
Magnetohydrodynamics

1 Basic equations

In galaxies, and indeed in many other astrophysical settings, the gas is partially or fully
ionized and can carry electric currents that, in turn, produce magnetic fields. The associated
Lorentz force exerted on the ionized gas (also called plasma) can in general no longer be
neglected in the momentum equation for the gas. Magneto-hydrodynamics (MHD) is the
study of the interaction of the magnetic field and the plasma treated as a fluid. In MHD
we combine Maxwell’s equations of electrodynamics with the fluid equations, including also
the Lorentz forces due to electromagnetic fields. We first discuss Maxwell’s equations that
characterize the evolution of the magnetic field.

1.1 Maxwell’s equations

In the Gaussian cgs units, Maxwell’s equations can be written in the form

1

c

∂B

∂t
= −∇ × E, ∇ · B = 0, (1)

1

c

∂E

∂t
= ∇ × B − 4π

c
J , ∇ · E = 4πρe, (2)

where B is the magnetic flux density (usually referred to as simply the magnetic field), E is
the electric field, J is the current density, c is the speed of light, and ρe is the charge density.

To ensure that ∇·B = 0 is satisfied at all times it is often convenient to define B = ∇×A

and to replace Eq. (1) by the ‘uncurled’ equation for the magnetic vector potential, A,

1

c

∂A

∂t
= −E − ∇φ, (3)

where φ is the scalar potential. Note that magnetic and electric fields are invariant under
the gauge transformation

A′ = A + ∇Λ, (4)

φ′ = φ − 1

c

∂Λ

∂t
. (5)

1.2 Resistive MHD and the induction equation

In order to close the system of equations, we need to relate the current density J back to
the fields. For this we use the standard Ohm’s law in a fixed frame of reference,

J = σ

(
E +

V × B

c

)
, (6)

where σ is the electric conductivity. This simple form arises for a conducting fluid moving in
given electric and magnetic fields at non-relativistic velocities. The physical picture for the
above expression is elaborated further below; the Lorentz force provides a relative accelera-
tion between the positive and negative charges in the system, which is balanced by friction
between them due to collisions. The resulting steady drift velocity between the negative and
positive charges, corresponds to a current density proportional to the Lorentz force itself,
the constant of proportionality being the conductivity.
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Introducing the magnetic diffusivity η = c2/(4πσ) in cgs units, we can eliminate J from
Eq. (2), so we have

η

c2

∂E

∂t
+ E =

η

c
∇ × B − V × B

c
. (7)

This formulation shows that the time derivative term (arising from the Faraday displace-
ment current) can be neglected if the relevant time scale over which the electric field varies,
exceeds the Faraday time τFaraday = η/c2. Below we shall discuss that for ordinary Spitzer
resistivity, η is proportional to T−3/2 and varies between 10 and 107 cm2 s−1 for temperatures
between T = 108 and T = 104 K. Thus, the displacement current can be neglected when
the variation time scales are longer than 10−20 s (for T ≈ 108 K) and longer than 10−14 s (for
T ≈ 104 K). For the applications discussed in this book, this condition is always met, even
for neutron stars where the time scales of variation can be of the order of milliseconds, but
the temperatures are very high as well. We can therefore safely neglect the displacement
current and eliminate E, so Eq. (2) can be replaced by Ampere’s law J = (c/4π)∇ × B.

Substituting Ohm’s law into the Faraday’s law of induction, and using Ampere’s law to
eliminate J , one can write a single evolution equation for B, which is called the induction
equation:

∂B

∂t
= ∇ × (V × B − η∇× B) . (8)

The induction equation gives the evolution of the magnetic field given the velocity field.
Taking the divergence of Eq. (8) we see that ∂(∇ · B)/∂t = 0, and the divergence free
property of the magnetic field is preserved in time, as it must be.

2 The momentum equation

The magnetic field influences the fluid velocity in turn through the Lorentz force. On a single
charged particle of charge q, the Lorentz force is F L = q[E + (V × B)/c]. In a conducting
fluid where there are say ni ions per unit volume with charge qi moving with a bulk velocity
V i and ne electrons per unit volume with charge −e and velocity V e, the Lorentz force
density is,

fL = qini

[
E +

V i × B

c

]
− ene

[
E +

V e × B

c

]
= ρeE +

J × B

c
. (9)

Here the charge density ρe = (qini − ene) and the current density J = (qiniV i − eneV e).
Suppose we compare the electric and magnetic parts of the Lorentz force for a highly con-
ducting fluid. We have for such a fluid E ≈ −(V ×B)/c from Ohms law. Using Gauss’s law
to relate ρe to E and Ampere’s law to calculate J in terms of B (neglecting the displacement
current as above), we then have

|ρeE|
|(J × B/c)| ∼

V 2

c2
� 1, (10)

where the last inequality holds for non-relativistic velocities and we have assumed similar
scales of variation for the E and B. Therefore, for highly conducting fluid moving with
non-relativistic velocities, the part of the Lorentz force due to the electric field is negligible
compared to the magnetic part. We therefore neglect it for most part of this book.

The momentum equation is then just the ordinary Navier-Stokes equation in fluid dy-
namics supplemented by the Lorentz force, J × B/c, i.e.

ρ
DV

Dt
= −∇p +

J × B

c
+ f + F visc, (11)
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where V is the ordinary bulk velocity of the gas, ρ is the density, p is the pressure, F visc is
the viscous force, and f subsumes all other body forces acting on the gas, including gravity
and, in a rotating system also the Coriolis and centrifugal forces. (We use an upper case V ,
because later on we shall use a lower case v for the fluctuating component of the velocity.)
The Lorentz force can then also be written purely in terms of B by using Ampere’s law to
eliminate J . We get,

fL =
J × B

c
=

(∇ × B) × B

4π
= −∇

(
B2

8π

)

︸ ︷︷ ︸
pressure

+
(B · ∇)B

4π︸ ︷︷ ︸
tension

, (12)

where in the latter equality we have split the Lorentz force into a component, which is due
to the gradient of a magnetic pressure, and one which a tension component due to variations
of the field along itself.

