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1. Introduction

• Continuum treatment of classical fluids is valid when the linear dimensions (L) of the

system are so large that the volume can be partitioned into many cells, each of which

contains many particles: L � ∆x � n−1/3, where n is the number density of particles.

Then the mass density, ρ(x, t), is a smoothly varying function of space. In contrast to

solids, fluids cannot maintain shear stress without yielding to it.

• If ∆x is much larger than the mean free path for collisions, particles cannot free–stream

out of cells. Rather, the whole cell can be thought of as moving with a common veloc-

ity. Then the mass-weighted average velocity, v(x, t), is a smoothly varying function.

Streamlines are integral curves of the velocity field at any instant of time.

• If we average over times much longer than the collision time, the particles in any cell

may be assumed to be in local thermodynamic equilibrium (LTE). Then two thermody-

namic variables determine all other thermodynamic quantities. The simplest example

is a perfect gas, whose equation of state, p = ρkT/µmp determines p(x, t) as a function

of ρ(x, t) and T (x, t).

• Mass conservation:

∂ρ

∂t
+ ∇ · (ρv) = 0 , continuity equation (1)

Define the convective derivative, d/dt ≡ ∂/∂t + v ·∇. Then the continuity equation

can also be written as
dρ

dt
= −ρ (∇ · v) (2)

Note that (∇ · v) is the fractional rate of change of volume of a fluid element.

• Internal stresses: The forces acting on a fluid element can be external (e.g. gravity),

as well as those due to the fluid outside of the element. The latter are usually surface

forces, such as (i) pressure and (ii) viscous (frictional) forces in the case of a non–ideal

fluid. The stress tensor makes precise the notion of one part of the medium acting on
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another part, by exerting a force across their common area of contact. Imagine a small

plane of area ∆A oriented perpendicular to the x–axis. Suppose that the material to

the left of the area element exerts force ∆F on the material to the right. Resolve the

force into its components, ∆Fx, ∆Fy, and ∆Fz. If the area element is small enough,

the force will be proportional to ∆A. So it makes sense to define

Sxx =
∆Fx

∆A
; Syx =

∆Fy

∆A
; Szx =

∆Fz

∆A
(3)

We call Sxx the normal component of the stress. Syx and Szx are the tangential com-

ponents of the stress, also referred to as components of the shear stress. At any point

in the material, we can evidently construct nine numbers, Sxx, Syx, . . ., Szz. For con-

venience, we will organise them into a matrix, often denoted by Sij, where the indices

i, j take all possible values, 1, 2, 3.

Sij is the ith component of the force exerted, per unit area, across a small area element

oriented with its normal in the jth direction. Some important properties of any stress

tensor are (see § 31-6 of Feynman Lectures II):

1: Sij is a tensor field: the ith component of the force per unit area on an area element

with unit normal n is equal to Sijnj.

2: The stress tensor is symmetric: Sij = Sji, because of the conservation of angular

momentum. Therefore only six of the nine components are independent.

3: The stress tensor may be diagonalised at any point: the stress is normal across area

elements oriented perpendicular to the principal axes.

4: The force per unit volume is equal to the negative of the divergence of the stress

tensor.

• Momentum balance: In the rest frame of a fluid element, for an inviscid (or ideal)

fluid the stress tensor is isotropic, and independent of the velocity field. We write

Sij = p δij ; ideal fluid (4)

where p is the pressure. The force per unit volume is

fi = − ∂Sij

∂xj

= − ∂p

∂xi

(5)

Therefore, momentum balance for an ideal fluid gives

ρ
dv

dt
≡ ρ

(
∂v

∂t
+ (v ·∇) v

)
= −∇p − ρ∇ϕg , Euler equation (6)

where ϕg(x, t) is the potential of an externally applied gravitational field.
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• Thermodynamics: In an ideal fluid, the entropy per unit mass, s(x, t), is conserved:

ds

dt
≡ ∂s

∂t
+ v ·∇s = 0 (7)

• Boundary conditions: A fluid cannot penetrate a solid boundary, so the normal

component of the relative velocity must vanish on a boundary. However, for an ideal

fluid, there is no constraint placed on the relative tangential velocity.

