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Outline

e Young Stellar Objects:
Observational clues and puzzles

e Magnetohydrodynamic modeling

= launching jets from accretion disks
= wind-jet interactions

=> near-star accretion processes

e OQutlook: bringing all scales together
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Astrophysical Jets: YSO

e Forming stars: T-Tauri with mass M, < Mg
= bipolar jets, velocities up to 400 km/s
e accretion disk play role in launching process:

= proportionality between jet/disk luminosity
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Astrophysical Jets

e astrophysical jets: ubiquitous in presence of accretion disks
= Young Stellar Objects (YSO)
=> compact objects in binaries
= Active Galactic Nuclei (AGN)
e collimated, reach high velocities (up to ¢)
=- mass source of the jet?
= how to collimate and keep collimated?

= how to launch and accelerate mass in jet?
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MagnetoHydroDynamics
non-linear PDE

e Conserve MASS, MOMENTUM, ENERGY, MAGNETIC FLUX = 8
= V - B = 0: no magnetic monopoles

e 7 wavespeeds entropy, + slow, + Alfvén, + fast [anisotropic!]
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Magnetic Accretion-Ejection structure

e key ingredients are: presence of accretion disk + B
= observed versus ‘artist impression’ (for AGN)

Formation of extragalactic jets
from black hole accretion disk
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Casse & Keppens, ApJ 581, 988 (2002)

e perform axially symmetric 2.5D MHD simulations

= disk with initial vertical B: self-consistently forms collimated jet
= 15 % of accreted mass persistently ejected
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MAES

e mechanism for jet launch and acceleration
=> mass source: accretion disk
= collimation and acceleration of jet: B
e identical for YSO, compact objects, AGN:
= MAES model relies on its gravitational influence on disk material
= does not require specific disk/magnetosphere interaction
= object (plus magnetosphere or event horizon): point source

= consistent with observed jet radii at ‘origin’
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MAES: Streamlines

e in jet launch region: accretion and ejection

= resistive disk treatment allows accretion
= accretion rate as BC: mimics outer regions

Rony Keppens Accretion-Ejection in YSOs



MAES: persistent launch

e spatio-temporal resistivity only in disk

= accretion flow slips across vertical B

= region above disk: ideal MHD (frozen-in)
e jet launch, once initiated, persists:

= material ejected from disk: 15 % of M
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MAES: hollow jets

e since jet launched from disk: hollow jet

= reaches super-fastmagnetosonic speeds: accelerated while ejected
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MAES: Force analysis

e Jet ejection mechanism: axial force analysis
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= thermal pressure gradient lifts matter

= magnetic torque brakes in disk, spins up jet
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MAES: Angular Momentum

e Angular Momentum: channeled by B
= in disk: magnetic torque brakes azimuthally
= gravity wins from centrifugal: accretion
= AM flux parallel to poloidal flow/B,

e torque (J x B), changes sign at disk surface:
=- magnetocentrifugal acceleration of jet

e starts and stays collimated by magnetic hoop force
= B, created by rotating disk
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MAES Jet extent

e radial extension of jet launching region
= equipartition field region

= sufficiently bent poloidal B(cold jet)
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MAES Energetics

e Jet energetics
= disk material heats: compression & Ohmic
= hot jet emerges
e jet luminosity o energy liberated by accretion GM*MA/2R,
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MAES Summary

e mechanism for launch

= magnetic torque brakes disk material azimuthally
and spins up jet matter

=- mass source for jet: disk
= B collimates, accelerates

= Jet formation animation

e accretor can be very different
= YSO, compact object, AGN

Escaping accretion
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Jet launching: improving the models

e Numerical ‘proof of principle’ (2.5D VAC code simulations)
= Jet Launch: ApJ 581, 988 (2002)
= Energetics: ApJ 601, 90 (2004)
e MAES model explains
= how jets are launched and accelerated
= why start and remain collimated
= underluminous disks and hot jets
e Recent improvements:

= higher resolution (grid-adaptive) studies
Zanni et al., A&A 469, 811 (2007)

= including stellar outflows, viscosity in the disk
Meliani et al., A&A 460, 1 (2006)
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Zanni et al., A&A 469, 811 (2007)

e FLASH code (with AMR); emphasize role of anomalous resistivity
prescription
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Two-component outflows

e Meliani et al.: A&A 460, 1 (2006)
= disk ‘turbulence’ by enhanced visco-resistive a-prescription
= MHD Poynting flux of disc-jet: removes most AM from thin disc
= B, zero to 3 ~ 1 in disc scale height = effective magnetic torque
e wind region: hot corona (turbulent heating near axis)
= numerical trick: sink (0.1 AU) — mass source along polar axis
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Two-component outflows

e collimation differs for wind versus jet
= wind region forces: thermal + Lorentz (pinch)
= in turn collimated by disc-driven jet
e all axisymmetric, aimed at stationary endstates, unanswered:
= 3D jet stability and termination
= multi-component jets: interface dynamics?

= near star accretion dynamics
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Near-star accretion

e Seminal work done by Romanova et al. (ApJ 578, 420, 2002)
= axisymmetric studies of ‘stationary’ accretion on magnetized stars
= relevant for T-Tauri stars with kG (aligned) dipole fields
= funnel flows connect disk to star, AM transport by magnetic torque
= meanwhile progressed to 3D unaligned dipoles

e Recent independent confirmation: Bessolaz et al (A&A, submitted)
= VAC simulations, using resistive disk and 2.5D
= Funnel flows are robust features, even down to 140 G fields

= However, realistic M ~ 10"8M,yr~1: need kG fields!
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Bessolaz et al.

e uses split into static dipole and solve for B; (Tanaka 1994)
e Temporal evolution and grid:
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Bessolaz et al.

e Aim of the study: relative position of truncation radius r;, corotation
radius reo, equipartition between poloidal magnetic pressure and disc
poloidal ram rp¢, disc thermal pressure

= Analytic criterion for a-priori determination of steady funnels
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= express truncation radius (where accretion halts) in basic

parameters
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*
e for realistic CTTS values: truncation radius smaller than co-rotation
= CTTS must always spin-up due to star-disc interaction!

= unless other processes effective (stellar and disc jets again...)
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Bessolaz et al.

e forces in funnel flow: first pressure gradient
= eventually gravity wins, free-fall velocity (surface at s ~ 1.2)
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Outlook |

e Model lacks as yet

= stellar outflows, disc outflows (X-winds?)

= all models treat disc with anomalous transport prescriptions

= source of turbulence? MRI? Still compatible with large-scale field?
e near-Keplerian, thin disks versus strongly magnetized, thick disks

= garantueed many, different instabilities at play in real disks

= e.g. Convective Continuum Instability (Blokland et al, A&A 467,
21, 2007)

e 3D effects, stability of (multi-component) outflows?
= twisted fields — kink instabilities

= shear flow interfaces: Kelvin-Helmholtz
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Outlook Il

e stability issue also for relativistic jets (AGN)
= Meliani & Keppens, arXiv:0709.3838
= cross-cut in fast inner, slow outer jet, AMR simulation
= different launch mechanism — different rotation profile
= interacting body-surface KH, Rayleigh-Taylor (centrifugal force)
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