The equations of MHD involve supplementing Eq. (11) by the continuity equation,

∂ρ

∂t
= −∇ · (ρV ), (13)

an equation of state, p = p(ρ, e), an energy equation for the internal energy e, and the
induction equation giving the evolution of the magnetic field.

An important quantity is the adiabatic sound speed, cs, defined as c2
s = (∂p/∂ρ)s, evalu-

ated at constant entropy s. For a perfect gas with constant ratio γ of specific heats (γ = 5/3
for a monatomic gas) we have c2

s = γp/ρ. When the flow speed is much smaller than the
sound speed, i.e. when the average Mach number Ma = 〈V 2/c2

s〉1/2 is much smaller than
unity, the assumption of incompressibility can be made. In addition, if the density was uni-
form initially, then it can be taken as approximately uniform at all times, i.e. ρ ≈ ρ0 = const.
For incompressible motions, Eq. (13) can be replaced by ∇·V = 0, and the momentum equa-
tion then simplifies to

DV

Dt
= − 1

ρ0
∇p +

J × B

ρ0
+ f + ν∇2V , (14)

where ν is the kinematic viscosity and f is now an external body force per unit mass. The
ratio Pm = ν/η is the magnetic Prandtl number; see Eq. (30).

The assumption of incompressibility is a great simplification that is useful for many
analytic considerations, but for numerical solutions this restriction is often not necessary.
As long as the Mach number is small, say below 0.3, the weakly compressible case is believed
to be equivalent to the incompressible case (cf. Dobler, Brandenburg, Yousef, 2003).

3 Magnetic flux freezing

The V × B term in Eq. (8) is usually referred to as the induction term. To clarify its role
we expand its curl as

∇ × (V × B) = − (V · ∇)B︸ ︷︷ ︸
advection

+ (B · ∇)V︸ ︷︷ ︸
stretching

− B(∇ · V )︸ ︷︷ ︸
compression

, (15)

where we have used the fact that ∇ · B = 0. As a simple example, we consider the effect
of a linear shear flow, V = (0, Sx, 0) on the initial field B = (B0, 0, 0). The solution is
B = (1, St, 0)B0, i.e. the field component in the direction of the flow grows linearly in time.
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Figure 1: The surface S enclosed by the curve C is carried by fluid motion to the surface
S ′ after a time dt. The flux through this surface Φ is frozen into the fluid for a perfectly
conducting fluid.

The net induction term more generally implies that the magnetic flux through a surface
moving with the fluid remains constant in the high-conductivity limit. Consider a surface S,
bounded by a curve C, moving with the fluid, as shown in Fig. 1. Note that the surface S need
not lie in a plane. Suppose we define the magnetic flux through this surface, Φ =

∫
S B · dS.

Then after a time dt the change in flux is given by

∆Φ =
∫

S′

B(t + dt) · dS −
∫

S
B(t) · dS. (16)

Applying
∫

∇ · B dV = 0 at time t + dt, to the ‘tube’-like volume swept up by the moving
surface S, shown in Fig. 1, we also have

∫

S′

B(t + dt) · dS =
∫

S
B(t + dt) · dS −

∮

C
B(t + dt) · (dl × V dt), (17)

where C is the curve bounding the surface S, and dl is the line element along C. (In the last
term, to linear order in dt, it does not matter whether we take the integral over the curve C
or C ′.) Using the above condition in Eq. (16), we obtain

∆Φ =
∫

S
[B(t + dt) − B(t)] · dS −

∮

C
B(t + dt) · (dl × V )dt. (18)

Taking the limit of dt → 0, and noting that B · (dl × V ) = (V × B) · dl, we have

dΦ

dt
=
∫

S

∂B

∂t
· dS −

∮

C
(V × B) · dl = −

∫

S
(∇× (η∇ × B)) · dS. (19)

In the second equality we have used
∮
C(V × B) · dl =

∫
S ∇ × (V × B) · dS together with

the induction equation (8). One can see that, when η → 0, dΦ/dt → 0 and so Φ is constant.
Now suppose we consider a small segment of a thin flux tube of length l and cross-section

A, in a highly conducting fluid. Then, as the fluid moves about, conservation of flux implies
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BA is constant, and conservation of mass implies ρAl is constant, where ρ is the local density.
So B ∝ ρl. For a nearly incompressible fluid, or a flow with small changes in ρ, one will
obtain B ∝ l. Any shearing motion which increases l will also amplify B; an increase in l
leading to a decrease in A (because of incompressibility) and hence an increase in B (due
to flux freezing). This effect, also obtained in our discussion of stretching above, will play a
crucial role in all scenarios involving dynamo generation of magnetic fields.

The concept of flux freezing can also be derived from the elegant Cauchy solution of the
induction equation with zero diffusion. This solution is of use in several contexts and so
we describe it briefly below. In the case η = 0, the ∇ × (V × B) term in Eq. (8) can be
expanded to give

DB

Dt
= B · ∇V − B(∇ · V ), (20)

where D/Dt = ∂/∂t + V · ∇ is the Lagrangian derivative. If we eliminate the ∇ · V term
using the continuity equation for the fluid,

∂ρ

∂t
= −∇ · (ρV ), (21)

where ρ is the fluid density, then we can write

D

Dt

(
B

ρ

)
=

B

ρ
· ∇V . (22)

Suppose we describe the evolution of a fluid element by giving its trajectory as x(x0, t), where
x0 is its location at an initial time t0. Consider further the evolution of two infinitesimally
separated fluid elements, A and B, which, at an initial time t = t0, are located at x0

and x0 + δx0, respectively. The subsequent location of these fluid elements will be, say,
xA = x(x0, t) and xB = x(x0 + δx0, t) and their separation is xB − xA = δx(x0, t). Since
the velocity of the fluid particles will be V (xA) and V (xA) + δx · ∇V , after a time δt,
the separation of the two fluid particles will change by δt δx · ∇V . The separation vector
therefore evolves as

Dδx

Dt
= δx · ∇V , (23)

which is an evolution equation identical to that satisfied by B/ρ. So, if initially, at time
t = t0, the fluid particles were on a given magnetic field line with (B/ρ)(x0, t0) = c0δx(t0) =
c0δx0, where c0 is a constant, then for all times we will have B/ρ = c0δx. In other words, ‘if
two infinitesimally close fluid particles are on the same line of force at any time, then they
will always be on the same line of force, and the value of B/ρ will be proportional to the
distance between the particles’ (Landau and Lifshitz ..) Further, since δxi(x0, t) = Gijδx0j ,
where Gij = ∂xi/∂x0j , we can also write

Bi(x, t) = ρc0δxi =
Gij(x0, t)

detG
B0j(x0), (24)

where we have used the fact that ρ(x, t)/ρ(x0, t0) = (detG)−1. We will use this Cauchy
solution later.