• Comment: Equations (1), (6) and (7) are 5 partial differential equations involving

the 6 unknown quantities, (ρ, v, p, s). One more equation of the form f(ρ, p, s) = 0,

due to LTE, is always assumed to be specified. Therefore, if we are given (ρ, v, p, s)

as functions of x at some instant of time, we can, in principle, integrate the equations

forward in time, to obtain (ρ, v, p, s) as functions of x at a later time.

2. Hydrostatic equilibrium

• Hydrostatic means ∂/∂t of all quantities vanish, and v = 0. Hence

1

ρ
∇p = −∇ϕg (8)

Suppose that ϕg(x) is some given gravitational potential. Then the solution exists only

if the isocontours of p(x) and ρ(x) coincide. To solve this equation, we need to know

something about the thermodynamic state of the fluid. Let us, for simplicity, consider

a perfect gas.

• Plane parallel atmosphere: All quantities are functions of z, the height above

ground–level. Then ϕg = gz, where g is the acceleration due to gravity. The equation

of hydrostatic balance is
1

ρ

dp

dz
= −g (9)

When T = constant, the atmosphere is said to be isothermal. We can use the perfect

gas equation of state, p = ρkT/µmp, to eliminate p from eqn. (9):

1

ρ

dp

dz
=

kT

m

(
1

ρ

dρ

dz

)
= −g (10)

whose solution is,

ρ(z) = ρ(0) exp (−z/H) (11)

where H = kT/µmpg is called the scale height of the atmosphere.
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• Problems:

1. Hydrostatic equilibrium of isothermal and isentropic (s = constant) atmospheres.

2. Archimedes’ principle on hydrostatic equilibrium: buoyancy.

3. Steady flow of an ideal fluid

• A flow is steady if ∂/∂t of all quantities vanish, but v 6= 0. In a steady flow, streamlines

are the paths along which fluid elements move. A Streamtube is the surface spanned

by all the streamlines that pass through a simple, closed curve.

• Energy conservation: The energy per unit mass in the fluid is,

ε(x, t) =
v2

2
+ εint + ϕg (12)

where εint is the internal energy per unit mass. Accounting for the “pdV ” work done

by pressure forces on a fluid element moving through a streamtube we can derive

Bernoulli’s equation:

v ·∇B = 0 , B =
v2

2
+ εint +

p

ρ
+ ϕg (13)

The above equation states that the quantity B is constant on streamlines. Note that

the combination εint + p/ρ = h, is the enthalpy per unit mass.

• Using equation (7), we can also prove that, v ·∇s = 0: i.e. the entropy per unit mass

is also constant along streamlines.

• Applications of Bernoulli’s equation

(i) Lift on a 2-dimensional aerofoil: Consider a thin aerofoil inclined at a small angle

to the flow, so that the spanwise direction is perpendicular to the flow direction (x̂)

everywhere. The upward force (per unit length in the spanwise direction) on element

dx is (pb − pt) dx, where pb and pt are the pressure below and above the aerofoil.

Bernoulli’s equation gives,

pb − pt =
ρ

2

(
u2

t − u2
b

)
' ρU0 (ut − ub) (14)

where we have used ut ' ub ' U0, the free–stream speed (which is appropriate for a

thin aerofoil). Therefore, the total lift per unit span is

FL = ρU0

∫ a

0

(ut − ub) dx (15)



– 5 –

(ii)When can a steady flow be considered as nearly incompressible? To answer this

question let us consider flow in the absence of an external field. i.e. let us assume that

ϕg = 0. Since ∆B = 0 and ∆s = 0 along a streamline, we have

∆

(
v2

2

)
= − (∆h)s = − 1

ρ
(∆p)s = −

(
∆ρ

ρ

)
s

c2 (16)

where c is the speed of sound. Therefore, |∆ρ/ρ|s ∼ (v/c)2. For highly subsonic flows,

v � c, and the density variations in the flow are very small. Then the continuity

equation (1) implies that ∇ · v ' 0. Most flows in the lab, or inside the earth, or in

our atmosphere are nearly incompressible.

