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Observations :Jets from YSO'’s
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The Origin of Jets
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Stellar wind vs. disk wind in spinning-down p*S
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Disk-locking seems problematic to explain the slow rotation of protostars

@ Matt & Pudritz, 2005
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) :=_ % Spin-down of protostar via stellar wind :
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Torque on star due to accretion of disk matter:

dJ, :
Ta = dt — Ma \/ GM*Rtrunc

Torque on star due to angular momentum lost in the wind :

dJ,

Tw= = —(2/3) M, R*(r4/R.)*

Star rotates as a solid body at a rate which is a fraction f of break-up speed :

f=Q.\/R/GM,

By equating 7, = —7,, the equilibrium spin rate is,
Rtrunc/R* 1/2 TA/R* - Mw/Ma -
feq = 0.1 | ————— X | ——— X
2 15 0.1



L WG R ]
M;f * Source : Observations & Models

JET Simulations, Experiments and Theories

||||||||| T T T T

sstire driven Sti ll routﬂow
\M lys lfsximl solutions

N\“\

Observations(1:?) : protostellar jet
outflows contain two constituents, the
dominance of which depends on the
intrinsic physical properties of the
system (protostellar object and disk)
(He line profiles indicate that stellar winds |
are present in at least 60% of CTTS)

Central protostar

Surrounding disk / ¥ Magn (;}ap{i' ugally driyen disk
| / /M/ (% )/ rsol}ltm:};
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Theory® : it is argued that jets from

YSOs may consist of two components:
Inner pressure driven wind (non-collimated
if the star is an inefficient magnetic rotator)
an outer magneto-centrifugally driven disk-
wind providing most of the high mass loss
rate observed.



Some “representative” studies in the past 50 years :

bead on a rotating wire

uncoilling spring mechanism

systematic construction of self-similar models

on analytical modelling self-similar

magnetized accretion-ejection structures




Illustration of the interaction of magnetized plasmas

B(r.t)




Theory : Basic (nonrelativistic) MHD equations

- - 1B - VxB J
VxE=——, X2 _ A 0 Mazuell
c ot c o
* B=—J = [ — |
7 c +/gg/ c
av _, ~ IxB —
pg—l—(pv VIV=-VP+ — pG, Newton
c
V4+—=0 mass conservation
V-pV 4 Py ;

‘_f(xl, T3, r3,t) : Bulk Flow Speed of Plasma
]:3:(3:1, ro,r3,t) : Magnetic Field in Plasma

j(l:j_, T3, r3,t) : Electric Current Density in Plasma
é(xl, T3, r3) : External (gravitational) Field in Plasma
p(z1,72,13,%) : Plasma Density

P(xy,r3,13,t) : Plasma Pressure

li[i’('rla Lz, I3, t] : Erlthalpy (: %%)

g(x1, r2,73,%) : Volumetric Rate of Energy Addition in System
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|. Steady models Il. Time-dependent models
Advantages:
treatment treatment)
study evolution
physical picture nonideal MHD effects
method method)
Difficulties:

Nonlinearity of MHD set ! 3D MHD code with magnetic flux

2-dimensionality - PDEs ! conservation !
Causality - unknown critical large grid space - large lengths of
surfaces ! jets !

correct boundary conds -
boundary effects !



Ia) 1D-HD : The classical Parker

wind




Ulysses in situ measurement of solar wind speed

[Sauty et al, AA, 432, 687, 2005]:
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Ib) 1ID-MHD: The Weber-Davis magnetized wind
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Parker vs. Weber/Davis Topologies of V (R) :
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Slow and Fast magnetic rotators :

1. GM B 1., GM  r B0
E=Viph— = Ot Sy o T8 TeSe ep 40L,
2 T Iy '_3 s L ry .
£, 0L

where £, i the energy of the thermally driven Parker wind and 221 the Poyvnbing energy of the
magnetic rotabor. Depending on which of thess two terims dominates we have two possibilities:

1. &, % 0L Slow magnetic rotabor. In this case we hawve a thermally driven Parler wind

2. &, <& (1L Past magnetic rotator. In this case we have a magnetorotationally driven wind