4 Dissipation in space plasmas

4.1 Resistivity and viscosity

Plasmas are usually far from ideal and will have finite resistivity (or conductivity) and
viscosity. We first describe a simple physical picture for the conductivity in a plasma. The
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force due to an electric field E accelerates electrons relative to the ions; but they cannot move
freely due to friction with the ionic fluid, caused by electron–ion collisions. They acquire a
‘terminal’ relative velocity U with respect to the ions, obtained by balancing the Lorentz force
with friction. This velocity can also be estimated as follows. Assume that electrons move
freely for about an electron–ion collision time τei, after which their velocity becomes again
randomized. Electrons of charge e and mass me in free motion during the time τei acquire
from the action of an electric field E an ordered speed U ∼ τeieE/me. This corresponds to
a current density J ∼ eneU ∼ (nee

2τei/m)E and hence leads to σ ∼ nee
2τei/me.

The electron–ion collision time scale (which determines σ) can also be estimated as fol-
lows. For a strong collision between an electron and an ion one needs an impact parameter
b which satisfies the condition Ze2/b > mev

2. This gives a cross section for strong scat-
tering of σt ∼ πb2. Since the Coulomb force is a long range force, the larger number of
random weak scatterings add up to give an extra ‘Coulomb logarithm’ correction to make
σt ∼ π(Ze2/mv2)2 ln Λ, where ln Λ is in the range between 5 and 20. The corresponding
mean free time between collisions is

τei ∼
1

niσtv
∼ (kBT )3/2m1/2

e

πZe4ne ln Λ
, (25)

where we have used the fact that mev
2 ∼ kBT and Zni = ne. Hence we obtain the estimate

σ ∼ (kBT )3/2

m
1/2
e πZe2 ln Λ

, (26)

where most importantly the dependence on the electron density has canceled out. A more
exact calculation can be found, for example in Lifshitz and Pitaevskii (1993, Eq. 44.11),
and gives an extra factor of 4(2/π)1/2 multiplying the above result. The above argument
has ignored collisions between electrons themselves, and treated the plasma as a ‘lorentzian
plasma’. Electron–electron collisions further reduce the conductivity by a certain factor
ranging from about 0.582 for Z = 1 to 1 for Z → ∞ [ see Table 5.1 and Eqs. (5)–(37) in
Spitzer (1956), and leads to a diffusivity, in cgs units, of η = c2/(4πσ) given by

η = 104
(

T

106 K

)−3/2
(

ln Λ

20

)
cm2 s−1. (27)

As noted above, the resistivity is independent of density, and is also inversely proportional
to the temperature (larger temperatures implying larger mean free time between collisions,
larger conductivity and hence smaller resistivity).

The corresponding expression for the kinematic viscosity ν is quite different. Simple
kinetic theory arguments give ν ∼ vtli, where li is the mean free path of the particles which
dominate the momentum transport and vt is their random velocity. For a fully ionized gas
the ions dominate the momentum transport, and their mean free path li ∼ (niσi)

−1, with the
cross-section σi, is determined again by the ion–ion ‘Coulomb’ interaction. From a reasoning
very similar to the above for electron–ion collisions, we have σi ∼ π(Z2e2/kBT )2 ln Λ, where
we have used miv

2
t ∼ kBT . Substituting for vt and li, this then gives

ν ∼ (kBT )5/2

nim
1/2
i πZ4e4 ln Λ

. (28)

More accurate evaluation using the Landau collision integral gives a factor 0.4 for a hydrogen
plasma, instead of 1/π in the above expression (see the end of Section 43 in vol. 10 of Lifshitz
and Pitaevskii 1993). This gives numerically

ν = 6.5 × 1022
(

T

106 K

)5/2 ( ni

cm−3

)−1
(

ln Λ

20

)−1

cm2 s−1, (29)
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Table 1: Summary of some important parameters in various astrophysical settings. The
values given should be understood as rough indications only. In particular, the applicability
of Eq. (30) is questionable in some cases and has therefore not been used for protostellar
discs. We have assumed ln Λ = 20 in computing Rm and Pm. CZ means convection zone
AGNs are active galactic nuclei. Numbers in parenthesis indicate significant uncertainty due
to other effects.

T [K] ρ [ g cm−3] Pm urms [ cm s−1] L [ cm] Rm

Solar CZ (upper part) 104 10−6 10−7 106 108 106

Solar CZ (lower part) 106 10−1 10−4 104 1010 109

Protostellar discs 103 10−10 10−8 105 1012 10
AGN discs 107 10−5 104 105 109 1011

Galaxy 104 10−24 (1011) 106 1020 (1018)
Galaxy clusters 108 10−26 (1029) 108 1023 (1029)

so the magnetic Prandtl number is

Pm ≡ ν

η
= 4 × 1011

(
T

104 K

)4
(

ρ

10−24 g cm−3

)−1 (
ln Λ

10

)−2

. (30)

Thus, in the galaxy, using T = 104 K and ρ = 10−24 g cm−3, ln Λ ∼ 10, this formula gives
Pm = 4× 1011. Applied to the sun and other stars (T ∼ 106 K, ρ ∼ 0.1 g cm−3) the magnetic
Prandtl number is much less than unity. The reason Pm is so large in galaxies is mostly
because of the very long mean free path caused by the low density. For galaxy clusters, the
temperature of the gas is even larger and the density smaller, making the medium much
more viscous and having even larger Pm.

In protostellar discs, on the other hand, the gas is mostly neutral with low temperatures.
In this case, the electrical conductivity is given by σ = nee

2τen/me, where τen is the rate of
collisions between electrons and neutral particles.

