3-Linear System of Advection
Equations



System of Equations: theory

dq dq

] Recall the linear scalar advection equation: - a =0
ot Ox
dx
] The solutions are constant along Ilnes —— = a (characteristic
curves)
r = xo+ at

tl

///



System of Equations: theory

J We turn our attention to the system of equations

oa , 4.9a

ot oz O

Jd Where q = {q1, 92, ---q.» } is the vector of unknowns. A is
a m x m constant matrix.

] For example, for m=3 one has

oq1 dq dq dqs3

1 2 B
Bt + A1 — oy +A12a + Aj3— . = ()
0@2 8@1 5’@2 Og3
dg3 8q1 3@2 3% B



System of Equations: theory

] The system of PDEs is hyperbolic if A is diagonalizable with
real eigenvalues, \!' < )\? < ... < \™ and a complete set
of linearly independent eigenvectors r* such that

A-rt¥=)\rP for k=1,2,...m

- For convenience we define the following matrices:

11\

12

\ 1)
J So that the columns of R contains the “right” eigenvectors and
the rows of L contains the “left” eigenvectors.

R = (r1|r2|...|rm) ., L=R1=




System of Equations: theory

J With these definitions one can verify that the following matrix
multiplications hold:

AiR=B«K, LEild=RhsL, L:R=R«L=1

1 Here A is a diagonal matrix containing the eigenvalues:

)\1
( " \
AN=L-A-R=

\ T



System of Equations: theory

 The linear system of equations can be reduced to a set of
decoupled scalar linear advection eqgations.

] Multiply the original system of PDE’s by L on the left:

J Define the characteristic variables w = L - q so that

wy+A-w, =0

] Since A is diagonal, these equations do not couple anymore.



System of Equations: theory

1 In this form, the system decouples into m independent
advection equations for the characteristic variables:

w;+A-w, =0 = wy + Awk =0

with w” = 17 - g being the k-th (k=1,2,...,m) characteristic
variable.

J When m=3 one has, for instance,

Ow! | 1 0wt __
Ot A Ox =0

Ow? | \20w? __
ot A ox =0
Ow> | \30w> __
ot A o = U




System of Equations: theory

- The m advection equations can be solved independently by
applying the standard solution techniques developed for the
scalar equation. Thus for the k-th characteristic one finds:

w®(z,t) = w*(z — A°t, 0)
.e., the initial profile of wk “shifts” with uniform velocity A<

0 Given the initial profile w”(z — A\*¢,0) =17 . q(z — \*¢,0)
this is the exact analytical solution for the k-th characteristic.

J The characteristics are thus constant along the characteristic
curves dux /dt = \"



System of Equations: theory

] Once the solutions in characteristic form are known, we can
solve the original system via the inverse transformation

k=m k=m
q(z,t) = R-w(x,t) = Z wk (x, t)rk = Z w®(x — A\Ft,0)r"
k=1 k=1

] The characteristic variables are thus the coefficients of the
right eigenvector expansion of g.

1 The solution to the linear system reduces to a linear
combination of m waves traveling with velocities \*

] Expressing everything in terms of the original variables g,

k=m
iz, ) = 1* . q(z — A*t, 0)r"
for=l




t

System of Equations: theory

1 As for the scalar equation, we can define the domain of
dependence by tracing back ALL characteristic lines:

q(x,t)

N

Domain of dependence X

~,

] Notice that characteristics are straight lines only for a linear
system. In general, for a nonlinear systems, they are curves.



System of Equations: theory

J The concept of domain of dependence can be reversed by
looking at the range of influence: the range of points
Influenced by the information at some point in the past P(x,0)

A

- Range of Influence N

To + A%t

o + )\1t To + )\St

P(CU(), t)



System of Eqguations: Numerics

The numerical solution can now be easily found by applying
the same arguments used for scalar advection case.

We suppose the solution is known at time level n (= g")
and we wish to compute the solution at the next time step
n+1 (=2 g"i?).

Our numerical scheme can be derived by working in the
characteristic space, where we have developed a stable
numerical method.

Thus, we need the eigenvalue and eigenvector
decomposition of the original matrix A.



System of Eqguations: Numerics

1) Start from the characteristic variables: wf” — 1"

2) Solve indipendently each k:

- qy

At
wk,n—|—1 — wk,n Hk T Hk,n

i i Ar i+1/2 i—1/2)
where

Hz—|—1/2_ 5 (wz + w;” >_T(wi—;—1_wi7)

IS the flux function in the characteristic fields, exactly as for
the scalar advection case.

3) Transform back to the g-space: g/ "' =) w/""'r"
K



System of Eqguations: Numerics

] Doing the math, one ends up with the conservative form

At

n+l1 En+1_k ; n

q;" = Zwi r’=q; — Ay ( §+1/2 - ?—1/2)
k
J With the flux function:

n q? T q?—l—l 1 kiin k

g = AT >IN (qig1 — Q)T
k

l.e., the Godunov flux for a linear system of advection
equations.

. Proof: left as exercise!



