4-Nonlinear Advection Equation



Nonlinear Advection Eguation

J We turn our attention the the scalar conservation law
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J Where f(u) Is, in general, a nonlinear function of u.

] To gain some insights on the role played by nonlinear effects,
we start by considering the inviscid Burger’s equation:
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1 We can write Burger’s equation also as
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- In this form, Burger’s equation resembles the linear advection
equation, with the only difference being that the velocity is no
longer constant, but it is equal to the solution itself.

J The characteristic curve for this equation is
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J which tells us that u is constant along the curve dx/dt=u(x,t).
J Along these curves the PDE becomes an ODE.
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] A quantity that remains constant along a characteristic curve
IS called a Riemann invariant.

1 In this simple case, u is a Riemann invariant.

] Considering that dx/dt = u(x,t) we deduce that characteristic
curves are again straight lines: values of u associated with
some fluid element do not change as that element moves.

J However, since u(x,t) can change in space, these lines are
not necessarily parallel to each other as was the case for the
linear advection equation.
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1 Now consider the initial Gaussian profile at t=0:
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J What's going to happen att>0 ?
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J From —— L — =)

one can predict that, higher values of u will propagate faster
than lower values: this leads to a wave steepening, since
upstream values will advances faster than downstream
values.

u(x)
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-l Indeed, at t=1 the wave profile will look like:
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] the wave steepens...
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1 If wait more, we should get something like this:

/

- A multivalue functions ??!1??! = Clearly Unphysical !!
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J The physical solution is to place a discontinuity there:
a shock wave.
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] Since the solution is no longer smooth, the differential form is
not valid anymore and we need to consider the integral form.
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] This is how the solution should look like:
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] Such solutions to the PDE are cialled weak solutions.
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] Let’s try to understand what happens by looking at the

characteristics.

] Consider two states initially separated by a jump at an

Interface:
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1 Here, the characteristic velocities on the left are greater than
those on the right.
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- The characteristic will intersect, creating a shock:

i

J The shock speed is such that A(u,) > S > A(ug).This is called
the



Nonlinear Advection Eguation

J The shock speed S can be found using the Rankine-Hugoniot
jump conditions, obtained from the integral form of the
equation:
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- For Burger’s equation f(u) = u?/2 so that one finds the shock
speed as
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] Let’s consider the opposite situation:
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] Here, the characteristic velocities on the left are smaller than
those on the right.
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J Now the characteristics will diverge:
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] Putting a shock wave between the two states would be
Incorrect, since it would violate the entropy condition. Instead,
the proper solution is a
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- A rarefaction wave is a nonlinear wave that smoothly
connects the left and the right state. It is an expansion wave.

] The solution between the states can only be self-similar and
takes on the range of values between u, and ug

J The head of the rarefaction moves at the speed ,
whereas the tail moves at the speed

] The general condition for a rarefaction wave is

] Both rarefactions and shocks are present in the solutions to
the Euler equation. Both waves are nonlinear.
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] These results can be used to write the general solution to the
Riemann problem for the Burger’s equation:

JIf u_ > uy the solution is a shock wave. In this case
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dIf u < ug the solution is a . In this case
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J Solutions look like
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for a rarefaction and a shock, respectively.
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J An implementation is given in burger.c.



