Modeling accretion-ejection processes in magnetized young star environments

Rony Keppens

Centre for Plasma Astrophysics, K.U.Leuven
FOM-Institute for Plasma Physics Rijnhuizen
Astronomical Institute, Utrecht University

26 October 2007
Outline

• Young Stellar Objects:
 Observational clues and puzzles

• Magnetohydrodynamic modeling
 ⇒ launching jets from accretion disks
 ⇒ wind-jet interactions
 ⇒ near-star accretion processes

• Outlook: bringing all scales together
Astrophysical Jets: YSO

- Forming stars: T-Tauri with mass $M_* \leq M_\odot$
 \Rightarrow bipolar jets, velocities up to 400 km/s
- accretion disk play role in launching process:
 \Rightarrow proportionality between jet/disk luminosity
Astrophysical Jets

- astrophysical jets: ubiquitous in presence of accretion disks
 ⇒ Young Stellar Objects (YSO)
 ⇒ compact objects in binaries
 ⇒ Active Galactic Nuclei (AGN)

- collimated, reach high velocities (up to c)
 ⇒ mass source of the jet?
 ⇒ how to collimate and keep collimated?
 ⇒ how to launch and accelerate mass in jet?
MagnetoHydroDynamics

- Conserve MASS, MOMENTUM, ENERGY, MAGNETIC FLUX \Rightarrow 8 non-linear PDE
 $\Rightarrow \nabla \cdot \mathbf{B} = 0$: no magnetic monopoles
- 7 wavespeeds entropy, \pm slow, \pm Alfvén, \pm fast [anisotropic!]

MHD waves animation
Magnetic Accretion-Ejection structure

- key ingredients are: presence of accretion disk + \(B \) ⇒ observed versus ‘artist impression’ (for AGN)

- perform axially symmetric 2.5D MHD simulations
 ⇒ disk with initial vertical B: self-consistently forms collimated jet
 ⇒ 15% of accreted mass persistently ejected
MAES

- mechanism for jet launch and acceleration
 - mass source: accretion disk
 - collimation and acceleration of jet: \(B \)
- identical for YSO, compact objects, AGN:
 - MAES model relies on its gravitational influence on disk material
 - does not require specific disk/magnetosphere interaction
 - object (plus magnetosphere or event horizon): point source
 - consistent with observed jet radii at ‘origin’
MAES: Streamlines

- in jet launch region: accretion and ejection

⇒ resistive disk treatment allows accretion

⇒ accretion rate as BC: mimics outer regions
MAES: persistent launch

- spatio-temporal resistivity only in disk
 - accretion flow slips across vertical B
 - region above disk: ideal MHD (frozen-in)
- jet launch, once initiated, persists:
 - material ejected from disk: 15 % of \dot{M}_A
MAES: hollow jets

- since jet launched from disk: hollow jet
 \[\Rightarrow \text{reaches super-fast magnetosonic speeds: accelerated while ejected} \]
MAES: Force analysis

- Jet ejection mechanism: axial force analysis

⇒ thermal pressure gradient lifts matter
⇒ magnetic torque brakes in disk, spins up jet
MAES: Angular Momentum

- Angular Momentum: channeled by \(B \)
 - \(\Rightarrow \) in disk: magnetic torque brakes azimuthally
 - \(\Rightarrow \) gravity wins from centrifugal: accretion
 - \(\Rightarrow \) AM flux parallel to poloidal flow/\(B_p \)
- torque \((J \times B)_\varphi \) changes sign at disk surface:
 - \(\Rightarrow \) magnetocentrifugal acceleration of jet
- starts and stays collimated by magnetic hoop force
 - \(\Rightarrow B_\varphi \) created by rotating disk
MAES Jet extent

- radial extension of jet launching region
 \[\Rightarrow \text{equipartition field region} \]
 \[\Rightarrow \text{sufficiently bent poloidal } B(\text{cold jet}) \]
MAES Energetics

- Jet energetics
 - disk material heats: compression & Ohmic
 - hot jet emerges
- jet luminosity \propto energy liberated by accretion $GM_\ast \dot{M}_A/2R_I$
MAES Summary