• Problems:

1. Equations of motion in conservation form.

2. The Schwarzschild criterion for the local stability of an atmosphere.

4. Vorticity

• Vorticity is a vector field, defined by

ω = ∇× v (17)

A small tracer placed in the fluid will move as a whole with velocity v, and rotate with

angular velocity ω/2.

• Vortex lines are integral curves of ω(x, t) at time t. Because ∇ · ω = 0, vortex lines

are either closed or are infinitely long, or end on a solid boundary. A vortex tube is the

surface spanned by all the vortex lines that pass through a simple, closed curve.

• A barotropic fluid is one whose equation of state is p = p(ρ). Taking Curl of Euler’s

equation (6), and using the continuity equation (1), we can derive an equation of

motion for the vorticity field of a barotropic fluid:

d

dt

(
ω

ρ

)
≡

(
∂

∂t
+ v ·∇

)
ω

ρ
=

(
ω

ρ
·∇

)
v (18)

• The separation, dx, between two nearby fluid elements satisfies the same equation as

(ω/ρ). Consider a vortex tube of infinetesimal length, dx, and cross–sectional area,

dA, in a barotropic fluid. Let the density and vorticity in the tube be ρ and ω,

respectively. Over time, the vortex tube moves to a new location, with new values
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(dx′, dA′, ρ′, ω′). Mass conservation and the fact that (ω/ρ) behaves like dx imply

that

ω′ · dA′ = ω · dA (19)

This fact is sometimes stated as, “vorticity is frozen in an ideal fluid”.

• Kelvin’s Circulation theorem: Consider an imaginary simple closed curve, C(t), in

the fluid. Imagine that the curve is spanned by a surface, S, which is partitioned into

many infinitesimal area elements dAi. If ωi be the vorticity of the ith area element,

then the sum,
∑

ωi · dAi is conserved in time as the imaginary curve C(t) moves with

the fluid. Using Stokes’ theorem, we can see that the circulation around the moving

loop C(t), defined by

Γ =

∮
C(t)

v · dx (20)

is constant in time for a barotropic fluid.

• Straight vortex line: This is a steady flow of a barotropic fluid, in which vorticity

is concentrated along a single, straight, infinite line:

ω = ẑ Γ δ(x)δ(y) (21)

where Γ is the (constant) circulation due to the vortex line. The velocity field has

components (in cylindrical coordinates), given by

vR = vz = 0 , vφ =
Γ

2πR
(22)

• Two straight vortex lines, each of strength ẑΓ, and separated by distance d rotate

steadily around each other with angular velocity,

Ω = ẑ
Γ

πd2
(23)

• Problems

1. Lift and circulation.

2. Problems on vorticity.
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5. Potential Flows

• In an ideal fluid, if the vorticity of a fluid element is zero at some initial time, we can

see from equation (18), that it will be zero for all times. A flow in which ω = 0 is

called a potential flow. In such a flow, we must have

v = ∇φ (24)

where φ(x, t) is called the velocity potential. Note that φ → φ + f(t) describes the

same flow. Using equation (24) in Euler’s equation (6) gives

B =
∂φ

∂t
+

1

2
|∇φ|2 + h + ϕg = constant (25)

Notice that the Bernoulli function, B, takes a constant value in the entire fluid.

• The boundary condition on the flow now is that the normal component of the velocity,

∂φ/∂n, is equal to the normal velocity of the boundary. For steady, potential flows,

equation (25) is equivalent to Bernoulli’s equation.

