The Physics of Early Galaxy Formation

Andrea Ferrara

SISSA/International School for Advanced Studies

"Historical" material

- Barkana, R. & Loeb, A. 2001, Phys. Rep., 349, 125
- Bromm, V. & Larson, R. 2004, ARA&A, 42, 79
- Ciardi, B. & Ferrara, A. 2006, SSRv, 116, 625

Additional material

Ferrara, A. 2006, Saas-Fee School, available at web site <u>obswww.unige.ch/saas-fee/</u>

At z=1000 the Universe has cooled down to 3000 K. Hydrogen becomes neutral ("Recombination").

Sequence of events

At z < 20 the first "PopIII" star (clusters)/small galaxies form.

At $z \sim 6-15$ these gradually photoionize the hydrogen in the IGM ("Reionization").

At z<6 galaxies form most of their stars and grow by merging.

At z<1 massive galaxy clusters are assembled.

THE MOST DISTANT OBJECTS

Iye+ 2006, Kashikawa+ 2006, Nagao+ 2007

LYMAN ALPHA EMITTERS

THE MOST DISTANT OBJECTS

Hu+ 2002, Santos+ 2006, Bouwens+ 2006, Pello+ 2006

LENSED DROPOUT AT Z=6.56

Hopkins 2004

COSMIC STAR FORMATION

Stark+ 2006

HIGH-Z STAR FORMATION

The First Stars

DIRECT DETECTABILITY

Schaerer 2002

STELLAR TRACKS

Bromm+ 2001

EMISSION SPECTRUM

IONIZING POWER

$$Q_i = 4\pi R_\star^2 q_i = 4\pi R_\star^2 \int_{\nu_i}^\infty \frac{F_\nu}{h\nu} d\nu, \qquad \qquad \bar{Q}_i(M) = \frac{\int_0^{t_\star(M)} Q_i(t,M) dt}{t_\star(M)},$$

Time-averaged quantities

	$M_{ m ini}$	lifetime	$\bar{Q}(H)$	$\bar{Q}({ m He}^0)$	$\bar{Q}(\text{He}^+)$	$\bar{Q}(H_2)$	$\bar{Q}({\rm He^0})/\bar{Q}({\rm H})$	$\bar{Q}(\mathrm{He}^+)/\bar{Q}(\mathrm{H})$
	1000.		not av	ailable				
	500.00	1.899E+06	6.802E + 50	3.858E + 50	5.793E+49	7.811E + 50	0.567E + 00	0.852E-01
	400.00	1.974E+06	5.247E + 50	3.260E + 50	5.567E + 49	5.865E + 50	0.621E+00	0.106E+00
	300.00	2.047E+06	3.754E + 50	2.372E+50	4.190E + 49	4.182E + 50	0.632E+00	0.112E + 00
	200.00	2.204E+06	2.624E + 50	1.628E + 50	1.487E+49	2.918E + 50	0.621E+00	$0.567 \text{E}{-}01$
[120.00	2.521E+06	1.391E + 50	7.772E+49	5.009E+48	1.608E+50	0.559E+00	0.360E-01
	80.00	3.012E+06	7.730E+49	4.317E + 49	1.741E + 48	8.889E + 49	0.558E+00	0.225E-01
	60.00	3.464E+06	4.795E + 49	2.617E + 49	5.136E + 47	5.570E + 49	0.546E + 00	0.107 E-01
	40.00	3.864E+06	2.469E+49	1.316E + 49	8.798E+46	2.903E+49	0.533E+00	0.356E-02
	25.00	6.459E+06	7.583E + 48	3.779E + 48	3.643E + 44	9.387E + 48	0.498E+00	0.480 E-04
	15.00	1.040E+07	1.861E + 48	8.289E + 47	1.527E+43	2.526E+48	0.445E+00	0.820E-05
	9.00	2.022E+07	2.807E + 47	7.662E + 46	3.550E+41	5.576E + 47	0.273E+00	0.126E-05
	5.00	6.190E+07	1.848E + 45	1.461E+42	1.270E+37	6.281E + 46	0.791E-03	$0.687 \text{E}{-}08$
R	120/15	0.25	74	94	3×10 ⁵	64	1.25	4390

Schaerer 2002

HE NEBULAR LINES

Schneider+ 2002, Omukai+ 2006

Z-DEPENDENT FRAGMENTATION

 ✓ One-zone model with simplified dynamics but detailed chemical and thermal evolution (478 reactions for 50 species)
 ✓ D chemistry and HD cooling

CHEMICAL FEEDBACK

Schneider+ 2002, Schneider+ 2006

MASS OF EARLY STARS

Tornatore, AF & Schneider 2007

STAR FORMATION RATES

Scannapieco+ 2002

Scannapieco+ 2002

LYA EW OF POP III STARS

FIRST STARS IN THE MILKY WAY

FIRST STARS IN THE MILKY WAY

FIRST STARS IN THE MILKY WAY

Salvadori, Schneider, AF 2006, Tumlinson 2006

MDF INTERPRETED – II.

- ✓ Stellar / chemical evolution of the Milky Way based on ∧CDM merger-tree
- ✓ Joint HK/HES Metallicity Distribution Function, 2756 stars with [Fe/H] < -2.

Salvaterra & AF 2002, Santos+2002

A PUZZLING EXCESS

GAMMA-RAY CONSTRAINTS

• *TeV-GeV* photons absorbed by optical/IR photons via e^+ - e^- pair production.

• The observed spectrum of blazar reproduced by convolving the unabsorbed (power-law) spectrum with the optical depth:

$$(dN/dE)_{abs} \propto e^{-\tau} E^{-\alpha}$$

Mapelli+ 2005, Aharonian+ 2005

GAMMA-RAY CONSTRAINTS

Salvaterra+ 06, Cooray+ 06, Sullivan+06, Thompson+ 07a,b

FLUCTUATIONS

Salvaterra+ 2006, Fernandez & Komatsu 2006

INTENSITY

NIRB PHOTON BUDGET

	nW m ⁻² sr ⁻¹ @ 1.4 μ m
Observed	70
After zodi-subtraction (Wright)	17
Gamma rays	~15
Low-z galaxy contribution	> 8
Left unexplained	< 7
<i>z</i> >5 galaxies (from fluctuations)	2.5

- (Massive) PopIII stars strongly influcence first stages of cosmic reionization
- * Transition to normal stars occurs when $Z > Z_{crit} \sim 10^{-5 \pm l} Z_{\odot}$; strongly governed by dust
- Pop III SF continues to $z \sim 3$ at periphery of collapsing structures. Observable in LAEs ?
- * Metallicity Distribution Function of EMPs in the MW halo: hints on primordial IMF
- \diamond Imprint of very early (z>6) star formation activity left in the NIRB
- * Experimental constraints on NIRB: intensity, fluctuations & pair-production opacity
- * PISN explosions at moderate (z < 6) redshifts with JDEM

The End