In Table 1 we summarize typical values of temperature and density in different astrophys-
ical settings and calculate the corresponding values of Pm. Here we also give rough estimates
of typical rms velocities, urms, and eddy scales, L, which allow us to calculate the magnetic
Reynolds number as

Rm = urms/(ηkf), (31)

where kf = 2π/L. This number characterizes the relative importance of magnetic induction
relative to magnetic diffusion. A similar number is the fluid Reynolds number, Re = Rm/Pm,
which characterizes the relative importance of inertial forces to viscous forces. (We emphasize
that in the above table, Reynolds numbers are defined based on the inverse wavenumber; our
values may therefore be 2π times smaller that those by other authors. The present definition
is a natural one in simulations where one forces power at a particular wavenumber around
kf .)

4.2 The effect of ambipolar drift

In a partially ionized medium the magnetic field evolution is governed by the induction
equation (8), but with V replaced by the velocity of the ionic component of the fluid, vi.
The ions experience the Lorentz force due to the magnetic field. This will cause them to
drift with respect to the neutral component of the fluid. If the ion-neutral collisions are
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sufficiently frequent, one can assume that the Lorentz force on the ions is balanced by their
friction with the neutrals. Under this approximation, the Euler equation for the ions reduces
to

ρiνin(vi − vn) = J × B (strong coupling approximation), (32)

where ρi is the mass density of ions, νin the ion-neutral collision frequency and vn the
velocity of the neutral particles. For gas with nearly primordial composition and temperature
∼ 104 K, one gets the estimate of ρiνin = niρn〈σv〉eff , with 〈σv〉eff ∼ 4 × 10−9 cm3 s−1, in cgs
units. Here, ni is the number density of ions and ρn the mass density of neutrals.

In a weakly ionized gas, the bulk velocity is dominated by the neutrals, and Eq. (32)
substituted into the induction equation Eq. (8) then leads to a modified induction equation,

∂B

∂t
= ∇ × [(V + aJ × B) × B − ηJ ] , (33)

where a = (ρiνin)−1. The modification is therefore an addition of an extra drift velocity,
proportional to the Lorentz force. One usually refers to this drift velocity as ambipolar drift
(and sometimes as ambipolar diffusion) in the astrophysical community (cf. Mestel (1999)
for a more detailed discussion).

Ambipolar drift is important in the magnetic field evolution in protostars, and also in the
neutral component of the galactic gas. In the classical (non-turbulent) picture of star forma-
tion, ambipolar diffusion regulates a slow infall of the gas, which was originally magnetically
supported (Mestel 1999)

5 Energetics

Important insight can be gained by considering the magnetic energy equation. By taking
the dot product of Eq. (8) with B/(8π), using the vector identity B · ∇ × E = ∇ · (E ×
B) + E · ∇ × B and integrating over the volume V , we obtain

d

dt

∫

V

B2

8π
dV = −

∫

V
V · (J × B)

c
dV −

∫

V

J2

σ
dV −

∮

∂V

c

4π
E × B dS. (34)

This equation shows that the magnetic energy can be increased by doing work against the
Lorentz force, provided this term exceeds resistive losses (second term) or losses through the
surface (Poynting flux, last term). Likewise, by taking the dot product of Eq. (11) with ρV

and integrating, one arrives at the kinetic energy equation

d

dt

∫

V

1
2
ρV 2 dV = +

∫

V
p∇ · V dV +

∫

V
V · (J × B)

c
dV

+
∫

V
ρV · g dV −

∫

V
2νρ[S]2 dV, (35)

where Sij = 1
2
(Vi,j + Vj,i)− 1

3
δijVk,k is the traceless rate of strain tensor, and commas denote

derivatives. In deriving Eq. (35) we have assumed stress-free boundary conditions, so there
are no surface terms and no kinetic energy is lost through the boundaries. Equations Eq. (34)
and Eq. (35) show that the generation of magnetic energy goes at the expense of kinetic
energy, without loss of net energy.

6 Two-fluid approximation

The simplest generalization of the one-fluid model is to consider the electrons and ions as
separate fluids which are interacting with each other through collisions. This two-fluid model
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is also essential for deriving the general form of Ohm’s law and for describing battery effects,
that generate fields ab initio from zero initial field. We therefore briefly consider it below.

For simplicity assume that the ions have one charge, and in fact they are just protons.
That is the plasma is purely ionized hydrogen. It is straightforward to generalize these
considerations to several species of ions. For our purpose it suffices first to follow the simple
treatment of Spitzer (1956) where we take an isotropic pressure, leave out non-ideal terms,
and also adopt a simple form for the collision term between electrons and protons. The
equations of motion for the electron and proton fluids may then be written as

Deve

Dt
= − ∇pe

neme

− e

me

(E + ve × B) − ∇φg −
(ve − vp)

τei

, (36)

Divi

Dt
= − ∇pi

nimi
+

e

mi
(E + vi × B) − ∇φg +

mene

mini

(ve − vi)

τei
. (37)

Here Djvj/Dt = ∂vj/∂t + vj · ∇vj and we have included the forces due to the pressure
gradient, gravity, electromagnetic fields and electron–proton collisions. Further, mj, nj, uj, pj

are respectively the mass, number density, velocity, and the partial pressure of electrons
(j = e) and protons (j = i), φg is the gravitational potential, and τei is the e–i collision time
scale. One can also write down a similar equation for the neutral component n. Adding the
e, i and n equations we can recover the standard MHD Euler equation.

