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Assignment 1

1. Hydrostatic equilibrium: A plane-parallel atmosphere, composed of a
perfect gas, is in hydrostatic equilibrium in an external field, −ẑg.

(a) Derive an expression for the entropy gradient if the atmosphere is
isothermal.

(b) Obtain expressions for p(z) and ρ(z) if the atmosphere is isen-
tropic.

(c) Earth’s atmosphere: In the lower stratosphere, the air is isother-
mal. Use the condition of hydrostatic equilibrium to show that:

p(z) ∝ exp(−z/H), (1)

where the scale height, H = kT/(µmpg). Estimate the scale
height. (Use mean molecular weight µ = 29 and T = 300 K).
Now assuming that the air is isentropic, show that:

dT

dz
= −

(
γ − 1

γ

)
gµmp

k
(2)

Here γ ' 1.4 is the ratio of specific heats for gases like Nitrogen
and Oxygen. Why does the above expression vanish for γ = 1?

2. Archimedes’ principle states that, when a solid body is totally or par-
tially immersed in a fluid, the total buoyant upward force of the liquid
on the body is equal to the weight of the displaced fluid. Prove the
law assuming conditions of hydrostatic equilibrium. Using this result,
estimate how much more would one weigh in vacuum.
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3. Fluid equations as conservation laws: Using continuity equation, the
Euler equation, and the first law of thermodynamics, derive conserva-
tion laws for the momentum and energy of an ideal fluid. Hint: proving
conservation means writing equations in the form:

∂

∂t
(mom. or energy density)+∇·(mom. or energy current density) = 0

(3)

4. Convective instability: When a fluid is disturbed and it settles back
into equilibrium it usually manages to reach mechanical equilibrium
faster than thermal equilibrium.

(a) Estimate these time scales for a parcel of air of size 1 m, and
1 km. The coefficient of thermal conductivity, κ = 0.2 cm2sec−1

and speed of sound cs = 350 msec−1.

(b) Earth’s atmosphere could be used as an example of this kind:
it is in approximate mechanical equilibrium but has temperature
gradients in hydrostatic equilibrium. Derive the conditions (called
Schwarzchild criterion) under which this equilibrium is stable.

5. Show that the lift on a 2-dim aerofoil, can be written as FL = −ρU0Γ,
where Γ is the circulation around any loop enclosing the aerofoil. This
is an example of an exact result for inviscid, potential flows, known as
the Kutta–Joukowski theorem.

6. Vorticity:

(a) Sketch the following (two-dimensional) velocity fields and calcu-
late the vorticity vector fields: (i) Uniform rotation, v = φ̂ΩR,
(ii) A flat rotation curve, v = V0φ̂, and (iii) v = V0yx̂. Here Ω
and V0 are constants.

(b) A fluid fills the half space y > 0, which is bounded by a wall that
may be taken as the x-z plane. A vortex line of strength ẑΓ is at
distance d from the wall. Calculate the velocity of the vortex line.

(c) Consider two straight vortex line with strengths ±ẑΓ separated by
some distance d. Determine the dynamics of these vortex lines.
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Assignment 2

1. Potential, Compressible flow: Linear theory of sound: Assume the
unperturbed medium is unbounded, static, uniform in its properties:
ρ = ρ0, p = p0, and v0 = 0. The medium is then perturbed:

(i) Write down the linearised continuity and Euler equations satisfied
by perturbations ρ1, p1, and v1.

(ii) What is the linearized equation satisfied by the perturbed vortic-
ity.

(iii) Assume that the perturbation gives rise to a pure potential flow,
v1 = ∇φ. Use this in the linearised Euler equation, and express
p1 in terms of φ1.

(iv) Assume that the flow is barotropic, with sound speed defined by

cs =
√

dp0/dρ0. Derive a wave equation for φ1.

(v) Write down the general solution for φ1, corresponding to plane
waves travelling in the ±x directions.

(vi) What are the corresponding expressions for v1 and p1? Are the
waves transverse or longitudinal?

(vi) Consider plane waves travelling only along the positive x direction.
How is p1 related to the Mach number v1/cs?

(vii) Let us define the intensity of sound by I = p1v1. Obtain an
equation for the transport of the wave energy density, W , in the
conservation form,

∂W

∂t
+∇ · I = 0 (4)

(viii) The human ear is responsive to frequencies between 0.02–20 kHz.
Verify that the carrier of these waves (earth’s lower atmosphere)
can be treated as a fluid for these considerations.