Slow magnetic rotator (our Sun)
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Fast magnetic rotator (YSO)
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I1. 2-D MHD plasma outflows: the i1ssue of collimation

a) Time-independent (steady) outflows i) meridionally selfsimilar
i1) radially selfsimilar

b)  Time-dependent plasma outflows




a). 2-D Time-independent (steady) studies -
some general conclusions :

* (Classes of analytical solutions via a nonlinear
separation of the variables (Vlahakis+Tsinganos, 298, 777, 1998)

e Critical points, characteristics and the problem of

Causality (Tsinganos et al, MNRAS 283, 811, 1996, Vlahakis et al,
MNRAS, 318, 417, 2000)

e (Classification of observed outflows 1n terms of

efficiency of magnetic rotator (Sauty et al, 348, 327, 1999, Sauty
ctal, AA, 389, 1068, 2002)

e Topological stability of collimated outflows
(Vlahakis + Tsinganos, MNRAS, 292, 591, 1997)

* efc, etc.




Reduced Form of MHD Equations for Axisymmetric Plasma States

Magnetic and mass flux functions:

L (A :
M Flux: F = dS = 27 A, — B=
agnetic Flux: f fs T Bp V x (mw) : div.B=0
1 - | L
Mass Flux: M = [[ pVp - dS = 5 pVp =V x ( 4:“35@) — d1v.pr -0

— 4 MHD Integrals:

Wy
St fluneti (A : Vp=—"108
reamnfunction (A) P=4.,00
By
Angular Momentum  L(A) : L(A)=w |V, — 7.
A
. W4
Corotation Frequency Q[A) : Vo — Nw = 4—'39:,,
A7 p
Total Energy E(A) : §|V| + P Emb = E(A),

— Transfield equation for magnetic flux function A(z,y):

5 -
{l—m—"il V- (v‘jﬂ L [?A] lﬁ'(luj
dwp w vl dmwp

[ Tsinganos, Apl, 252, 775, 1982]

+F(A:l]:'l: Llﬂlpj =0
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systematic

Main assumptions for getting analytical solutions

1. Ideal MHD.

2. Symmetric outflow configurations, d3 = 0, in system (1, z2, x3)
e.g., axisymmetric, or translationally symmetric.

3. Natural variables are poloidal Alfvén number and magnetic flux
function (M, A) = switch from (z1,z5) to (M, A).

4. Consider Alfvén number M(x;,z5) and cross-section of outflow
tube G(xq,r3) as functions of a single variable x:
M= M(x), G = G(x)

L. In spherical coordinates (x1 = r,x2 = #,) this unifying scheme
contains two large groups of exact MHD outflow models:
(o) x = 0 — radially self-similar models with conical critical
surfaces. Prototype is the Blandford & Payne! (1982) model :

A(r,0) = g(0)r* and z = 3/4.

(8) x = r — meridionally self-similar models with spherical crit-
ical surfaces. Prototype is the Sauty & Tsinganos? (1994) model :

A(r,0) = f(r)sin’*@ and e=1.

II. In orthogonal coordinates (r; = z,rs = y,) this unifying
scheme contains the group of planarly self-similar MHD meodels.
Prototype is the Petrie et al® (2002) model :

A= G(I)e_zXH

"Vlahakis & Tsinganos 1998, MNRAS, 298 777
!Blandford & Payne 1982, NINRAS, 199, 883

2Sauty & Tsinganos 1994, A& A, 287, 893

3Petrie, Vlahakis & Tsinganos 2001, A&A , 382, 1081




rotation axis

—

=R sinf
A(R,e)ig(esng(e) X A(R,0)=f(R)sin%0=G(R)r? A(x,2)=G(x)e?

(a)

rotation axis
[

edquator equator



systematic

Cases of exact, self-consistent solutions, studied so far :

(i) Cylindrical self-similarity, A = f(w@)g(z):
Chan & Henriksen, 1980, Ap.J, 241, 534

(i) Radial self-similarity, A = f(8)r*:
(x=3/4: Blandford & Payne, 1982, MNRAS, 199, 883)
(x+# 3/4: Contopoules & Lovelace 1994, ApJ, 429 139)
(x# 3/4: Vlahakis et al 2000, MNRAS, 318, 417)