More interesting in the present context is the difference between the electron and proton
fluid equations. Using the approximation me/mi � 1, this gives the generalized Ohms law;
see the book by Spitzer (1956), and Eqs. (2)–(12) therein,

E + vi × B = −∇pe

ene
+

J

σ
+

1

ene
J × B +

me

e2

∂

∂t

(
J

ne

)
, (38)

where J = (enivi − eneve) is the current density and

σ =
nee

2τei

me

(39)

is the electrical conductivity. [If ne 6= ni, additional terms arise on the RHS of Eq. (38)
with J in Eq. (38) replaced by −evi(ne − ni). These terms can usually be neglected since
(ne − ni)/ne � 1. Also negligible are the effects of nonlinear terms ∝ u2

j .]
The first term on the RHS of Eq. (38), representing the effects of the electron pressure

gradient, is the ‘Biermann battery’ term. It provides the source term for the thermally
generated electromagnetic fields (Biermann 1950). If ∇pe/ene can be written as the gradient
of some scalar function, then only an electrostatic field is induced by the pressure gradient.
On the other hand, if this term has a curl then a magnetic field can grow. The next two
terms on the RHS of Eq. (38) are the usual Ohmic term J/σ and the Hall electric field
J ×B/(nee), which arises due to a non-vanishing Lorentz force. Its ratio to the Ohmic term
is of order ωeτei, where ωe = eB/me is the electron gyro-frequency. The last term on the
RHS is the inertial term, which can be neglected if the macroscopic time scales are large
compared to the plasma oscillation periods.

From the generalized Ohm’s law one can formally solve for the current components par-
allel and perpendicular to B (cf. the book by Mestel 1999). Defining an ‘equivalent electric
field’

E′ =
J

σ
+

J × B

ene
, (40)

one can rewrite the generalized Ohms law as

J = σE′
‖ + σ1E

′
⊥ + σ2

B × E′

B
, (41)
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where

σ1 =
σ

1 + (ωeτei)2
, σ2 =

(ωeτei)σ

1 + (ωeτei)2
. (42)

The conductivity becomes increasingly anisotropic as ωeτei increases. Assuming numerical
values appropriate to the galactic interstellar medium, say, we have

ωeτei ≈ 4 × 105

(
B

1 µG

)(
T

104K

)3/2 ( ne

1 cm−3

)−1
(

ln Λ

20

)−1

. (43)

The Hall effect and the anisotropy in conductivity are therefore important in the galactic
interstellar medium and in the cluster gas with high temperatures T ∼ 108 K and low
densities ne ∼ 10−2 cm−3. Of course, in absolute terms, neither the resistivity nor the Hall
field are important in these systems, compared to the inductive electric field or turbulent
diffusion. For the solar convection zone with ne ∼ 1018 − 1023 cm−3, ωeτei � 1, even for
fairly strong magnetic fields. On the other hand, in neutron stars, the presence of strong
magnetic fields B ∼ 1013 G, could make the Hall term important, especially in their outer
regions, where there are also strong density gradients.

A strong magnetic field also suppresses other transport phenomena like the viscosity and
thermal conduction perpendicular to the field. These effects are again likely to be important
in rarefied and hot plasmas such as in galaxy clusters.

7 Magnetic helicity

Magnetic helicity plays an important role in dynamo theory. We therefore give here a brief
account of its properties. Magnetic helicity is the volume integral

H =
∫

V
A · B dV (44)

over a closed or periodic volume V . By a closed volume we mean one in which the magnetic
field lines are fully contained, so the field has no component normal to the boundary, i.e.
B · n̂ = 0. The volume V could also be an unbounded volume with the fields falling off
sufficiently rapidly at spatial infinity. In these particular cases, H is invariant under the
gauge transformation Eq. (4), because

H ′ =
∫

V
A′ · B′ dV = H +

∫

V
∇Λ · B dV = H +

∮

∂V
ΛB · n̂ dS = H, (45)

where n̂ is the unit outward normal to the closed surface ∂V . Here we have made use of
∇ · B = 0.

Magnetic helicity has a simple topological interpretation in terms of the linkage and twist
of isolated (non-overlapping) flux tubes. For example consider the magnetic helicity for an
interlocked, but untwisted, pair of thin flux tubes as shown in Fig. 2, with Φ1 and Φ2 being
the fluxes in the tubes around C1 and C2 respectively. For this configuration of flux tubes,
B d3x can be replaced by Φ1dl on C1 and Φ2dl on C2. The net helicity is then given by the
sum

H = Φ1

∮

C1

A · dl + Φ2

∮

C2

A · dl, = 2Φ1Φ2 (46)

where we have used Stokes theorem to transform
∮

C1

A · dl =
∫

S(C1)
B · dS ≡ Φ2,

∮

C2

A · dl =
∫

S(C2)
B · dS ≡ Φ1. (47)
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C 1

Φ2

C 2

Φ1

Figure 2: Two flux tubes with fluxes Φ1 and Φ2 are linked in such a way that they have a
helicity H = +2Φ1Φ2. Interchanging the direction of the field in one of the two rings changes
the sign of H.

For a general pair of non-overlapping thin flux tubes, the helicity is given by H = ±2Φ1Φ2;
the sign of H depending on the relative orientation of the two tubes (Moffatt 1978).

The evolution equation for H can be derived from Faraday’s law and its uncurled version
for A, Eq. (3), so we have

1

c

∂

∂t
(A · B) = (−E + ∇φ) · B + A · (−∇ × E)

= −2E · B + ∇ · (φB + A × E). (48)

Integrating this over the volume V , the magnetic helicity satisfies the evolution equation

dH

dt
= −2c

∫

V
E · BdV + c

∮

∂V
(A × E + φB) · n̂dS = −2η

4πC

c
, (49)

where C =
∫
V J · B dV is the current helicity. Here we have used Ohm’s law, E =

−(V × B)/c + J/σ, in the volume integral and we have assumed that the surface integral
vanishes for closed domains.

In the non-resistive case, η = 0, the magnetic helicity is conserved, i.e. dH/dt = 0.
However, this does not guarantee conservation of H in the limit η → 0, because the current
helicity,

∫
J ·B dV , may in principle still become large. For example, the Ohmic dissipation

rate of magnetic energy QJoule ≡ (4π/c2)
∫

ηJ2dV can be finite and balance magnetic energy
input by motions, even when η → 0. This is because small enough scales develop in the
field (current sheets) where the current density increases with decreasing η as ∝ η−1/2 as
η → 0, whilst the rms magnetic field strength, Brms, remains essentially independent of
η. Even in this case, however, the rate of magnetic helicity dissipation decreases with η,
with an upper bound to the dissipation rate ∝ η+1/2 → 0, as η → 0. Thus, under many
astrophysical conditions where Rm is large (η small), the magnetic helicity H, is almost
independent of time, even when the magnetic energy is dissipated at finite rates. This robust
conservation of magnetic helicity is an important constraint on the nonlinear evolution of
dynamos and will play a crucial role below in determining how large scale turbulent dynamos
saturate. Indeed, it is also at the heart of Taylor relaxation in laboratory plasmas, where
an initially unstable plasma relaxes to a stable ‘force-free’ state, dissipating energy, while
nearly conserving magnetic helicity (Taylor 1974).