• Incompressible potential flows: In an incompressible flow, ∇ · v = 0. If the flow

is also potential, we have

∇2φ = 0 (26)

Once the boundary conditions have been specified, φ(x, t) can be determined by solving

Laplace’s equation. For instance, if a solid object moves in a fluid with some velocity,

u(t), and the flow around the object is potential, then we can conclude that φ must

depend only on u(t), and not on the acceleration of the object. Equation (25) is needed

only to determine the pressure. No “pdV ” work is done in an incompressible fluid, so

we may assume the internal energy to be constant, and replace h by p/ρ:

p

ρ
= B′ − ∂φ

∂t
− 1

2
|∇φ|2 − ϕg (27)

• Problems:

1. Theory of linear sound waves.

2. Incompressible, potential flow past a cylinder; “d’Alembert’s paradox”.
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6. Gravity Waves and Instability

• An incompressible fluid of density ρ2 lies on top of another incompressible fluid of

density ρ1. In the unperturbed state, both fluids are in hydrostatic equilibrium under

the influence of an external gravitational field. Our goal is to describe the flow in both

fluids, when their interface is perturbed by a small amount.

• Let the unperturbed interface be described by the plane z = 0, and the gravitational

force per unit mass equal to −gẑ. The unperturbed density and pressure fields are

ρ0(z) =

{
ρ2 , if z > 0

ρ1 , if z < 0
p0(z) =

{
−ρ2gz , if z > 0

−ρ1gz , if z < 0
(28)

• The perturbed interface is described by a height function, z = ζ(x, y, t). If the pertur-

bation does not introduce vorticity into the two fluids, the velocity field is potential:

v = ∇φ, where

φ(x, t) =

{
φ2(x, t) , if z > ζ(x, y, t)

φ1(x, t) , if z < ζ(x, y, t)
(29)

• Incompressibility implies that ∇·v = ∇2φ = 0. Also, the influence of the perturbation

must vanish for large |z|.

∇2φ2 = 0 , if z > ζ ; ∇φ2 → 0 , when z → +∞
∇2φ1 = 0 , if z < ζ ; ∇φ1 → 0 , when z → −∞ (30)

• The equation defining the interface, z = ζ(x, y, t), must be satisfied at all times. This

implies that, at the interface, the z–component of the velocities of both fluids must be

equal to dζ/dt:

∂φ2

∂z
=

dζ

dt

∣∣∣∣
2

≡ ∂ζ

∂t
+

∂φ2

∂x

∂ζ

∂x
+

∂φ2

∂y

∂ζ

∂y
, at z = ζ

∂φ1

∂z
=

dζ

dt

∣∣∣∣
1

≡ ∂ζ

∂t
+

∂φ1

∂x

∂ζ

∂x
+

∂φ1

∂y

∂ζ

∂y
, at z = ζ (31)

Separation (i.e. cavity formation) is forbidden, but slip is allowed at the interface.

• The normal stress must be continuous at the interface: i.e. the interfacial pressures in

both fluid must be equal to each other. Using equation (27),

ρ1

[
B1 −

∂φ1

∂t
− 1

2
|∇φ1|2 − gz

]
z=ζ

= ρ2

[
B2 −

∂φ2

∂t
− 1

2
|∇φ2|2 − gz

]
z=ζ

(32)
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The constants, B1 and B2, can be fixed by requiring that the unperturbed flow satisfies

equation (32) at z = 0:

ρ1B1 = ρ2B2 (33)

Equations (29) through (33) pose the nonlinear problem of stability.

• Linearisation: In the limit of very small perturbations, we can drop terms involving

the products of the small quantities, φ1, φ2 and ζ. Equations (29) through (33) reduce

to

∇2φ2 = 0 , if z > 0 . ∇φ2 → 0 , when z → +∞
∇2φ1 = 0 , if z < 0 . ∇φ1 → 0 , when z → −∞ (34)

∂φ2

∂z
=

∂φ1

∂z
=

∂ζ

∂t
at z = 0 (35)

ρ1

[
∂φ1

∂t
+ gζ

]
z=0

= ρ2

[
∂φ2

∂t
+ gζ

]
z=0

(36)

• Equations (34) through (36) constitute a set of linear PDEs with constant coefficients,

so we proceed to Fourier–analyse them. Let us assume that

(φ1 , φ2 , ζ ) =
(
φ̂1(z) , φ̂2(z) , ζ̂

)
exp (σt + ikxx + ikyy) (37)

where σ, kx and ky are constants. The functions, φ1(z) and φ2(z) are defined for

z < 0 and z > 0, respectively. Our goal is to derive an equation relating these three

constants.