(iii) Meridional selfFsimilarity, 4 = f[r)si_nzfﬁ:
(e # 1: Lima, Priest & Tsinganos, 2001, A&A, 371, 240)
(e=1: Sauty, Trussoni & Tsinganos 1994, 1997, 1999, 2002,
A&A)

(iv) Planar selfsimilarity, A = f(z)exp(—=z):
(Petrie, Vlahakis & Tsinganos, 2002, A& A, 382, 1081)

(v) General self-similarity— a unification scheme for all cases :

Vlahakis & Tsinganos, 1998, MNRAS, 298, 777

In self-similarity, if we know one poloidal streamline we can con-
struct the others. But in order to be able to construct one poloidal
streamline, need to calculate f(#), or f(r). This is achieved by
requiring that the solution pass through appropriate critical points
where are found the sc-called limiting characteristics, the event

horizons of MHD.



Classes of self-similar solutions [Viahakis+Tsinganos, 298, 777, 1998]

Meridionally self-similar outflows

Case gila) gala) gsla)

f . <« )=0, 6=0: Parker wind
irﬂ « ;‘1 ,f 1ig¢+ ; < Sauty+kT (1984 - 2004)
(2) o o+ pat e Q@+ (000" mm— .

(3) a fa+palna  1+da+ pdalna Lima et al (1986)

(4)  age= Ae=n 1+ daem +p (€$ — 1)

(5) 2| E-1FF(£-1) £1&2-1 148 &-1F4u|S-1F"—d—p

(6) —aoln| -1 En| -1 1+0In|2 -1 [+ pgpag

(7N = pln4éa 146 (a—ag)+pudoln

® a2 (2) Ma® + A0t 148 (af — af) + 8 (0t — af )

0 5hs Mg+ 1+hn2+6(i-0)

Radially self-similar outflows

Case gi(a) 72(a) gs(a)

f E -2 D -2 [ .

(1) 7ot e’ 0" “e==TF=3/4: Blandford & Payne (1982)
(2) Eilna Dilna Chlna

|L3\.l Eio™ 4 Esa™ Dya™ 4 Dan™ Chrat 4 Cha™

(4) Eilna+ Exa” Dilna + Din* Cilna 4+ Can®

(5) Ei(lna)’+ E;lna Di(lna)*+4 D:lna Ci(lna)’ +Crlna

(6)

EioIna 4 E.a™ Dio"lna 4+ Dea™  Cioflna 4 Cha™



The problem of singularities/critical points :

(1) Equation for derivative of poloidal Alfvén number M,:

dM?  Ny(R, F,M,;parameters)
dR  D(R,F,M;parameters)

2) Equation for derivative of thermal pressure P,:
q P

dr, Np(R, F, M,; parameters)
dR =~ D(R,F, M;parameters)

(3) Equation for derivative of expansion function, or P : 3 |

dF  Np(R,F, M,; parameters)
dR D(R, F, M; parameters)

Difficulty: A physically accepted solution is determined by the
requirement that it should pass through critical points which
are not known a priori but are only determined simultaneously
with the complete solution !

Singularities (Critical Points) : Ny =Np=Np =D =0.

(a) Alfvén transition (star-type singularity): M, =1 5

imposes regularity condition <= streamlines avoid kink.

b) X-type MHD singularities selecting physical solution os |
a proxy for the imposition of physical b.c.’s at r, and o). -

== Obtain unique solution through critical points.
BUT 0|
at which speeds are found these MHD saddle-type critical points ? s 1 .




Nature of MHD PDE'’s & correct boundary conditions

1. Elliptic PDE’s : ® or d®/dn
e 8’d . J
dx? g ay?
== Dirichlet or Newmann B.C.’s on a closed surface
2. Hyperbolic PDE's :
yperbolic s ¢ V\
8 3 lﬂztli _0 * +
e C-
@ D
= Cauchy B.C.’s on an open surface. —» P <+——
3. Mized Elliptic/Hyperbolic PDE’s : '\ X
1-M2[, . VA-9(Ta) v ® and dd/dt
—4 |V A - = . = F,
[ h [ AVAR V-GV +CIVE
Elliptic in domains E;, hyperbolic in domains H;, i=12, ...
-~ | i |
—— Elliptic H:yperbolic Ellipti¢ H):(perbolic
~ ! : !
'S = 'S
l \ = B.C.’s on separatrices SS5' in hyperbolic domains H;.