We also note the very important fact that the fluid velocity completely drops out from
the helicity evolution equation Eq. (49), since (V × B) · B = 0. Therefore, any change in
the nature of the fluid velocity, for example due to turbulence (turbulent diffusion), the Hall
effect, or ambipolar drift (see below), does not affect magnetic helicity conservation. We will
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discuss in more detail the concept of turbulent diffusion in a later section, and its role in
dissipating the mean magnetic field. However, such turbulent magnetic diffusion does not

dissipate the net magnetic helicity. This property is crucial for understanding why, in spite
of the destructive properties of turbulence, large scale spatio-temporal coherence can emerge
if there is helicity in the system.

Although the Hall electric field does not alter the volume dissipation and/or generation of
helicity, the battery term however can in principle contribute to helicity dissipation and/or
generation. But this contribution is generally expected to be small. To see this, rewrite this
contribution to helicity generation, say (dH/dt)Batt, using pe = nekBTe, as

1

c

(
dH

dt

)

Batt

= 2
∫

∇pe

ene
· B dV = −2

∫ lnne

e
B · ∇(kBTe) dV, (50)

where kB is the Boltzmann constant, and the integration is assumed to extend over a closed
or periodic domain, so there are no surface terms.1 We see from Eq. (50) that genera-
tion/dissipation of helicity can occur only if there are temperature gradients parallel to the
magnetic field. Such parallel gradients are in general very small due to fast electron flow
along field lines. We will see below that the battery effect can provide a small but finite seed
field; this can also be accompanied by the generation of a small but finite magnetic helicity.

We should point out that it is also possible to define magnetic helicity as linkages of
flux analogous to the Gauss linking formula for linkages of curves. Given the magnetic field
B(x, t) the magnetic helicity is given

HG =
1

4π

∫ ∫
B(x) ·

[
B(y) × x − y

|x − y|3
]

d3x d3y, (51)

where both integrations extend over the full volume. Suppose we define an auxiliary field

AC(x) =
1

4π

∫
B(y) × x − y

|x − y|3
d3y, (52)

then this field satisfies ∇×AC = B, and ∇ ·AC = 0, and one can write HG =
∫

AC ·b d3x.
This is the origin of the textbook definition of magnetic helicity in what is known as the
Coulomb gauge for the vector potential. Provided the field is closed over the integration
volume, this definition can be applied in any other gauge and H ≡ HG.

8 Magnetohydrodynamic waves

In fluids without a magnetic field small perturbations propagate isotropically as sound waves.
On introducing a magetic field into the system the number of possible wave modes increases
and wave propagation also becomes anisotropic, depending on the direction of the magnetic
field. Consider the simple case where the unperturbed fluid is at rest and has uniform density
(ρ0), pressure (p0) and magnetic field (B0). Examine the evolution of small perturbations:
v in velocity, ρ1 in density, p1 in pressure and b in the magnetic field about this base state.
The continuity, momentum and the induction equations can be linearized to give,

∂ρ1

∂t
= −ρ0∇ · v, p1 = c2

s
ρ1

∂v

∂t
= −∇

[
p1

ρ0

+
B0 · b
4πρ0

]
+

B0 · ∇b

4πρ0

,

∂b

∂t
= ∇ × (v × B0) = B0 · ∇v − B0∇ · v. (53)

1Note that ne in the above equation can be divided by an arbitrary constant density, say n0 to make the
argument of the log term dimensionless since, on integrating by parts,

∫
ln(n0)B · ∇(kBTe) dV = 0.
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We have adopted here adiabatic pressure perturbations and c
s
is the adiabatic sound speed as

before. We look for solutions where all perturbed quantities are expanded in Fourier modes
in the form, f(x, t) = f̂ exp i(k · x − ωt) and use Eq. (53) to eliminate all other variable
except v̂ to get,

ω2v̂ = (c2
s
+ V 2

A)(k · v̂)k + (k · V A) [(k · V A)v̂ − (V A · v̂)k − (k · v̂)V A] . (54)

Here we have defined the Alfvén velocity V A = B0/
√

4πρ0 and VA = |V A|. These are
3 linear homogeneous equations for the three components of v̂ and so will give 3 possible
independent modes of oscillations. To elucidate their properties we proceed as follows:

First consider the case where v̂ ⊥ k and v̂ ⊥ B0, which implies k · v̂ = 0 and V A · v̂ = 0.
Then from Eq. (54) such modes have the dispersion relation,

ω2 = (k · V A)2 = (kVA cos θ)2, (55)

where θ = B̂0 · k̂ is the angle between the propagation direction k̂ and the zeroth order
magnetic field B0. For this mode, the phase velocity ω/k = ±VA cos θ and the group velocity
∇kω = ±V A. Thus they propagate along the magnetic field with the Alfvén velocity. These
are called Alfvén waves. The Alfvén wave is incompressible since v̂ · k = 0, ∇ · v = 0 and
thus ρ1 = 0 = p1. The Fourier transform of the perturbed induction equation in Eq. (53)
gives v̂ ‖ b̂ and so b̂ ·B0 = 0, from which it follows that the magnetic pressure perturbation
also vanishes to linear order. The restoring force for these oscillation comes from the tension
component of the Lorentz force.