2. Consider steady, potential, incompressible flow past a cylinder of radius
a. Show that it can be formulated in terms of the velocity potential
φ(θ, r) which satisfies:

∂2φ

∂r2
+

1

r

∂φ

∂r
+

1

r2

∂2φ

∂θ2
= 0 (5)
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If the free-stream speed is U , we may choose boundary conditions:
φ→ Ur cos θ as r →∞ and ∂φ/∂r = 0 at r = a. Show that it gives:

φ = U

(
r +

a2

r

)
cos θ (6)

3. Surface Gravity waves:

(i) Compute the velocity field for surface gravity waves on deep water.
Argue that fluid elements move in circles, with radii that decrease
with depth as exp(kz).

(ii) Derive the dispersion relation for surface gravity waves in water
of finite depth h. What is the trajectory of fluid elements in this
case?

(iii) Shallow-water gravity waves: Tsunami: Using the dispersion rela-
tion derived in (ii), examine the special case of shallow water waves
kh� 1. Tsunami is an important example of shallow water grav-
ity waves. A Tsunami is a large harbour wave that is generated
an earthquake in deep ocean; its presence is hardly noticeable in
deep ocean but it can cause major destruction upon reaching the
shore. Estimate the speed of a Tsunami in deep ocean. Why don’t
deep water gravity waves turn into Tsunamis?

(iv) Surface tension: capillary waves: At an interface between two
fluids, the effect of surface tension could be important. Show
that, when the surface tension is included, the dispersion relation
of deep water gravity waves is

ω2 = gk +
γ

ρ
k3. (7)

Here γ is the coefficient of surface tension. Show that in this
case there is a minimum value of the group velocity. Using γ =
70 dyne cm−1 for water-air interface, compute this minimum ve-
locity and the wavelength associated with it. (water density,
ρ = 1 g cm−3).

4. Ship Waves: Consider a boat moving on a deep water body with uni-
form velocity u. We are interested in studying the stationary pattern
of surface gravity and capillary waves it induces on water.
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(i) In the rest frame of water, the dispersion relation of waves is given
by Eq. (1). Compute the dispersion relation in the rest frame of
the boat. (Hint: the phase of the wave k.x−ωt is invariant under
this transformation). Show that it is given by:

ω(k) = ω0 − k.u (8)

Here ω0(k) is the dispersion relation for waves in the rest frame of
water.

(ii) Prove that the stationary wave pattern in any direction θ (θ is the
angle between u and Vg0 − u) is composed of waves whose wave
vectors (characterized by k and φ; φ is the angle between k and
u) satisfy

tan(θ) =
Vg0(k) sin φ

u + Vg0 cos φ
(9)

ω0(k) = −uk cos φ (10)

Here Vg0 is the group velocity in the rest frame of water. (Hint:
The only waves that contributes to a stationary pattern are the
ones corresponding to ω = 0.) Using this result, argue that for
u < cm, where cm is the minimum velocity computed in the last
problem, no such stationary pattern exists.

(iii) For capillary waves show that:

tan θ =
3 tan φ

1− 2 tan2 φ
. (11)

Argue that the capillary wave pattern is present for all values of
θ. For gravity waves show that:

tan θ =
− tan φ

1 + 2 tan2 φ
. (12)

Demonstrate that the gravity wave pattern is confined to a trailing
wedge, whose opening angle is θgw = 2 sin−1(1/3).

5. Waves and instabilities: Consider the flow of incompressible, inviscid
fluids in two horizontal and parallel streams of different velocities and
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densities, with one stream above the other in an external gravitational
field. The undisturbed flow is given by:

U = (U1, U2)x̂ ; ρ = (ρ1, ρ2) (13)

P = p0 − gρ2z (z > 0) ; P = p0 − gρ1z (z < 0) (14)

This pattern of flow is disturbed. Analyse the dynamics of the re-
sultant flow in linear perturbation theory, for perturbed quantities
∝ f(z) exp(σt + ik.x), for Fourier modes k = (kx, ky).

(i) Show that for appropriate boundary conditions across the inter-
face between two fluids is

ρ1

[
kg + (σ + ikxU1)

2
]

= ρ2

[
kg − (σ + ikxU2)

2
]
− γk3. (15)

Show that this results in the following equation for σ:

σ = −ikx
ρ1U1 + ρ2U2

ρ1 + ρ2

±
[
k2

xρ1ρ2(U1 − U2)
2

(ρ1 + ρ2)2
− kg(ρ1 − ρ2) + γk3

ρ1 + ρ2

]1/2

(16)

(ii) Kelvin-Helmholtz instability: Eq. (10) gives the general conditions
for this instability. One application of this instability is the am-
plification of ocean waves in the presence of a strong breeze across
its surface. Compute the minimum velocity of ocean breeze for
causing this instability (use U1 = 0 or assume stationary ocean
for this estimate)