Escaping accretion

• mechanism for launch
 ⇒ magnetic torque brakes disk material azimuthally and spins up jet matter
 ⇒ mass source for jet: disk
 ⇒ B collimates, accelerates
 ⇒ Jet formation animation

• accretor can be very different
 ⇒ YSO, compact object, AGN
Jet launching: improving the models

- Numerical ‘proof of principle’ (2.5D VAC code simulations)
- MAES model explains
 ⇒ how jets are launched and accelerated
 ⇒ why start and remain collimated
 ⇒ underluminous disks and hot jets
- Recent improvements:
 ⇒ higher resolution (grid-adaptive) studies
 ⇒ including stellar outflows, viscosity in the disk

- FLASH code (with AMR); emphasize role of anomalous resistivity prescription
Two-component outflows

 ⇒ disk ‘turbulence’ by enhanced visco-resistive α-prescription
 ⇒ MHD Poynting flux of disc-jet: removes most AM from thin disc
 ⇒ B_ϕ zero to $\beta \sim 1$ in disc scale height ⇒ effective magnetic torque
- wind region: hot corona (turbulent heating near axis)
 ⇒ numerical trick: sink (0.1 AU) → mass source along polar axis
Two-component outflows

- collimation differs for wind versus jet
 - wind region forces: thermal + Lorentz (pinch)
 - in turn collimated by disc-driven jet
- all axisymmetric, aimed at stationary endstates, unanswered:
 - 3D jet stability and termination
 - multi-component jets: interface dynamics?
 - near star accretion dynamics
Near-star accretion

 - axisymmetric studies of ‘stationary’ accretion on magnetized stars
 - relevant for T-Tauri stars with kG (aligned) dipole fields
 - funnel flows connect disk to star, AM transport by magnetic torque
 - meanwhile progressed to 3D unaligned dipoles

 - VAC simulations, using resistive disk and 2.5D
 - Funnel flows are robust features, even down to 140 G fields
 - However, realistic $\dot{M} \sim 10^{-8} M_\odot yr^{-1}$: need kG fields!
Bessolaz et al.

- uses split into static dipole and solve for \(\mathbf{B}_1 \) (Tanaka 1994)
- Temporal evolution and grid:
Bessolaz et al.

- Aim of the study: relative position of truncation radius r_t, corotation radius r_{co}, equipartition between poloidal magnetic pressure and disc poloidal ram r_{bf}, disc thermal pressure

 \Rightarrow Analytic criterion for a-priori determination of steady funnels

 $$\beta \sim 1, \quad and \quad m_s = \frac{u_r}{C_s} \approx 1$$

 \Rightarrow express truncation radius (where accretion halts) in basic parameters

 $$\frac{r_t}{R_*} \sim 2 \left(m_s\right)^{2/7} B_*^{4/7} \dot{M}_a^{-2/7} M_*^{-1/7} R_*^{5/7}$$

- for realistic CTTS values: truncation radius smaller than co-rotation

 \Rightarrow CTTS must always spin-up due to star-disc interaction!

 \Rightarrow unless other processes effective (stellar and disc jets again...)
Bessolaz et al.

- forces in funnel flow: first pressure gradient
 \[\Rightarrow \] eventually gravity wins, free-fall velocity (surface at \(s \sim 1.2 \))
Outlook I

- Model lacks as yet
 - stellar outflows, disc outflows (X-winds?)
 - all models treat disc with anomalous transport prescriptions
 - source of turbulence? MRI? Still compatible with large-scale field?
- near-Keplerian, thin disks versus strongly magnetized, thick disks
 - guaranteed many, different instabilities at play in real disks
 - e.g. Convective Continuum Instability (Blokland et al, A&A 467, 21, 2007)
- 3D effects, stability of (multi-component) outflows?
 - twisted fields → kink instabilities
 - shear flow interfaces: Kelvin-Helmholtz
Outlook II

- stability issue also for relativistic jets (AGN)
 ⇒ Meliani & Keppens, *arXiv:0709.3838*
 ⇒ cross-cut in fast inner, slow outer jet, AMR simulation
 ⇒ different launch mechanism → different rotation profile
 ⇒ interacting body-surface KH, Rayleigh-Taylor (centrifugal force)