To find the other two modes consider the component of v̂ parallel to k and the one
parallel to V A. Taking dot products of Eq. (54) with k and with V A gives two equations in
the form (

ω2 − k2(c2
s
+ V 2

A) k2(V A · k)
−(V A · k)c2

s
ω2

)(
k · v̂

V A · v̂
)

= 0 (56)

For a non-trivial solution one must demand that the determinant of the (2 × 2) matrix
in Eq. (56) vanish, which gives the dispersion relations

(
ω

k

)2

= 1
2
(V 2

A + c2
s
) ±

[
1
4
(V 2

A + c2
s
)2 − V 2

Ac2
s
cos2 θ

]1/2
. (57)

The ± signs in the above dispersion relation corresponds to the fast and slow magnetosonic
waves.
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9 Magneto-Rotational Instability

Consider an accretion (or galactic) disk where in the zeroth order state, the fluid goes around
a central mass on circular orbits, with gravity providing the centripetal force. The pressure
forces are required to maintain vertical equilibrium, but are sub-dominant for the radial
balance of forces. We wish to consider a simple example where the Magneto-Rotational
Instability (MRI) operates. Let the disk be threaded by a uniform field in the vertical
direction B0 = B0ẑ. Consider perturbations to this base state, which are incompressible,
’local’ (in radius) and axisymmetric, with all perturbed variables only dependent on z. That
is we consider perturbations in cylindrical-polar co-ordinates, of the form,

V = rΩ(r)φ̂ + v(z, t); B = B0ẑ + b(z, t); ∇ · v = 0. (58)

We will also neglect the dissipative effects for the present; their effects will be discussed later
below. To linear order the momentum equation simplifies to,

∂v

∂t
− 2Ωvφr̂ + 2vrφ̂[Ω + 1

2
rΩ′] = −∇p1

ρ0
+

B0

4πρ0

∂b

∂z
(59)

Here Ω′ = dΩ/dr, p1 is the perturbed pressure and we have taken the perturbed density to
be zero (because of incompressibility). Using ∇ · v = 0 and since all perturbed variables
have only z-dependence, the above equation gives ∇2p1 = 0, p1 = constant and so ∇p1 = 0.
The perturbed ideal induction equation is

∂b

∂t
= B0

∂v

∂z
+ br(rΩ

′)φ̂ (60)

We can also take consistently bz = 0 = vz in the above equations, and so the velocity
and magnetic perturbations are purely in the horizontal directions. In component form the
perturbed momentum and induction equations become,

∂vr

∂t
− 2Ωvφ =

B0

4πρ0

∂br

∂z
,

∂vφ

∂t
+ 2vr[Ω + 1

2
rΩ′] =

B0

4πρ0

∂bφ

∂z
,

∂br

∂t
= B0

∂vr

∂z
,

∂bφ

∂t
= B0

∂vφ

∂z
+ br(rΩ

′). (61)

We again look for solutions where all perturbed quantities are expanded in Fourier modes
in the form, f(x, t) = f̂ exp i(kz − ωt) and use Eq. (61) to eliminate the magnetic field
perturbations. We are then left with the following two equations written in matrix form,

(
(ω2 − k2V 2

A) −2iΩω
[iω(2Ω + rΩ′) + k2V 2

A(rΩ′)/(iω)] (ω2 − k2V 2
A)

)(
v̂r

v̂φ

)
= 0. (62)

Nontrivial solutions obtain only when the determinant of the (2 × 2) matrix in Eq. (62)
vanishes. This gives the condition

[ω2 − k2V 2
A]2 − 2[ω2 − k2V 2

A]κ2 − 4k2V 2
AΩ2 = 0 (63)

where we have defined the epicyclic frequency, κ =
√

(4Ω2 + 2rΩΩ′). The dispersion relation
for the perturbations is then given by

ω2
± = k2V 2

A + 1
2
κ2 ±

[
1
4
κ4 + 4k2V 2

AΩ2
]1/2

. (64)
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One can therefore potentially get an instability with ω2
− < 0. It is clear that both roots

in Eq. (64) are real and their sum is positive and so they both can not be negative. The
condition for one of them to be negative is therefore ω2

+ω2
− < 0. This translates into the

condition

k2V 2
A =

k2B2
0

4πρ0

< −2rΩ
dΩ

dr
, (65)

that is the angular velocity must decrease with radius for instability. This instability is called
the Magnetorotational instability.

A number of points are worth noting: If Ω = 0, the dispersion relation in Eq. (64) reduces
to ω = ±kVA; these modes represent simply the Alfvén wave and the incompressible limit of
the slow wave modes. If on the other hand, B0 = 0, then one has simply ”epicyclic” motion
with frequency κ as is the case for the perturbed motion of stars in a galaxy. Also if one has
rotation but no shear, i.e. dΩ/dr = 0 then again the perturbations are stable. The MRI also
obtains for an arbitrarily small value of B0 in principle, but in practice, as we see below, is
limited by the maximum value of k. We can also calculate the maximum value of the growth
rate Γmax by finding the value of ω where dω−/dk = 0. This implies k2V 2

A = Ω2 −κ4/(16Ω2),
and using this in the expression for ω− gives Γmax = −(r/2)(dΩ/dr) = 3Ω/4. Here the last
equality is for Kepler rotation law which obtains for rotation around a point mass. One
sees therefore that the instability grows very rapidly on the rotation rate of the disk. For
every rotation this corresponds to a growth factor exp(3π/2) ∼ 111. For Kepler rotation,

the wavenumber at which the maximum growth occurs is kmax =
√

15/16(Ω/VA). Thus as
B0 → 0, VA → 0 and kmax → ∞; so for such weak fields diffusion and viscosity cannot be
ignored.

The non-ideal case is simplest to treat for the case ν = η, for which one simply replaces
−iω by −iω + ηk2 in the dispersion relation. This implies ω = ωideal − iηk2and so viscosity
and resistivity simply damp all perturbations by a further factor of exp(−ηk2). Thus very
small scales cannot substain MRI.

There is also a minimum k = kmin allowed in a disk of finite thickness h given by
kmin ∼ 1/h. Using this in conjunction with the condition for instability given in Eq. (65)
implies vA < Ω/kmin ∼ cs, since h ∼ cs/Ω.

