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Gravitational collapse

Jeans’ instability

Jeans’ instability of a self-gravitating, thermally supported interstellar
cloud is thought to be responsible for the collapse of parts of the cloud
larger than a scale size that goes unstable, eventually fragmenting and
forming stars.

The dynamics of gas in the cloud is controlled by two fluid equations:

ρ

[
∂~v
∂t

+ (~v.~∇)~v
]

= −~∇P − ρ∇Φ (Force Balance) (1)

and
∂ρ

∂t
+ ~v.(~∇ρ) = −ρ~∇.~v (Continuity) (2)

where ~v is the gas velocity field, ρ is the mass density, P is the gas pressure
and Φ is the local gravitational potential. Using the sound speed cs one
may write

~∇P = c2
s
~∇ρ

We now split the velocity and density into two parts, spatially uniform
(subscript 0) and spatially varying (subscript 1):

~v = ~v0 + ~v1

ρ = ρ0 + ρ1

We also assume that the uniform components are stationary, i.e.

∂~v0

∂t
=
∂ρ0

∂t
= 0

We can then write the linear equations in spatially varying quantities as

∂~v1

∂t
+ ~v0.~∇~v1 = −~∇Φ1 − c2

s
~∇

(
ρ1

ρ0

)
(3)

∂ρ1

∂t
+ ~v0.~∇ρ1 = −ρ0~∇.~v1 (4)
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where we have kept as gravitational potential only that produced by the
spatially varying part of the density distribution, since the gravitational
force produced by a spatially uniform, infinite density distribution van-
ishes.

Transforming to a frame in which ~v0 = 0, we have

∂~v1

∂t
= −~∇Φ1 −

c2
s

ρ0

~∇ρ1 (5)

∂ρ1

∂t
= −ρ0~∇.~v1 (6)

Taking spatial derivative of eq. 5 and temporal derivative of eq. 6 we find

~∇

(
∂~v1

∂t

)
= −∇2Φ1 −

c2
s

ρ0
∇

2ρ1 (7)

and

−
1
ρ0

∂2ρ1

∂t2 =
∂
∂t

(~∇.~v1) (8)

Recognising that the LHS of eq. 7 and the RHS of eq. 8 are the same, we
can write

∂2ρ1

∂t2 = c2
s∇

2ρ1 + (4πGρ0)ρ1 (9)

where we have used Poisson’s equation to write

∇
2Φ1 = 4πGρ1. (10)

If we now write a Fourier component of the spatially varying density as

ρ1 = A exp{i(~k.~r + ωt)} (11)

We find
ω2 = c2

sk2
− 4πGρ0 ≡ c2

s(k2
− k2

J ) (12)

where

k2
J =

4πGρ0

c2
s

=
4πGρ0mpµ

kBT
(13)

Here mp is the proton mass, µ is the mean molecular weight, kB is the
Boltzmann constant and T is the temperature of the gas. For k < kJ the
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value of ω2 is negative and hence the disturbance grows exponentially. kJ

defines a minimum mass scale:

MJ =

(
2π
kJ

)3

ρ0 =

[
πkBT
Gµmp

]3/2 1

ρ1/2
0

(14)

This is called the Jeans’ Mass. Perturbations of size larger than this in a gas
cloud would grow, become self-gravitating and collapse.

Implosion and Explosion

Catastrophic gravitational collapse occurs in the cores of massive stars
at the end of their evolution. The nuclear burning proceeds until Fe is
synthesised at the core, which cannot burn further as the peak of the
binding energy has been reached. This is a degenerate white-dwarf-like
configuration whose mass continues to grow as ashes are added from the
nuclear burning shell around it. Eventually the Chandrasekhar limit is
exceeded and collapse occurs. As collapse proceeds, the Fe nuclei are first
photodissociated, and then electrons are captured by protons to produce
neutron-rich matter. The loss of electrons means the loss of degeneracy
pressure, the main support against gravity at this stage. As a result the
collapse accelerates and in hydrodynamic time scale of a few seconds pro-
duces a very compact configuration, made primarily of neutrons. As the
neutrons are squeezed together at densities higher than nuclear density
(ρnuc = 2.8 × 1014 g/cm3) the mutual repulsion between neutrons will halt
the collapse, and the core will bounce back to an equilibrium configuration,
which is now a neutron star. The bounce will send a shock wave through
the surrounding envelope, making the envelope explode in a type II su-
pernova. The gravitational binding energy released in the collapse of the
core is ∼ 1053 erg, about 1% of which goes into the kinetic energy of the
expanding envelope. Neutrinos carry the rest of the energy away.