• Use equation (37) in equations (34):

φ̂1(z) = A1 exp (kz) ; φ̂2(z) = A2 exp (−kz) (38)

where k =
√

k2
x + k2

y, and A1 and A2 are some constants.

• Use equations (37) and (38) in equations (35):

k A1 = −k A2 = σ ζ̂ (39)

• Use equations (37) and (38) in equations (36):

ρ1

[
σ A1 + gζ̂

]
= ρ2

[
σ A2 + gζ̂

]
(40)
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• Eliminating the amplitudes, A1, A2, and ζ̂ from equations (39) and (40) leads to a

quadratic equation for σ:

ρ1

[
gk + σ2

]
= ρ2

[
gk − σ2

]
(41)

which may be solved to obtain two modes:

σ = ±

√
gk

(
ρ2 − ρ1

ρ2 + ρ1

)
(42)

Note that σ can be real or imaginary. In the latter case, we must remember that all

physical quantities must be real: this is achieved by taking the real part of the right

side of equation (37).

• Rayleigh–Taylor Instability: From equation (42), σ is real when ρ2 > ρ1, and

the flow amplitudes increase exponentially in time (when amplitudes are still small).

The motions are restricted to a region of vertical extent ∼ 1/k about the interface.

Note that our derivation is valid if the gravitational field was replaced by some other

mechanism of acceleration.

• Internal gravity waves: From equation (42), σ is imaginary when ρ2 < ρ1, and the

fluid motion is oscillatory.

• Surface gravity waves: When ρ2 = 0, we have σ = ±i
√

gk, describing stable

oscillations. Let us write σ = −iω and choose the negative square–root. Then

φ1 = A1 exp (kz) cos (kxx + kyy − ωt) (43)

where

ω(kx, ky) =
√

gk (44)

is the (isotropic) dispersion relation for surface gravity waves (also called deep water

waves).

• The phase speed, Vph, and the group velocity, Vg are

Vph =
ω

k
=

√
g

k
; Vg =

∂ω

∂k
=

k̂

2

√
g

k
(45)

Hence individual crests travel at twice the speed of a wavepacket: crests seem to appear

at the back of a wavepacket and diappear at the front.

• Problems

1. Surface gravity waves: shallow water waves; effect of surface tension.

2. Ship waves.

3. Kelvin–Helmholtz instability.
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7. Viscous Fluids

• Elastic solids (but not fluids) at rest can possess internal shear stresses. However, when

they flow, real fluids develop shear stresses, which we have ignored until now. These

stresses give rise to frictional forces between neighbouring fluid elements and cause

dissipation of the kinetic energy of the flow. Moreover, there are shear forces between

a fluid and a solid boundary. It is a non–trivial (and not self–evident) fact that the

relative velocity between the fluid and solid is zero.

• Viscous Stress: We have already come across one constituent of the stress tensor,

the pressure, which contributes to the normal stress in a fluid at rest. As noted earlier,

the movement of a real fluid gives rise to additional stresses. In the rest frame of a

fluid element, the stess tensor is

Sij = p δij + Tij (46)

where Tij is the viscous stress tensor. Galilean invariance implies that Tij can depend

only on the gradients of the velocity field, not on the velocity field itself.

• Rate of Strain Tensor: This is equal to the velocity gradient, ∂vi/∂xj, at any point in

the fluid. Split the velocity gradient into symmetric and anti–symmetric components.