How weak a field can then lead to MRI? For MRI to operate one requires that atleast
the growth rate Γ > ηk2. In the limit of small fields, or kVA � Ω2, one can approximate the
dispersion relation for ω2

− to get ω2
− ∼ −k2V 2

A. Thus Γ ∼ kVA, and if one requires this to be
larger than the damping rate ηk2, one needs VA > ηk. The smallest value of the field will
obtain for k = kmin ∼ h−1. One requires therefore fields strong enough such that VA > η/h
for MRI to obtain. Thus the field satisfies the limits η/h < VA < cs for MRI to operate.
Note that even for a small field satisfying the above limit, with VA/cs << 1, one can still
have rapid growth at the rotation rate for k = kmax ∼ (Ω/VA).

10 Batteries and seed magnetic fields

Note that B = 0 is a perfectly valid solution of the induction equation (8), so no magnetic
field would be generated if one were to start with zero magnetic field. The universe probably
did not start with an initial magnetic field. One therefore needs some way of violating the
induction equation to produce a cosmic battery effect, and to drive currents from a state
with initially no current. There are a number of such battery mechanisms which have been
suggested. Almost all of them lead to only weak fields, much weaker than the observed
fields. Therefore, dynamo action due to a velocity field acting to exponentiate small seed
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fields efficiently, is needed to explain observed field strengths. We briefly comment on one
cosmic battery, the Biermann battery.

The basic problem any battery has to address is how to produce finite currents from
zero currents? Most astrophysical mechanisms use the fact that positively and negatively
charged particles in a charge-neutral universe, do not have identical properties. For example
if one considered a gas of ionized hydrogen, then the electrons have a much smaller mass
compared to protons. This means that for a given pressure gradient of the gas the electrons
tend to be accelerated much more than the ions. This leads in general to an electric field,
which couples back positive and negative charges. This is exactly the thermally generated
field we found in deriving the generalized Ohm’s law.

Taking the curl of Eq. (38), using Maxwell’s equations (Faraday’s and Ampere’s law),
and writing pe = nekBT , where kB is the Boltzmann constant, we obtain

∂B

∂t
= ∇ × (V × B) − ∇ × η(∇ × B) − ckB

e

∇ne

ne

× ∇T. (66)

Here we have taken the velocity of the ionic component to be also nearly the bulk velocity in
a completely ionized fluid, so we put vi = V . We have neglected the Hall effect and inertial
effects as they are generally very small for the fields one generates.

We see that over and above the usual flux freezing and diffusion terms we have a source

term for the magnetic field evolution, even if the initial field were zero. This source term is
nonzero if and only if the density and temperature gradients, ∇ne and ∇T , are not parallel to
each other. The resulting battery effect, known as the Biermann battery, was first proposed
as a mechanism for the thermal generation of stellar magnetic fields (Biermann, 1950; Mestel
and Roxburgh (1962).

10.1 Seed field generation during re-ionization

In the cosmological context, the Biermann battery can also lead to the thermal generation
of seed fields in cosmic ionization fronts (Subramanian, Narasimha and Chitre, 1994). These
ionization fronts are produced when the first ultraviolet photon sources, like quasars, turn on
to ionize the intergalactic medium (IGM). The temperature gradient in a cosmic ionization
front is normal to the front. However, a component to the density gradient can arise in a
different direction, if the ionization front is sweeping across arbitrarily laid down density fluc-
tuations. Such density fluctuations, associated with protogalaxies/clusters, in general have
no correlation to the source of the ionizing photons. Therefore, their density gradients are
not parallel to the temperature gradient associated with the ionization front. The resulting
thermally generated electric field has a curl, and magnetic fields on galactic scales can grow.
After compression during galaxy formation, they turn out to have a strength B ∼ 3×10−20 G.
A similar effect was considered earlier in the context of generating fields in the interstellar
medium in Lazarian (1992). (This mechanism also has analogues in some laboratory experi-
ments, when laser generated plasmas interact with their surroundings (Stamper, 1971, 1975).
Indeed, our estimate for the generated field is very similar to the estimate in Stamper (1971).
This field by itself falls far short of the observed microgauss strength fields in galaxies, but
it can provide a seed field, coherent on galactic scales, for a dynamo. Indeed the whole of
the IGM is seeded with magnetic fields of small strength but coherent on megaparsec scales.

This scenario has in fact been confirmed in detailed numerical simulations of IGM reion-
ization (Gnedin, Ferrara and Zweibel, 2000), where it was found that the breakout of ion-
ization fronts from protogalaxies and their propagation through the high-density neutral
filaments that are part of the cosmic web, and that both generate magnetic fields. The
field strengths increase further due to gas compression occurring as cosmic structures form.
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The magnetic field at a redshift z ∼ 5 closely traces the gas density, and is highly ordered
on megaparsec scales. Gnedin et al.(2000) found a mean mass-weighted field strength of
B ∼ 10−19 G in their simulation box.

10.2 Seed fields from structure formation shocks

The Biermann battery has also been shown to generate both vorticity and magnetic fields
in oblique cosmological shocks which arise during cosmological structure formation (Kulsrud
et. al., 1997, Davis and Widrow, 2000). In fact, Kulsrud et al. (1997) point out that the
well-known analogy between the induction equation and the vorticity equation (without
Lorentz force) extends even to the case where a battery term is present. Suppose we assume
that the gas is pure hydrogen, has a constant (in space) ionization fraction χ, and has the
same temperature for electrons, protons and hydrogen, it follows that pe = χp/(1 + χ) and
ne = χρ/mp. Defining ωB = eB/mp, the induction equation with the thermal battery term
can then be written as

∂ωB

∂t
= ∇ × (V × ωB − η∇ × ωB) +

∇p × ∇ρ

ρ2

1

1 + χ
. (67)

The last term, without the extra factor of −(1 + χ)−1, corresponds to the baroclinic term in
the equation for the vorticity ω = ∇ × V ,

∂ω

∂t
= ∇ × (V × ω − ν∇ × ω) − ∇p × ∇ρ

ρ2
. (68)

So, provided viscosity and magnetic diffusivity were negligible, both ωB(1 + χ) and −ω

satisfy the same equation. Furthermore, if they were both zero initially then, for subsequent
times, we have eB/mp = −ω/(1 + χ). Numerically, a value of ω ∼ 10−15 s−1 corresponds to
a magnetic field of about ∼ 10−19 G.
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