Modeling accretion-ejection processes in magnetized young star environments

Rony Keppens

Centre for Plasma Astrophysics, K.U.Leuven FOM-Institute for Plasma Physics Rijnhuizen Astronomical Institute, Utrecht University

26 October 2007

Outline

- Young Stellar Objects: Observational clues and puzzles
- Magnetohydrodynamic modeling
 - \Rightarrow launching jets from accretion disks
 - \Rightarrow wind-jet interactions
 - \Rightarrow near-star accretion processes
- Outlook: bringing all scales together

Astrophysical Jets: YSO

• Forming stars: T-Tauri with mass $M_* \leq M_\odot$

 \Rightarrow bipolar jets, velocities up to 400 km/s

- accretion disk play role in launching process:
 - \Rightarrow proportionality between jet/disk luminosity

Astrophysical Jets

- astrophysical jets: ubiquitous in presence of accretion disks
 - \Rightarrow Young Stellar Objects (YSO)
 - \Rightarrow compact objects in binaries
 - \Rightarrow Active Galactic Nuclei (AGN)
- collimated, reach high velocities (up to c)
 - \Rightarrow mass source of the jet?
 - \Rightarrow how to collimate and keep collimated?
 - \Rightarrow how to launch and accelerate mass in jet?

MagnetoHydroDynamics

- Conserve MASS, MOMENTUM, ENERGY, MAGNETIC FLUX \Rightarrow 8 non-linear PDE

 $\Rightarrow \nabla \cdot \mathbf{B} = 0$: no magnetic monopoles

• 7 wavespeeds *entropy*, \pm *slow*, \pm *Alfvén*, \pm *fast* [anisotropic!]

MHD waves animation

Magnetic Accretion-Ejection structure

- key ingredients are: presence of accretion disk + ${\bf B}$
 - \Rightarrow observed versus 'artist impression' (for AGN)

Casse & Keppens, ApJ 581, 988 (2002)

- perform axially symmetric 2.5D MHD simulations
 - \Rightarrow disk with initial vertical B: self-consistently forms collimated jet
 - \Rightarrow 15 % of accreted mass persistently ejected

MAES

- mechanism for jet launch and acceleration
 - \Rightarrow mass source: accretion disk
 - \Rightarrow collimation and acceleration of jet: ${\bm B}$
- identical for YSO, compact objects, AGN:
 - \Rightarrow MAES model relies on its gravitational influence on disk material
 - \Rightarrow does not require specific disk/magnetosphere interaction
 - \Rightarrow object (plus magnetosphere or event horizon): point source
 - \Rightarrow consistent with observed jet radii at 'origin'

MAES: Streamlines

• in jet launch region: accretion and ejection

- \Rightarrow resistive disk treatment allows accretion
- \Rightarrow accretion rate as BC: mimics outer regions

MAES: persistent launch

- spatio-temporal resistivity only in disk
 - \Rightarrow accretion flow slips across vertical ${\bf B}$
 - \Rightarrow region above disk: ideal MHD (frozen-in)
- jet launch, once initiated, persists:
 - \Rightarrow material ejected from disk: 15 % of \dot{M}_A

MAES: hollow jets

• since jet launched from disk: hollow jet

 \Rightarrow reaches super-fastmagnetosonic speeds: accelerated while ejected

MAES: Force analysis

• Jet ejection mechanism: axial force analysis

- \Rightarrow thermal pressure gradient lifts matter
- \Rightarrow magnetic torque brakes in disk, spins up jet

MAES: Angular Momentum

- Angular Momentum: channeled by ${\bf B}$
 - \Rightarrow in disk: magnetic torque brakes azimuthally
 - \Rightarrow gravity wins from centrifugal: accretion
 - \Rightarrow AM flux parallel to poloidal flow/ \mathbf{B}_p
- torque $(\mathbf{J} \times \mathbf{B})_{\varphi}$ changes sign at disk surface:
 - \Rightarrow magnetocentrifugal acceleration of jet
- starts and stays collimated by magnetic hoop force

 \Rightarrow $B_{\!\varphi}$ created by rotating disk

MAES Jet extent

- radial extension of jet launching region
 - \Rightarrow equipartition field region
 - \Rightarrow sufficiently bent poloidal **B**(cold jet)

MAES Energetics

- Jet energetics
 - \Rightarrow disk material heats: compression & Ohmic
 - \Rightarrow hot jet emerges
- jet luminosity \propto energy liberated by accretion $GM_*\dot{M}_A/2R_I$

MAES Summary

• mechanism for launch

 \Rightarrow magnetic torque brakes disk material azimuthally and spins up jet matter

 \Rightarrow mass source for jet: disk

- \Rightarrow **B** collimates, accelerates
- \Rightarrow Jet formation animation
- accretor can be very different
 ⇒ YSO, compact object, AGN