The symmetric component is itself split into a divergence–free (shear) part and a pure

divergence part:
∂vi

∂xj

= σij +
1

3
θδij + rij (47)

where

σij =
1

2

(
∂vi

∂xj

+
∂vj

∂xi

− 2

3

∂vk

∂xk

δij

)
; rate of shear (48)

θ =
∂vk

∂xk

; rate of expansion (49)

rij =
1

2

(
∂vi

∂xj

− ∂vj

∂xi

)
= −1

2
εijkωk ; rate of rotation (50)

• Stress–Strain relation: In a Newtonian fluid, the viscous stress is proportional to

the velocity gradient. However, the stress cannot depend on rij, because this term

describes a local motion in which relative distances between fluid particles do not

change. Therefore, in a homogeneous and isotropic fluid, we must have

Tij = −2ησij − ζθδij (51)

where η and ζ are the coefficients of dynamic and bulk viscosities, respectively. In

many cases, these can be treated as constants (and we shall do so, in the interests of

simplicity of treatment).
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8. The Navier–Stokes equation

• Adding the contribution of the force per unit volume, due to viscous stresses, the

equation of momentum balance is

ρ
dvi

dt
= − ∂p

∂xi

− ρ
∂ϕg

∂xi

− ∂Tij

∂xj

(52)

where Tij is given by equation (51): this is the Navier–Stokes (NS) equation. At a solid

boundary, the relative velocity between fluid and solid must vanish. Mass conservation

is described by the continuity equation (1). However, the entropy is not conserved,

because viscous forces dissipate kinetic energy into heat. Therefore equation (7) is no

longer true.

• Problems:

1. Molecular origins of viscosity.

2. Entropy (i.e. heat) production due to viscosity.

• The NS equations are applicable to subsonic as well as supersonic flows. Many astro-

physical flows are supersonic. However, it is important to understand subsonic flows,

because they are (i) simpler than supersonic flows; (ii) ubiquitous in the air and water

that surrounds us. We saw earlier that subsonic flows could be considered as very

nearly incompressible. Our aim is to understand flows, rather than density stratifica-

tion. Henceforth we only consider incompressible flows of a constant density fluid.

• The NS equation for an incompressible fluid:

∂v

∂t
+ (v ·∇) v = −∇

(
p

ρ

)
− ∇ϕg + ν∇2v

∇ · v = 0

On solid boundaries, v = velocity of the boundary (53)

where ν = η/ρ is the kinematic viscosity. We note that equations (53) are complete

in themselves. The continuity equation is trivially satisfied and can be dropped. The

entropy equation was needed to specify the local thermodynamical state of the fluid.

However, the pressure is now determined by the condition of incompressibility, rather

than thermodynamics.

• Take dot product of v with equation (53) and integrate over space, to obtain the rate

at which the kinetic energy of the fluid is dissipated:

d

dt

∫
d3x

v2

2
= −ν

2

∫
d3x

(
∂vi

∂xj

+
∂vj

∂xi

)2

(54)
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• Problems

1. From equation (53), derive a Poisson equation for the pressure.

2. Potential flows and viscosity.

3. Flow down an inclined plane with gravity.

4. Poiseuille flow.

5. Couette flow.

9. Viscous diffusion of Vorticity

• Take Curl of the NS equations (53):

dω

dt
≡ ∂ω

∂t
+ (v ·∇) ω = (ω ·∇) v + ν∇2ω (55)

In addition to advection and stretching of vortex lines, vorticity diffuses through the

fluid by viscous action.

• The impulsively pulled plate: A fluid at rest fills the region y > 0. The lower

boundary is suddenly jerked at time t = 0, and attains velocity x̂U0 (which condition,

we assume, is maintained for all time). If the fluid was non-viscous, it would continue

to remain at rest, while the lower boundary slips past it. However, when ν 6= 0, the

fluid will be set into motion, and this happens by the diffusion of vorticity. For t > 0,

the velocity field in the fluid must be of the form v = x̂u(y, t). Hence the vorticity

field is ω = ẑω(y, t), where ω = −∂u/∂y. In equation (55), the advective and vortex

stretching terms drop out, and we are left with a diffusion equation for ω:

∂ω

∂t
= ν∇2ω (56)

This initial–value problem requires us to specify ω(y, 0+). We know that

u(y, 0+) =

{
U0 , if y = 0

0 , if y > 0
(57)

Hence

ω(y, 0+) = −∂u

∂y
= U0 δ(y) ; vortex sheet at y = 0 (58)

and the required solution to equation (56) is

ω(y, t) =
U0√
πνt

exp

(
− y2

4νt

)
(59)
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The velocity field is

u(y, t) = U0 −
∫ y

0

dy′ω(y′, t) (60)

After an interval of time, t, fluid in the region 0 < y < ∆y ∼
√

νt has been set in

motion.