The expanding ejecta, with the kinetic energy of 1051 erg, is heated by
the shock, as well as the decay of radioactive elements synthesised and
ejected. It therefore shines brightly. The total energy emitted in radiation
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amounts to ∼ 1049 erg. Very massive stars would be able to grow cores
too massive to be supported as neutron stars, the reason for this being the
additional radiation pressure support in the pre-collapse core. Such cores
will collapse to black holes. A spinning black hole produced this way will
swallow the inner parts of the envelope through a dense accretion disk,
and eject a small fraction of matter in a jet along the spin axis. With large
amount of energy imparted to this small amount of matter, the material in
the jet would move at relativistic speeds. Viewed along the jet, this will
be a copious source of high energy radiation. This model is believed to
explain the Gamma-Ray Burst sources. The rest of the envelope in this case
will get eventually expelled in a supernova-like explosion (often referred
to as a “hypernova”).

de Laval nozzle: Jets

Let us consider a one-dimensional flow, and assume that gravity can be
ignored. This is described by

dv
dt

= v
dv
dx

= −
1
ρ

dP
dx

= −
c2

s

ρ

dρ
dx

which gives

d lnρ = −
v2

c2
s

d ln v

If A is the cross sectional area of the flow then ρvA = constant. Thus

d ln v = −
d ln A

1 − (v2/c2
s )

which shows that if v2 < c2
s then decreasing cross sectional area leads to an

increase in Mach number, while for a supersonic flow an increasing cross
sectional area increases the Mach number. So if the flow has a throat,
with converging subsonic approach and diverging supersonic exit, highly
supersonic jet flows can be produced. This idea has been applied to explain
the formation of powerful jets seen in active galaxies - light jet matter
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forcing its way through interstellar medium and converging, but as the
interstellar density drops away from the galactic centre, the flow cross
section would expand and supersonic jets may be produced.

Today we know that magnetic fields play a more important role in the
production of jets. This involves magnetic fields anchored to an accretion
disk, which we discuss below.

Accretion

There are many situations that lead to the accretion of matter from the
immediate surroundings onto a compact object. A compact star may cap-
ture some of the stellar wind from a binary companion, or exert sufficient
tidal force on the companion to strip matter from it and produce a flow
dircted towards itself (Roche Lobe Overflow). If the compact object is a
stellar mass black hole or a neutron star, they show up as X-ray binaries.
Accreting White Dwarfs undergo nova explosions, and are called ”Cata-
clysmic Variables”. Supermassive black holes at centres of galaxies can be
fed matter from the surrounding interstellar medium or tidally stripped
stars. Large accretion rates on such objects lead to the generation of high
luminosity at the galactic nucleus, as well as production of powerful jets.
These are known as Active Galactic Nuclei (AGNs).

Gravitational capture of matter by a body from a passing flow in which it
is immeresed is treated in the classical Bondi-Hoyle picture of accretion.
gravitational acceleration by the immersed body bends the trajectory of
the flowing matter, causing convergence behind the body (this effect is
called gravitational focussing). The trajectories cross behind the object
and matter collides at the crossings. In the collision one may assume
that the velocity components opposing each other are fully dissipated
(and corresponding energy radiated away), while the parallel component
remains. Up to a certain distance from the body the remaining parallel
component would be less than the escape velocity at that point, and matter
will fall in. Matter on trajectories colliding beyond that distance will
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escape. Tracing these trajectories back to their initial impact parameter
one may define a gravitational capture cross section for the body πr2

a,
where the ‘accretion radius’ ra is given by

ra =
2GM

(v2
w + c2

s)

where M is the mass of the accreting body, vw is the speed of the wind and cs

is the sound velocity in the wind. For wind from hot massive stars usually
vw � cs, and the sound speed in the above expression can be ignored.