Jet launching: improving the models

- Numerical 'proof of principle' (2.5D VAC code simulations)
 - \Rightarrow Jet Launch: ApJ **581**, 988 (2002)
 - \Rightarrow Energetics: ApJ **601**, 90 (2004)
- MAES model explains
 - \Rightarrow how jets are launched and accelerated
 - \Rightarrow why start and remain collimated
 - \Rightarrow underluminous disks and hot jets
- Recent improvements:

 \Rightarrow higher resolution (grid-adaptive) studies Zanni et al., A&A 469, 811 (2007)

 \Rightarrow including stellar outflows, viscosity in the disk *Meliani et al.*, A&A 460, 1 (2006)

Zanni et al., A&A 469, 811 (2007)

• FLASH code (with AMR); emphasize role of anomalous resistivity prescription

Two-component outflows

• Meliani et al.: A&A 460, 1 (2006)

 \Rightarrow disk 'turbulence' by enhanced visco-resistive $\alpha\text{-prescription}$

- \Rightarrow MHD Poynting flux of disc-jet: removes most AM from thin disc
- \Rightarrow \mathbf{B}_{φ} zero to $\beta \sim 1$ in disc scale height \Rightarrow effective magnetic torque
- wind region: hot corona (turbulent heating near axis)
 - \Rightarrow numerical trick: sink (0.1 AU) \rightarrow mass source along polar axis

Two-component outflows

- collimation differs for wind versus jet
 - \Rightarrow wind region forces: thermal + Lorentz (pinch)
 - \Rightarrow in turn collimated by disc-driven jet
- all axisymmetric, aimed at stationary endstates, unanswered:
 - \Rightarrow 3D jet stability and termination
 - \Rightarrow multi-component jets: interface dynamics?
 - \Rightarrow near star accretion dynamics

Near-star accretion

- Seminal work done by Romanova et al. (ApJ 578, 420, 2002)
 - \Rightarrow axisymmetric studies of 'stationary' accretion on magnetized stars
 - \Rightarrow relevant for T-Tauri stars with kG (aligned) dipole fields
 - \Rightarrow funnel flows connect disk to star, AM transport by magnetic torque
 - \Rightarrow meanwhile progressed to 3D unaligned dipoles
- Recent independent confirmation: Bessolaz et al (A&A, submitted)
 - \Rightarrow VAC simulations, using resistive disk and 2.5D
 - \Rightarrow Funnel flows are robust features, even down to 140 G fields
 - \Rightarrow However, realistic $\dot{M} \sim 10^{-8} M_{\odot} yr^{-1}$: need kG fields!

Bessolaz et al.

- uses split into static dipole and solve for B_1 (Tanaka 1994)
- Temporal evolution and grid:

Bessolaz et al.

- Aim of the study: relative position of truncation radius r_t, corotation radius r_{co}, equipartition between poloidal magnetic pressure and disc poloidal ram r_{bf}, disc thermal pressure
 - \Rightarrow Analytic criterion for a-priori determination of steady funnels

$$eta \sim 1, \quad \textit{and} \quad m_{s} = rac{u_{r}}{C_{s}} \simeq 1$$

 \Rightarrow express truncation radius (where accretion halts) in basic parameters

$$\frac{r_t}{R_*} \simeq 2 \ (m_s)^{2/7} B_*^{4/7} \dot{M}_a^{-2/7} M_*^{-1/7} R_*^{5/7}$$

for realistic CTTS values: truncation radius smaller than co-rotation
 ⇒ CTTS must always spin-up due to star-disc interaction!
 ⇒ unless other processes effective (stellar and disc jets again...)

Bessolaz et al.

- forces in funnel flow: first pressure gradient
 - \Rightarrow eventually gravity wins, free-fall velocity (surface at $s \sim 1.2$)

Outlook I

- Model lacks as yet
 - \Rightarrow stellar outflows, disc outflows (X-winds?)
 - \Rightarrow all models treat disc with anomalous transport prescriptions
 - \Rightarrow source of turbulence? MRI? Still compatible with large-scale field?
- near-Keplerian, thin disks versus strongly magnetized, thick disks
 - \Rightarrow garantueed many, different instabilities at play in real disks

 \Rightarrow e.g. Convective Continuum Instability (*Blokland et al, A&A 467, 21, 2007*)

- 3D effects, stability of (multi-component) outflows?
 - \Rightarrow twisted fields \rightarrow kink instabilities
 - \Rightarrow shear flow interfaces: Kelvin-Helmholtz

Outlook II

- stability issue also for relativistic jets (AGN)
 - \Rightarrow Meliani & Keppens, *arXiv:0709.3838*
 - \Rightarrow cross-cut in fast inner, slow outer jet, AMR simulation
 - \Rightarrow different launch mechanism \rightarrow different rotation profile
 - \Rightarrow interacting body-surface KH, Rayleigh-Taylor (centrifugal force)

