
MHD Assignment Sheet

1. Flux Freezing

Consider a constant initial magnetic field B = B0i along the x-direction in a plasma of
negligible resistivity. Suppose a velocity field v(x) = v0 exp(−x2)j is switched at time
t = 0. How does this magnetic field evolve with time. Make a sketch of the magnetic
field lines some time after switching on the velocity field. What could happen at very
long times?

2. Make a simple estimate of resistivity in a fully ionized plasma. Find the magnetic
Reynolds numbers for the ISM of our galaxy, a cluster plasma, a conductor like copper
of 1 m dimension.

3. Express the MHD equations in conservation form.

4. More on helicity

Magnetic helicity is the volume integral

H =
∫

V
A ·B dV

over a closed or periodic volume V .

• Show that H is invariant under the gauge transformation A′ = A +∇Λ.

• Consider an untwisted flux tube described by say, B(R, z) = B(R, z)eφ, where all
the field lines lie on circles. Here B(R, z) = constant within (R−R0)

2 + z2 ≤ a2

and vanishes for (R − R0)
2 + z2 > a2. Show that the magnetic helicity of this

”flux tube” is equal to zero.

• Derive an evolution equation for the helicity and show that it is conserved in the
ideal case, when the resistivity η = 0.

• Show from helicity conservation that any single, closed, thin, untwisted and un-
knotted flux tube will also have zero helicity.

• Consider a volume which contains two such flux tubes T1 and T2. let Φ1 and Φ2

be the magnetic fluxes associated with T1 and T2. Show that H = ±2Φ1Φ2 if the
tubes are simply interlinked and H = 0 if the two tubes are not linked at all.

5. Consider a horizontal magnetic flux tube of radius a with a uniform magnetic field B
pointing in the x- direction. This tube is embedded in an isothermal atmosphere in
a constant gravitational field g pointing in the negative z-direction. The tube starts
from rest at z = z0 and then rises due to magnetic buoyancy. It also experiences a
drag force per unit length given by CDv2a/2, where v is its instantaneous velocity and
CD is a constant. Assume that the pressure scale height of the atmosphere H � a, so
that the gas pressure and density ρ can be taken as constant for a significant period of
time T . Estimate the asymptotic speed acquired by the tube.

6. Friedrichs diagrams

The dispersion relation for magneto acoustic waves in a uniform medium are given by

ω2 = k2v2
A cos2 θ

ω4 − (c2
s + v2

A)k2ω2 + c2
sv

2
Ak4 cos2 θ = 0
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where cs is the sound speed and vA the Alfvén velocity and θ is the angle between
k and B. From the form of ω(k, θ) calculate the components of the group velocity,
parallel and perpendicular to the magnetic field. Sketch the phase and group velocity
over the full range of θ. Treat the cases cs > vA and cs < vA separately.

7. Nonlinear Alfvén waves

Show that the equations of ideal MHD in the case of an incompressible fluid of uniform
density ρ can be written in the symmetrical form

∂z±
∂t

+ z∓ · ∇z± = −∇(p/ρ)

∇ · z± = 0

where
z± = v ± vA

are the Elsasser variables, vA = B/(4πρ)1/2 is the vector Alfvén velocity. Consider
a static zeroth order state in which the magnetic field and the pressure are uniform.
Write down the exact equations (without linearizing) governing departures from this
base state. Hence show that disturbances of arbitrary amplitude can propagate along
the magnetic field lines in either direction without change of form. Think about why
this non-linear wave does not steepen with time (unlike in the case of a sound wave).

8. Generalized Ohm’s law

Write down the equations of motion for the electron and proton fluids separately,
including pressure forces, the Lorentz force, and a collision term coupling the two
fluids. You can take a simple form for this collision term; assuming that the electrons
feel a drag force per unit mass of −(ve−vp)/τei, where ve and vp are the electron fluid
and proton fluid velocities, and τei is the collision time for the electron fluid. Using
the approximation me/mp � 1, and neglecting nonlinear terms in the momentum
equations, derive the generalized Ohm’s law

E + v ×B/c = −∇pe

ene

+
J

σ
+

1

ene

J×B +
me

e2

∂

∂t

(
J

ne

)
,

where σ = nee2τei

me
is the conductivity of the plasma. Estimate the relative importance

of the different terms.

9. Mechanical analogy for the MRI: Two particles of mass m are orbiting around a much
more masive body of mass M . The two particles are connected by a spring that obeys
Hooke’s law. The masses are originally in Keplerian orbits around M. Suppose one
gives a small perturbation to this motion, describe the subsequent dynamics.
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