• Boundary Layers: Consider flow past a thin plate, which occupies the region y =

0, x > 0. For x → −∞, the velocity field is x̂U0, where U0 > 0 is a constant. If the

fluid were inviscid, it would slip past the plate, and the velocity field would be x̂U0

everywhere outside of the plate. However, when ν 6= 0, the fluid elements encountering

the front of the plate (at x = 0, y = 0) decellerate to zero velocity, because of the

no-slip boundary condition. The steep velocity gradient is responsible for the creation

of a sharp spike of vorticity. As the fluid flows past the plate, this vorticity diffuses

into the bulk of the fluid. Over an interval of time t, a fluid element (which is not in

contact with the plate) travels a distance x ∼ U0t down the plate. From our experience

with the previous problem, we may guess that vorticity should have diffused a distance

∆y ∼
√

νt perpendicular to the plate. The region, x > 0, y < ∆y ∼
√

νx/U0 is called

the boundary layer: at any x > 0, the fluid velocity increases sharply, from zero at

y = 0 to about U0 for y ∼ ∆y. For y > ∆y, the flow is nearly unaffected by the

presence of the plate.

• Problem: Spin down of a vortex line.

10. Scaling in the NS equations

• Consider two geometrically similar bodies moving in fluids with different densities, and

viscosities. Assume steady flows in both cases. Under what conditions are the flows

related to each other through some simple scaling? To answer this question, let us

begin by casting the NS equations (53) in a dimensionless form.

• Let U and L be typical scales of speed and length of the flow in any one of the two

cases considered above. Let

x = Lx′ , v = Uv′ (61)

where x′ and v′ are dimensionless. The quantity, (p/ρ) has dimensions of velocity-

squared. So we write (p/ρ) = U2(p/ρ)′, where (p/ρ)′ is dimensionless. Then the

steady state NS equation can be written in the dimensionless form,

(v′ ·∇′) v′ = −∇′
(

p

ρ

)′

+
1

Re
∇′2v′ (62)
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where

Re =
UL

ν
; Reynolds number (63)

Note that the Reynolds number can be thought of as the ratio of inertial to viscous

forces acting on typical fluid elements. The velocity field must be of the form,

v′ = f(x′, Re) , i.e. v = U f(x/L, UL/ν) (64)

where f is some divergence–free vector function. All other physical quantities, like

pressure, can now be constructed. Auto/Aircraft manufacturers use this scaling prop-

erty of the NS equations by conducting tests on scale–models in wind tunnels.

• Problems

1. Estimate Re for various flows.

2. Scaling used in wind-tunnel simulations.

11. Flow past obstacles

• Stokes flow: Consider flow past a spherical obstacle of radius a. If the fluid velocity

far upstream is x̂U0, the Reynolds number for the flow may be defined as Re = U0a/ν.

The flow is called Stokes flow when Re � 1. The inertial term in the NS equation is

much smaller than the viscous term, so force balance gives

∇p = η∇2v (65)

The problem is to look find v(x), such that ∇ · v = 0, with v = 0 on the surface of

the sphere, and v → x̂U0 for |x| → ∞. Stokes solved this problem, and determined

that the drag force acting on the sphere is

F = x̂ 6πηaU0 (66)

where 2/3 of the force is due to viscous stress, and 1/3 is due to pressure. We can

understand this result by making an order–of–magnitude estimate: The difference in

fluid pressure between the front and back of the sphere is ∆p ∼ ηU0/a. The pressure

acts on a surface area ∼ a2, so we expect a drag force ∼ ηaU0. Viscous stresses acting

on the sides of the sphere contribute similarly.