Conservative & Integral Formulations

] The conservative form of the equations provides the link
between the differential form of the equation,

9, 0. 7,20

ot Ox =i

and the integral form, obtained by integrating the equations
over a time interval At = "1 - t" and cell size AX = Xi,1/, — X1/

i+1/2
f / (8(1 + A - 8q) dtdz = 0
- s ot Ox



Conservative & Integral Formulations

1 Performing the spatial integration yields
tn—}—l
d

/ [Al’@ (@) + A~ (Qiy1/2 — %-1/2)] dt =0
t'n,

1 Lit1/2
2 With (a), / a(x,t)dr being a spatial average.

ASB Li—1/2
1 A second integration in time gives

Ax (<q>?+1 = <Q>?) +AtA- (q?—l—l/Q = 61?—1/2) =0

L T ik |
QA With @y, /0 = Kt/ a(z;+1/2,t)dt being a temporal average
L



Conservative & Integral Formulations

] Rearranging terms yields

At
mel. n oty 7
(), ={a); — B (A Afie — A G 1/2) Integral form

with spatial and temporal averages given by

n+1

(Q); = e (z,t)d L ( )d
q i q $7t L, q;l g — / q\T;+1 27t l

Ti—1/2

1 We have derived an EXACT evolutionary equation for the
spatial averages of q.

] This relation provides an integral representation of the original
differential equation.

- The integral form does not make use of partial derivatives!




Conservative & Integral Formulations

. VAN _, -
3 Comparing (q); Tl = = (q), — e (A Ait1/2 — A A 1/2)

At
. n—+1 ¥ T T
with q; " =4q; — o ( ?;L+1/2 - 1'11/2)

one notices that our 1st order discretization of the original
differential equation looks very similar to the integral form,
provided that:

1- ¢» and ¢'"""' are re-interpreted as integral averages.
2- inl /, are re-interpreted as time averages of point values
located on the interfaces (i+1/2) and (i-1/2).

d This is the FINITE VOLUME FORMULATION.




Finite Volume Formulation

- Writing in a more general form,

» o - (Q); = Az /11 q(z,t")dz
<Q>; = <q>s AI (Fz+— Fz—%) ? \ ) 1 tr'z;—l |
\ FHF% = E[ F(u(’CH_% t))dt
[ The Finite Volume Formulation ()
IS appropriate for the treatment tn+t
of discontinuities. It relates the
rate of change of some physical .
quantity to its fluxes through the F,_ 75— F, 1
region boundary.
] Discontinuities are confined to n
(il <q>?;

the edges of the cell.

I-Y5

I+




Finite Volume Formulation: The
Riemann Problem

 The previous relation is exact.

- However, since the solution is known only at t", some kind of
approximation is required in order to evaluate the flux through
the boundary:

n-+1

1 t
F(u(z,, 1,t))dt

~- 1,
F. 3=
?'—i_ At t'?l

b=

J This achieved by solving the so-called “Riemann Problem”,
l.e., the evolution of an inital discontinuity separating two
constant states. The Riemann problem is defined by the initial

condition: .

q; for <0

alz,0) =« qr for x>0

\



The Riemann Problem

1 If g is initially discontinuous, one or more characteristic
variables will also have a discontinuity. Indeed, at t = 0,

w®(z,0) =1° - q(z,0) = ¢

(

wh =1%.q; if z<0

w%:l’“-qR it >0

J From the analytical solution (which still retains its validity),

w®(z,t) = 4

(

\

'w]i if z—At<0

wijfz if z—Xst>0

- The initial discontinuity is decomposed in several
characteristics “jumps”, each propagating unchanged at the

speed AX.



System of Eguations:
Discontinuous data

J For the complete solution, we need to add the solutions to all
the independent advection equations:

q(z,t) = Z w” (x, t)r® = Z w”(x — \Ft,0)r"
k=1 k=1

- Using the previous solution for w one has

o= K(JE‘ f m
E er : E wﬁrk‘
k=K (x,t)+1

J Where K(x,t) is the maximum value of k such that x-1>0.



The Riemann Problem

X BT Xgo22T O X227 X

Point (X, T) is the right of the A characteristic emanating from
the initial jump, but to the left of the other 2, so the solution is:

q¢(Xo,T) = wpr' + wir? + wird



The Riemann Problem

1 The 3 characteristics divide the domain into 4 regions:

A

t x=41t =A%t

d. Jr

J With-in each of these regions the solution is constant.

] Each time we cross a characteristic, the solution jumps by
an amount proportional to the eigenvector associated with
that characteristic.



The Riemann Problem

J Across the k-th characteristic the jump in g is given by

(w% — wﬁ) r* = ofrF

] Note that this jump is also an eigenvector of the matrix A

] Solving the Riemann problem consits of taking the initial
data (gL, gR) and decomposing the jump gR-gL into
eigenvectors of A:

qR—qL:OélI‘l—l—OéQI'Q—F*“—I-OémI'm

- This is equivalent to solving the system [ -a =qr —qr,
3 Which has solution o = L - (qr — q, ), or in components,

a” =17 (CIR—O_IL)



