y
the characteristic back to Ui

some inital point (x,0).

a(x,t)

At
. This defines the

physical domain of
dependence




The Advection Equation: Theor

) If a Is constant: characteristics are straight parallel lines
and the solution to the PDE is a uniform translation of the

initial profile:
q(x,t) = ¢p(x — at)
where ¢ (x) = g(x,0) is the initial condition
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Numerical Methods for the
Linear Advection Eguation

Jq dg
E+a%—0

] 2 popular methods for performing discretization:

» Finite Differences
> Finite Volume

] For some problems, the resulting discretizations look
identical, but they are distinct approaches.

1 We begin using finite-difference as it will allow us to quickly
learn some important ideas



Linear Advection Eguation:
Finite Difference

J A finite-difference method stores the solution at specific
points in space and time.

A N I N S I
I

Ti_g Ti_o X1 Iy il LTjL9 Iy
] Associated with each grid point is a function value,

qi; — Q(xz)

1 We replace the derivatives in out PDEs with differences
between neighboring points.



Linear Advection Eguation:
Finite Volumes

J In a finite volume discretization, the unknown is the
average value of the function:

1 Lit1/2 d
<Q>7; — A—x‘Lil/2 q(x)dx

where z,_,,5 Is the position of the left edge zone |

=0 L P 3 4

] Solving out conservation laws involves computing fluxes
through the boundaries of these control volumes.



Linear Advection Eguation:

1 We start with the linear advection equation

da(x,t) | da(a,t) _

ot ox 0

) with initial conditions (i.c.) q(x,0) = qo(x)

q(0,t) = qi(¢)
] and boundary conditions (b.c.) g(L,t) = q,(t)

] Actually, only one b.c. is needed since this is a 1st order
equation. Which boundary depends on the sign of a.



Linear Advection Eguation:

J We use a finite difference mesh:

I O

Li—2  di—] L Li41 Lq42 Li4+3
—Ar -

1 We discretize the function g(x,t) by storing its value at each
point in the finite-difference grid

q;" = q(x;,t")

] Subscript “i” = grid location
] Superscript “n” - time level

J In addition to discretizing in space, we introduce time
discretization. ThusA¢™ = ¢+t — ™



Linear Advection Eguation:

1 We need to approximate the derivatives in our PDE

dq(x,t)  da(z,t) _

ot ox 0

. L O t n+tl _ . n
- In time, we use fwd derivative qg;, ) o & ~ £

since we want to use information from the previous time
level

- In space, we use centered derivative, since it is more
accurate:

Oq(x,t) - Qi1 — 9i 1
ox 2Ax




Linear Advection Eguation:

i n+1  n n AN
] Putting all together: ) % , (qzﬂ q’b—1> — 0

At 2Ax
i i n—+1
J and solving with respectto g,
T mn C mn mn
q,; = q;, — D) (Qi—|—1 — Qi—l)

At .
where C = a — IS called the Courant number or the

Courant-Friedrichs-Lewy (CFL) number.

J We call this method FTCS for forward in time, center in
space.

- The value at the new time level depends only on quantities
at the old time step - explicit method



Linear Advection Eguation:

] At t =0, we prescribe a square pulse:

Exact I
FTCS

-0.4 0.2 ¢ 0.2 0.4

J and prescribe periodic b.c.



Linear Advection Equation:

. After one period, the solution looks like:
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[ Oops!! Something isn’t right... WHY ??



Linear Advection Equation:
stability analysis

J Let’'s perform an analysis of FTCS by expressing the solution
as a Fourier series. Since the equation is linear, we only need
to examine the behavior of a single mode. Consider a trial
solution of the form:

q;z _ Anelié? I = (_1)1/2 ’9 — LA

- This is a spatial Fourier expansion. Plugging in the difference
formula:

C C
G =a - S (- al) o AT = AT

n(, 1606 _—1I0
> A" (e —¢77)



Linear Advection Equation:
stability analysis

n—+1
] Defining the amplification factor AAn one obtains
An—l—l C B .
i =1 — E(em—e 19) —=1—1Csiné
n+1
J A method is well-behaved or stable if ' T | =1

An—|—1
n

2 But for FTCS one gets ‘ T | =1+ C7sin®0 =1

 Indipendently of the CFL number all Fourier modes increase
IN magnitude as time advances.

J This method I1s unconditional unstable!!.



Linear Advection Eguation:

- Let’s try a different approach. Consider the backward
derivative:

Oq(x,t) g7 —qi" 4
ox Ax

 Let’s apply the von Neumann stability analysis on the
resulting discretized equation:
n+1 n n n
q; 4 d; — d;—1
At ¢ ( Az

) =0 with g = A el

1 Solving for the amplification factor gives
An—i—l

An

—1—-—C +Ccosl — Isinf



Linear Advection Eguation:

An—l—l
 Taking the norm, ‘ | = 1 —2C(1 —C)(1 — cos8)
An—l—l
] Recall that for stability one needs an | = 1

dBut 1 — cos6@ > 0 so the stability condition is met
when

2C0(1—C) >0

. — At
] Recalling the definition C = a>— ,one has fora >0

At
O<a—<1_ N
A\ 7r Condition for stability




Linear Advection Eguation:

] Since the advection speed a is a parameter of the equation,
Ax 1s fixed from the grid, this is a constraint on the time
step:

Ar < BT
a

] At cannot be arbitrarily large.

-l In the case of nonlinear equations, the speed can vary in
the domain and the maximum of a should be considered.



Linear Advection Eguation:

] Repeating the argument for the fwd derivative,

n+1 n n n
q; — q; 9i+1 — 4; o : n __ an _Ti0
N —I—a( N )—O with ¢q;" = A"e
J Gives
An—|—1
‘ n =1+4+2C(1 —C)(1 — cos®)

- If a > 0, the method will always be unstable

1 However, If a Is negative, then this method is stable and the
previous is unstable.



Linear Advection Equation:
What Have We Learned ?

J The stable method is the one with the difference that makes
use of the grid point where information is coming from.

] This type of discretization goes under the name “upwind”:

1 aAt

» For a>0we want q;;””L — q? (qu — q;-n’_l)
Ax
1 aAt

» The a <0 we want q;hL = q; A (qf?—l—l — q,:")

1 This is the first-order Godunov Method.




Linear Advection Eguation:

. After one period, the solution looks like:

Exact I
FTBS

-0.4 0.2 O 0.2 0.4

J Much better now...
 But we still see some smearing...



Equivalent Advection/Diffusion
Equation

] A discretized P.D.E gives the exact solution to an
equivalent equation with a diffusion term:

. dq Oq
— +a— =0 0
J Consider 5 —+ aax ,  a >
AR qr —q 4
. discretize w/ upwind 2% ¢ ¢ i—1
P VAN 7 +a YANG & 0

- do Taylor expansion on ¢**' and ¢,

(2

] The solution to the discretized equation is also the
solution of

Oq Oq alAx ( At) O?%q
1 —a

- H.O.T.

ot Ia@x: 2 Az ) Ox2



Linear Advection Eguation:

Time: 0.00, First order
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Linear Advection Equation:
Conservative Form

J Godunov method can be cast in conservative form, I.e.

q:hLl = q; ( z—|—1/2 Fin—1/2)

by defining the “flux” function

" |a| "
Fiiq)0 = (C.Zz+1 +q;') — (g1 — ai')
alt
1 In fact for a > 0, one has q”le = q; — N (q,? — Q?_1)
alt
Jandfora<O qf“—q?—A—x(qz;ll—Q?)



C Implementation

J Look = advection.c