• Problem: Application of Stokes flow to sedimentation of small particles in the atmo-

sphere.
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• Flow past a cylinder: Consider flow past a cylindrical obstacle of diameter d, with

its axis oriented along the z–axis. If the fluid velocity far upstream is x̂U0, the Reynolds

number for the flow may be defined as Re = U0d/ν. If the flow is stationary, we know,

from the scaling argument in § 10, that the velocity field must be of the form

v = U0 f(x/d, U0d/ν) (67)

Figures 1 and 2 provide some idea of this steady flow pattern, for quite small values of

Re. However, the flow is unstable at higher Re, and becomes unsteady.

Fig. 1.— Flow at Re = 0.16. When Re � 1, there is creeping flow past the cylinder, similar

to the case of Stokes flow. The flow is steady, two–dimensional, and has up–down symmetry

(left–right symmetry is obtained only when ν = 0).

Fig. 2.— Flow at Re = 26. The boundary layer has separated behind the cylinder for

Re > 5. Topology of flow changes due to formation of recirculating eddies.
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Fig. 3.— Flow at Re = 41 is time–periodic.

Fig. 4.— Flow for Re = 140. For Re ∼ 100, the shedding of the recirculating eddies leads

to the formation of alternating vortices, known as a von Karman street.
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• When Re > 1000, eddies are no longer visible, and the velocity field is irregular on

all scales, and the flow is called turbulent. At very high Re the flow has statistically

regular properties, and is called fully developed turbulence. A remarkable feature of

fully developed turbulence is that its statistical properties (on suitable length and time

scales) seem to be independent of the particular manner of its generation. For example,

far enough downstream, the flow behind a cylinder is statistically similar to the flow

behind a grid; see Figure 5 below.

Fig. 5.— Grid generated turbulence.

12. Homogeneous Isotropic Turbulence

• Imagine that an incompressible fluid is stirred randomly, with random (subsonic) r.m.s.

velocities, vL, which are correlated on length scale L. The Reynolds number is assumed

to be very large:

Re ≡ LvL

ν
∼ inertial force

viscous force
� 1

so that the turbulence may be thought of as fully developed. In a steady state, over

length scales much smaller than L, the velocity field will be statistically invariant under

translations and rotations. Hence this flow is also known as homogeneous, isotropic

turbulence.

• The mean energy input rate (per unit mass) is

ε ∼ v3
L

L
(68)
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In a steady state, ε must be equal to the mean rate of viscous dissipation of kinetic

energy into heat, εvis ∼ ν
〈
(∂vi/∂xj)

2〉 (see equation 54). The velocity gradient cannot

be set equal to vL/L. For large Re, the gradient must be taken on some appropriate

length scale, that is much smaller than L.

• Kolmogorov 1941: Velocity fluctuations are created on small scales through the non-

linear interactions provided by the (v ·∇) v term in the NS equation. The energy

transfer rate through scale r is also

ε ∼ v3
r

r
; Kolmogorov cascade (69)

Therefore

vr ∼ (εr)1/3 ∼ vL

( r

L

)1/3

(70)

• Eddies of size r turn over in time

tr ∼
r

vr

∼ tL

( r

L

)2/3

(71)

The time for diffusion of momentum over scale r, due to viscosity,

tvis
r ∼ r2

ν
(72)

decreases more rapidly, as r decreases, than tr. Hence the cascade of kinetic energy is

dissipated as heat on the (viscous) scale, `, at which t` ∼ tvis
` :

` ∼ L

Re3/4
� L (73)

The range of scales, ` � r � L is called the inertial-range.

• The 3-dim power spectrum of velocity fluctuations on scale k ∼ 1/r is

E(k) ∼ v2
r

k3
∝ 1

k11/3
;

1

L
< k <

1

`
(74)

which is also known as the Kolmogorov spectrum.

• Problem: Verify that the rate of energy dissipation (per unit mass), εvis ∼ ν
〈
(∂vi/∂xj)

2〉,
is indeed independent of ν, and equal to ε, the rate of energy input.
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