But, these separatrices §S' in domains H; are not known a priori
but should be constructed simultaneously with solution.



The problem of causality and limiting characteristics:

The set of steady MHD equations are of mixed elliptic/hyperbolic
character.

In hyperbolic regimes exist separatrices separating causally areas
which cannot communicate with each other via an MHD signal.
[They are the analog of the limiting cycles in Van der Pol’s
nonlinear differential equation, or, the event horizon 1n relativity.]

The MHD critical points appear on these separatrices which

do not coincide in general with the fast/slow MHD surfaces.
To construct a correct solution we need to know the limiting
characteristics, but this requires an a priori knowledge of the
solution we seek for !

Tsinganos et al, MNRAS, 283, 811, 1996




Plot of the characteristics in the 2" hyperbolic regime
of a meridionally selt-similar jet.

in hyperbolic regime there are two families of

Dotted lines: poloidal magnetic field lines, .. . ioiictics — one of them is t4n gent to the

Solid lines (characteristics)
Thick-dotted line (cusp surface),
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polar axis

Plot of the characteristics

in both hyperbolic regimes
of a radially self-similar
jet: in each of the two
hyperbolic regimes there
are two families of
characteristics.
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| —Elliptic

Hyperbolic

1 _—Elliptic

"™/ 1ahakis et al. MNRAS. 318. 417, 2000



Magnetic fieldline

/

Magnetic hoop stress

Basics of jet acceleration and collimation

source

» On the disk, z=0, the rotational kinetic energy

exceeds the magnetic enegy =2 Keplerian rotation
of the B-field line rooted at r,..

Up to the Alfven distance, the B-field is strong
enough > forces the plasma to follow the
Keplerian rotation of the roots of the magnetic
fieldline. In particular, when the inclination angle
1s less than 60°, we have the “bead on a rotating
wire” magnetocentrifugal acceleration.

After the Alfven distance, the poloidal B-field
energy is weaker than the poloidal kinetic motion
—> the B-field follows the plasma. The plasma
inertia leaves it behind the rotating B-line -
creation of strong B,

The created strong B, collmates the magnetic field
lines towards the z-axis and forms the jet.



Poynting driving in magnetocentrifugal disk-winds:

12

energy in units V.a
mod. fast

mod. slow




Mach numbers 1n such magnetocentrifugal disk-winds:

mach numbers




Removal of disk angular momentum by magnetocentrifugal disk-winds:

A Keplerian disk (Qf) accreting at a rate M, needs to get nd
of angular momentum in a radius w,

- 1
jﬂ=§

"y '
A disk-wind carries away angular momentum with a rate :

ju_l == Qfﬁ:mfli‘ffw

If the disk-wind carries away a fraction f (0 < f < 1) of the
angular momentum of the accreting matter,

Jy = fjﬂ, then
M, fw
M, 2w3j

With a magnetic lever arm w ~ bw,, the disk-wind needs to

carry away only a few percent of the accreting mass rate.




An energetic criterion for cylindrical collimation:

oo A(PE) Af=f(non polar streamline) - f(polar axis)
Jo 59)
*£'<0--> No collimation
g’ >0--> Collimation
£ =l+€
Efficiency of Pressure Confinement
AP .
P
Efficiency of the Magnetic Rotator
[Q-E,, +AE; GM (—AT
E= 10 where AEZ =
n T

0
e £ > (0 --> Efficient Magnetic Rotator (EMR)

"t < 0 --> Inefficient Magnetic Rotator (IMR)



A classification of MHD outtlows

P K=ATTTI
L
: E Mugnetic Confinemept
‘ , X ‘ iy c é_,
. = = o g
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C |and| R
Narrow Jets
e MR - EMBR ——
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E
R %, E | o I? ._ "%:% C
. . = .".é-j-:p
Conical Winds =
: — e No Confinement l <%

400

C | =CYLINDRICAL Asymptots

B | = RADIAL Asymptots (i.e. CONICAL)

200

P | =PARABOLOIDAL Asymptots

E Sauty et al., 1999, 2002 A&A
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Type 2 (Narrow Line ) Type 1 (Broad Line) Type 0 (Unusual)