(iii) Rayleigh-Taylor instability: Using Eq. (10) it can readily be shown
that for γ = U1 = U2 = 0, the flow is unstable when heavier fluid
overlies lighter fluid i.e. ρ2 > ρ1. Eq. (10) generalizes this concept
in the presence of shear velocity fields. Use Eq. (10) to show
that even when lighter fluid overlies heavier fluid, the flow can
become unstable. Argue that this also generalizes the criterion of
convective instability in stratified atmosphere.
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Assignment 3

1. Molecular origin of shear viscosity: For most fluids, the shear viscos-
ity coefficient is only determined experimentally. For an ideal gas the
shear viscosity can be determined using kinetic theory of gases. Con-
sider a flow in x direction with shear .i.e. ∂vx/∂y is non-zero. In this
case, random motion of the gas molecules moving with typical thermal
velocities vt with a mean free path ` (` = 1/(nσ), n is the number den-
sity and σ is the cross-section of collision) deposit different amounts of
x-component of momentum across a plane y = const. Show that the
(x-component of) momentum deposited per unit time per unit volume
of the fluid is given by:

Fx ∼
∂

∂y

(
η
∂ux

∂y

)
, (17)

with the coefficient of shear viscosity η = mvt/σ.

2. Navier-Stokes equation:

(a) Using Navier-Stokes and continuity equations along with the first
law of thermodynamics, show that:

∂

∂t

[
ρ
(

1

2
v2 + u

)]
+ ∇.

[
ρv
(

1

2
v2 + h

)
− ζθv − ησ.v

]
= ρT

ds

dt
− ζθ2 − ησijσ

ij (18)

Interpret different terms of this equation and show that it means
that both the coefficients of viscosity must be positive.

(b) For an incompressible flow, show that the pressure is determined
entirely by the velocity field and derive a Poisson equation for the
pressure.

(c) Show that for an incompressible and non-rotational flow, there is
no viscous dissipation in the fluid unless the coefficient of viscosity
has space dependence.

3. Simple viscous flows: Here we study some examples of viscous, incom-
pressible flows that can be exactly solved.
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(a) Determine the flow of a viscous fluid of thickness h on a inclined
plane due to the force of gravity.

(b) Poiseuille flow: Consider fluid flow in a pipe of radius a. The flow
is such that the only component of velocity that is non-zero is
along the pipe and its variation is only along the cross-section .i.e.
the flow can be determined by a velocity field: vz(r). Show that
for a given pressure gradient along the tube, dp/dz, the velocity
field is given by:

vz(r) =
dp

dz

1

4η
(a2 − r2). (19)

Compute the tangential force (per unit area) on the walls of the
pipe.

(c) Couette flow: Consider a flow bounded by two infinite cylinders
of radii a1 and a2 rotating with angular velocities Ω1 Ω2. In this
case, the velocity field is given by functional dependence vφ(r).
Compute the velocity field in this case. Calculate the tangential
force on the cylinders and show that if Ω1 = Ω2 this force vanishes.

4. Spin down of a vortex line: Consider a line vortex:

vθ(r) =
Γ

2πr
δ(r) (20)

at t = 0. Here Γ is a constant and δ(r) is the Dirac delta function.
Using Navier-Stokes equations, show that its dynamical evolution is
given by:

vθ(r, t) = vθ(r, 0)
[
1− exp(−r2/(4νt)

]
(21)

Interpret this solution.
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Assignment 4

1. Scaling in the Navier-Stokes equations:

(i) Estimate the Reynolds number for: (a) flow past the wing of a
jumbo jet at 150 m sec−1, (b) a thick layer of sugar syrup drain-
ing off a spoon, (c) a spermatozoan with tail length of 10−3 cm
swimming at 10−2 cm sec−1.

(ii) We wish to simulate the flow past a vehicle, 4 m long, travelling at
50 km hr−1, using a small scale model, located in a wind tunnel.
What is the relationship between the length of the model, and
the speed of the air flow in the wind tunnel? How small can
we make the model, before the density fluctuations in the wind
tunnel, ∆ρ/ρ ' 0.1

2. An application of Stokes flow is to the problem of sedimentation of small
spherical particles (.i.e. soot particles) in the earth’s atmosphere. Show
that the terminal velocity reached by the particles is:

V =
2ρsa

2g

9η
(22)

Here ρs ' 2000kg m−3 is the mass density of soot particles; a is the ra-
dius of the particles (assume a ' 10−7–10−4 m); η = ρaν ' 10−5 kg m−1 sec−1

is the coefficient of viscosity of air. Compute the range of velocities of
the soot particle. Are the assumptions made in deriving the Stokes
flow valid in the entire range?

3. Turbulence: Verify that the rate of energy dissipation (per unit mass),

εvis ∼ ν
〈
(∂vi/∂xj)

2
〉
, is independent of ν, and equal to ε, the rate of

energy input.
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