Figure 1: The geometry of Bondi-Hoyle accretion. Wind flows from left
to right in the figure, past the accretor (black dot). Trajectories of wind
matter are gravitationally focussed and made to collide on a line behind
the accretor (horizontal black line). The velocity component perpendicular
to this line is dissipated in the collision, while that parallel to this line
remains. Matter on outer trajectories (blue) retains sufficient velocity to
escape the gravity of the accretor while that on inner ones (red) would be
captured.
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If the flow past the body is not symmetric, then there is a net angular
momentum in the captured matter. This is true also in case of the matter
accreted in a Roche Lobe Overflow. The angular momentum will cause
the matter to form a ring around the accretor. The ring will intersect the
accretion stream and dissipation will ensue. Eventually through viscous
dissipation matter will proceed to smaller and smaller orbits, angular mo-
mentum being transported outwards in the process. This forms an accretion
disk around the accretor, which is encountered in a wide variety of accre-
tion situations. At any radius R of the disk the matter rotates around the
central mass at the local Keplerian speed vφ =

√
GM/R, i.e. the angular

speed Ω =
√

GM/R3. As matter in inner orbits rotate faster than that in
outer orbits, viscosity can make angular momentum flow outwards in the
disk, and sustain an inward flow. If vr(R) is the radial inflow velocity at
radius R and Σ(R) is the surface mass density at that radius then by con-
tinuity of mass 2πRΣ(R)vr(R) = Ṁ, the mass accretion rate. In a steady
state the above product is constant at all radii. Normally this vr is much
smaller than the Keplerian speed vφ at the same radius, and therefore the
kinetic energy of matter is dominated by the Keplerian motion. It follows
therefore that of the Gravitational potential energy released in the process
of matter coming to radius R from far away, nearly half the energy remains
in kinetic energy and the rest must have been radiated away.

If ν is the coefficient of kinematic viscosity, then the viscous force per unit
length around the circumference at any R is νΣ(RdΩ/dR). So the viscous
torque around the whole circumference is τ(R) = R(2πR)νΣ(RdΩ/dR).

Now consider a ring of material between R and R + dR. In unit time,
material of amount Ṁ enters R + dR with specific angular momentum
(R + dR)2Ω(R + dR) and leaves R with specific angular momentum R2Ω(R).
This loss of angular momentum takes place because of the action of net
viscous torque (dτ/dR)dR. Thus

Ṁ
d(R2Ω)

dR
= −

d
dR

[
νΣ2πR3 dΩ

dR

]
Using Keplerian Ω and integrating, one finds

νΣ =
Ṁ
3π

[
1 −

(R∗
R

)1/2]
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where the boundary condition used is that the shear τ vanishes at an inner
radius R∗. This inner radius could be the last stable orbit around a black
hole, or the stellar surface in case of a white dwarf or a weakly magnetized
neutron star, or approximately the Alfvén radius (distance at which the
ram pressure of accreting matter equals the magnetic pressure) around a
strongly magnetized accretor.

The viscous dissipation rate per unit area can then be computed:

D(R) = νΣ

(
R

dΩ

dR

)2

=
3GMṀ
4πR3

[
1 −

(R∗
R

)1/2]
This must be radiated away. The disk is nearly optically thick and hence
the emitted radiation can be approximated to be a blackbody at the local
temperature T(R). Accounting for the two surfaces of the disk, D(R) =
2σT4. Therefore

T(R) =

{
3GMṀ
8πR3σ

[
1 −

(R∗
R

)1/2]}1/4

Magnetic fields anchored to the accretion disk can play a very important
and interesting role. In figure 2 consider a magnetic field line anchored
to the disk at P. The field line rotates with the keplerian angular speed at
P. The disk being hot, matter will evaporate from the surface and move
preferentially along magnetic field lines. One such blob, at R, will now
be rotating faster than the local Keplerian speed and feel a net centrifugal
acceleration outward. Such an effect can effectvely cause matter to leave the
disk. Beyond the Alfvén distance, the field lines will twist and wrap around
the rotation axis, resulting in a highly collimated matter outflow along the
polar axes. This is now considered the most important mechanism for jet
formation in accreting systems.



9

Figure 2: A gas blob R moving on a magnetic field line PQ anchored to an
accretion disk (red) around a mass M can be centrifugally ejected from the
disk and form part of a jet