N
: @ C ©,
=
o
= Seyfert 2 ) )
"g Narrow Emission Line Galaxies Seyfert 1 Broad Absorption Line QSO ?
™ IR Quasars ? Quiet Quasars (QSO)
Narrow Line Radio Galaxies Broad Line Radio Galaxies Blazars
T . BL Lac Objects
= Fanaroff-Riley I ?
=) . .
— Rich environment?
) Smaller torus opening angle?
=
]
“g— ) O—F o
Fanaroff-Riley II Steep Spectrum Radio Quasars v
Poor environment ? 9 (FSRQ)
Larger torus opening angle? — Flat Spectrum Radio Quasars

Decreasing Viewing Angle (Urry & Padovani 1994)




But, how general are all those conclusions of the steady
exact MHD modelling ?

|

I1I) Time-dependent studies

~ First, demonstration of the formation of a collimated jet
once an outflow along a monopole (radial) magnetic field,
starts rotating

(jet formation as'seen by a naked eye in video ).

For details, see :
Bogovalov + Tsinganos, MNRAS, 303, 211,:1999, MNRAS, 325, 249, 2001, MNRAS, 357, 918, 2005
Tsinganos + Bogovalov, AA; 356,989, 2000, MNRAS, 337, 553, 2002,



Time-dependent MHD equations

B=B,+B,, B, =V x A(z,@,t)¢ Define poloidal magnetic field in terms of vector potential A(p

w
6A_ 04 94
8t  “bw 8z Poloidal component of induction equation
o 1 8 ] %, . .
ﬁ =5 (pwVa) — 5 (pV2), Continuity equation
B, _ S, V‘Bj—iw‘B—vsj Azimuthal fi ' i
5 §.'e Do) = 5 Vaby = Vo), zimuthal component of induction equation
oV Ve O dV, / 0 0B .
¥ =" (V) - Vil — [Bp—— .—2| Azimuthal component of momentum equa
ot w 3m(mh‘j) v: dz + dmp kBmmam[mB‘;) 5 dz ) ’ p q
oV, 9V, _8V. 18P GM:z 1 8 ) :
2 = Veas Ve, 002 R T Smpwt 5. (@Bs)” — z- component of momentum equation
By (0Bs aB:}
dap \ Bz 0w )’
Ve 0V, _ 8V, 18P GMw 1 8 ) V2 :
B = Vm "V T obm T 2 Bre? 5-(@B,)"+ —+ Radial component of momentum equ

(z,@,) = cylindrical coordinates,
p(z,@,t) = density,

f[:, w,t) = flow speed,

g[:, w, t) = magnetic field,
A(z,w,t) = poloidal magnetic flux.

B. (6B, BB:}
drp \ Oz Ow )’

equation of state,
equation.

Close system either with
or, by adding an



A near zone snapshot on the poloidal plane showing the change of
shape of the poloidal magnetic field from an initially uniform with
latitude radial monopole (before a stationary state 1s reached).

Cold plasmao
a=2.4780184

o = QRa/Vo=
2T T travel/ T rotation

- / Electric current-lines

a < 1: Slow rotators
o > 1: Fast rotators

/ Poloidal B-lines
1 JxB Lorentz force

Fast surface

| __— Alfven surface

t=12.8




Far Zone :
Poloidal magnetic lines of outflow :

(at intervals of equal magnetic flux)

Before rotation starts — After rotation started




o Fast surface
Solution in Near Zone -~ |
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Bogovalov+kT, MNRAS, 305, 211, 1999



Astrophysical implications: an evolutionary scenario

e Start with a non rotating star /disk system having a radial magnetic field.

e Asgystem rotales, poloidal fieldlines focus towards axis by magnetic tension.
e Parameter v = (corotating speed at Alfvén distance)/ (initial flow speed).

o Radius of formed jet Fjer o< 1/cx.

e Significant flow collimation in fast magnetic rotators with « > 1,

while very weak collimation in slow magnetic rotators with « < 1.

e Reversing time: start with a tightly collimated outflow (e > 1)
and reduce ev to small values, o« — O
= sequence analoguous to evolution of outflow geometry from a YSO.

e Efficient magnetic rotators have large values of «
= highly collimated jets, as observed in association with YSOs.

e Asstar ages locsing angular momentum it may gradually shift to the stage of
a slow magnetic rotator with small ev values like our own Sun which produces

the almost radial cutflow of the solar wind.

e Scenario agrees very well with results of steady (self-similar) modelling
where a quantitative energelic criterion is given for separating loosely
collimated winds associated with efficient magnetic rotators from tightly
collimated jets associated with efficient magnetic rotators.

e For large values of v, the magnitude of the flow speed in the jet
remains below the fast MHD wave speed everywhere
= outflows from classical thin accretion disks may rather be
nonstationary and turbulent.



