
3-Linear System of Advection 
Equations



System of Equations: theory
Recall the linear scalar advection equation:

The solutions are constant along lines                (characteristic 
curves)

dx
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= a
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∂t
+ a

∂q
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System of Equations: theory
We turn our attention to the system of equations

Where                                      is the vector of unknowns. A is 
a                  constant matrix.
For example, for m=3 one has

∂q

∂t
+A ·

∂q

∂x
= 0

q = {q1, q2, ...qm}

m×m



System of Equations: theory
The system of PDEs is hyperbolic if A is diagonalizable with 
real eigenvalues,                                       and a complete set 
of linearly independent eigenvectors       such that

For convenience we define the following matrices:

So that the columns of R contains the “right” eigenvectors and 
the rows of L contains the “left” eigenvectors.

λ1 ≤ λ2 ≤ ... ≤ λm
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System of Equations: theory
With these definitions one can verify that the following matrix 
multiplications hold:

Here Λ is a diagonal matrix containing the eigenvalues:



System of Equations: theory

The linear system of equations can be reduced to a set of 
decoupled scalar linear advection eqations.

Multiply the original system of PDE’s by L on the left:

Define the characteristic variables so that

Since Λ is diagonal, these equations do not couple anymore.

w ≡ L · q

wt + Λ ·wx = 0



System of Equations: theory

In this form, the system decouples into m independent 
advection equations for the characteristic variables:

with                         being the k-th (k=1,2,…,m) characteristic 
variable.
When m=3 one has, for instance,

wk = lk · q

wt + Λ ·wx = 0 ⇒ wkt + λkwkx = 0



System of Equations: theory
The m advection equations can be solved independently by 
applying the standard solution techniques developed for the 
scalar equation. Thus for the k-th characteristic one finds:

i.e., the initial profile of wk “shifts” with uniform velocity

Given the initial profile                                      
this is the exact analytical solution for the k-th characteristic.

The characteristics are thus constant along the characteristic 
curves 

λk

dx/dt = λk



System of Equations: theory
Once the solutions in characteristic form are known, we can 
solve the original system via the inverse transformation

The characteristic variables are thus the coefficients of the 
right eigenvector expansion of q.
The solution to the linear system reduces to a linear 
combination of m waves traveling with velocities       .
Expressing everything in terms of the original variables q, 

q(x, t) = R ·w(x, t) =
k=mX
k=1

wk(x, t)rk =

k=mX
k=1

wk(x− λkt, 0)rk

λk



System of Equations: theory
As for the scalar equation, we can define the domain of 
dependence by tracing back ALL characteristic lines: 

Notice that characteristics are straight lines only for a linear
system. In general, for a nonlinear systems, they are curves.

t

x

q(x,t)

Domain of dependence

λ3
λ2

λ1



The concept of domain of dependence can be reversed by 
looking at the range of influence: the range of points 
influenced by the information at some point in the past P(x,0)

t

x

Range of Influence

x0 + λ1t

P (x0, t)

x0 + λ2t

x0 + λ3t

System of Equations: theory



System of Equations: Numerics
The numerical solution can now be easily found by applying 
the same arguments used for scalar advection case.

We suppose the solution is known at time level n ( qn) 
and we wish to compute the solution at the next time step 
n+1 ( qn+1?).

Our numerical scheme can be derived by working in the 
characteristic space, where we have developed a stable 
numerical method. 

Thus, we need the eigenvalue and eigenvector 
decomposition of the original matrix A.



System of Equations: Numerics

1) Start from the characteristic variables: 
2) Solve indipendently each k: 

where

is the flux function in the characteristic fields, exactly as for 
the scalar advection case.

3) Transform back to the q-space:
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´
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Doing the math, one ends up with the conservative form

With the flux function:

i.e., the Godunov flux for a linear system of advection 
equations.

Proof: left as exercise!

System of Equations: Numerics



The conservative form of the equations provides the link 
between the differential form of the equation,

and the integral form, obtained by integrating the equations 
over a time interval Δt = tn+1 - tn and cell size Δx = xi+1/2 – xi-1/2

Conservative & Integral Formulations



Performing the spatial integration yields

With                                                being a spatial average.

A second integration in time gives

With                                                    being a temporal average

Conservative & Integral Formulations



Rearranging terms yields

with spatial and temporal averages given by

We have derived an EXACT evolutionary equation for the 
spatial averages of q.
This relation provides an integral representation of the original 
differential equation.
The integral form does not make use of partial derivatives!

Integral form

Conservative & Integral Formulations



Comparing

with

one notices that our 1st order discretization of the original 
differential equation looks very similar to the integral form, 
provided that:

1- and          are re-interpreted as integral averages.
2- are re-interpreted as time averages of point values    

located on the interfaces (i+1/2) and (i-1/2).

This is the FINITE VOLUME FORMULATION. 

Conservative & Integral Formulations



Writing in a more general form, 

The Finite Volume Formulation 
is appropriate for the treatment 
of discontinuities. It relates the 
rate of change of some physical 
quantity to its fluxes through the 
region boundary.
Discontinuities are confined to 
the edges of the cell.

Finite Volume Formulation

tn

tn+1

i+½i-½



The previous relation is exact. 
However, since the solution is known only at tn, some kind of 
approximation is required in order to evaluate the flux through 
the boundary:

This achieved by solving the so-called “Riemann Problem”, 
i.e., the evolution of an inital discontinuity separating two 
constant states. The Riemann problem is defined by the initial 
condition:

Finite Volume Formulation: The 
Riemann Problem



If q is initially discontinuous, one or more characteristic 
variables will also have a discontinuity. Indeed, at t = 0,

From the analytical solution (which still retains its validity),

The initial discontinuity is decomposed in several 
characteristics “jumps”, each propagating unchanged at the 
speed λk. 

The Riemann Problem



For the complete solution, we need to add the solutions to all 
the independent advection equations:

Using the previous solution for w one has

Where K(x,t) is the maximum value of k such that x-λkt>0. 

System of Equations: 
Discontinuous data

q(x, t) =

k=mX
k=1

wk(x, t)rk =

k=mX
k=1

wk(x− λkt, 0)rk



The Riemann Problem

qL qR

q*L
q*R(X0,T)

x=λ1t x=λ2t
x=λ3t

x

t

0X0-λ3T X0-λ2T X0-λ1T

Point (X0,T) is the right of the λ1 characteristic emanating from 
the initial jump, but to the left of the other 2, so the solution is:



The Riemann Problem
The 3 characteristics divide the domain into 4 regions:

With-in each of these regions the solution is constant.
Each time we cross a characteristic, the solution jumps by 
an amount proportional to the eigenvector associated with 
that characteristic.

qL qR

q*L q*R

x=λ1t x=λ2t
x=λ3t

x

t

0



The Riemann Problem
Across the k-th characteristic the jump in q is given by

Note that this jump is also an eigenvector of the matrix A
Solving the Riemann problem consits of taking the initial 
data (qL, qR) and decomposing the jump qR-qL into 
eigenvectors of A:

This is equivalent to solving the system
Which has solution                                   , or in components, 