The Dichotomy of Winds and Jets

e Jets = tight collimation

e Winds = no collimation

The Dynamic HH 30 Disk and Jet
Hubble Space Telescope « WFPC2

2. Solar Wind




However, several pbs with 1-component outflows:

Small fraction of mass and magnetic flux i1s collimated
in a single-component outflow.

Weak collimation 1n case 1n the central outflow there
1s no available a strong azimuthal magnetic field, or,
the central flow 1s relativistic (as in AGN jets).

Note also that disk-wind models are “singular” around
rotation axis.

A central magnetized wind 1s needed to slow down the
young star




A two-component outflow
model with :

a) a central stellar wind

b) a disk-wind

Before rotation starts
=205 w=h

7=1.04 dim=150x150

Radial Wind

L\

1=0

After rotati

g=2.25 a=5

Fast surface
Ifven surface

starts
v=1.04 dim=150x150 t=6.51

0.5



Collimation of the inner flow with the formation

of a shock.

0 100 200 _ 300
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Real-life example: Supersonic flow incident at the vertex of an angle

1.4 ¢ I

r

Incident ﬂoW



k o _;:_** V). Numerical simulations by using the

-

T % T* _analytical solutions as initial conditions

tions, £xperiments a

The Radially Self Similar Models (r-ss):
Describe magneto-centrifugally driven disk winds
They have conical critical surfaces
Allow a constant-y pressure-density relation
However, they are singular at the z-axis

The Meridionally Self Similar Models (0-ss):
Describe thermally driven stellar outflows
Have spherical critical surfaces _
Have variable effective polytropic index -
However, not all magnetic fieldlines |
are connected to the stellar surface

b)




JET Simulations, Experiments and Theories

The two classes of solutions
are complementary:

Axis (stellar outflows) best .

described by meridionally 3'?

self-similar solutions %0}

Equator (disk winds) best = o 1oz o8 4 5 o6 7
described by radially o

self-similar solutions

The first thing is to show the topological stability of
the solutions along with other physical and numerical
features [Matsakos et al, 2007, A+A in press].



JET Simulations, Experiments and Theories

Choice of contribution in
the total magnetic field
Choice of a fieldline (ay)
Choice of the steepness of
the transition (d)

Dis k’wih’d ' : Céntral source wind

Disk wind / \
f Central source wind

Then, initialize each solution

Disk wind

Diskwind

with the mixing function:

VE—cm;-;-p“T-ﬂ ) = Wi VHH{E~ Z)+ H"IEVJ'.T.T{E* Z)

d
f!fEL:J L and W2 _ 1.0_ Wl

}

W, = exp I—c |
l( (rp



Results

Initial setup:
Implementation of
both solutions
Different contribution
of the stellar wind
(left and right)

Final setup:
Steady-state reached
Disk wind does not
change
Stellar wind is being
collimated by the disk
component
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* Results of evolved 2-component

JET Simulations, Experiments and Theories
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jefsel-=: results
| * ke ok Sk ok K

JET Simulations, Experiments and Theories

A steady-state is always reached, however at different
timescales for each model

The disk wind remains almost unmodified while
effectively collimating the inner stellar outflow

The final outcome of the simulations stays close to the
initial setup, hence retaining the validity of the
analytical solutions

Proper choice of the parameters can explain many of
the observed cases of the two-component jets i.e. from
the one extreme of stellar dominated ones, up to the
other, of the disk-wind being the only contributor



Some conclusions

Systematic analytical construction
limiting characteristics
Energetic criterion
Topological stability
simulations

A new 2-component model is needed to describe collimated outflows
shocks in jets




