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ABSTRACT

We give further consideration to the problem of the evolution of a coronal, force-free magnetic field that
threads a differentially rotating, conducting Keplerian disk, extending the recent work of Li and coworkers.
This situation is described by the force-free Grad-Shafranov (GS) equation for the flux function �(r, z) that
labels the poloidal field lines (in cylindrical coordinates). The GS equation involves a functionH(�) describ-
ing the distribution of the poloidal current, which is determined by the differential rotation or ‘‘ twist ’’ of the
disk that increases linearly with time. We numerically solve the GS equation in a sequence of volumes of
increasing size corresponding to the expansion of the outer perfectly conducting boundaries at (Rm, Zm). The
outer boundaries model the influence of an external nonmagnetized plasma. The sequence of GS solutions
provides a model for the dynamical evolution of the magnetic field in response to (1) the increasing twist of
the disk and (2) the pressure of external plasma.We find solutions with magnetically collimated Poynting jets
in which there is a continuous outflow of energy, angular momentum, and toroidal magnetic flux from the
disk into the external space. This behavior contradicts the commonly accepted ‘‘ theorem ’’ of solar plasma
physics that the motion of the footpoints of a magnetic loop structure leads to a stationary magnetic field
configuration with zero power, angular momentum, and flux outflows. In addition, we discuss magnetohy-
drodynamic simulations that show quasi-stationary collimated Poynting jets similar to our GS solutions. In
contrast with the GS solutions, the simulations show a steady uncollimated hydromagnetic (nonforce-free)
outflow from the outer part of the disk. The Poynting jets are of interest for the understanding of the jets from
active galactic nuclei, microquasars, and possibly gamma-ray burst sources.

Subject headings: accretion, accretion disks — MHD

1. INTRODUCTION

Highly collimated, oppositely directed jets are observed
in active galaxies and quasars (see, e.g., Bridle & Eilek 1984)
and in old compact stars in binaries (Mirabel & Rodriguez
1994; Eikenberry et al. 1998). Further, well-collimated emis-
sion-line jets are seen in young stellar objects (Mundt 1985;
Büehrke, Mundt, & Ray 1988). Recent work favors models
in which the twisting of an ordered magnetic field threading
an accretion disk acts to magnetically accelerate the jets
(Meier, Koide, & Uchida 2001). There are two regimes: (1)
the hydromagnetic regime, in which energy and angular
momentum are carried by both the electromagnetic field
and the kinetic flux of matter, which is relevant to the jets
from young stellar objects; and (2) the Poynting flux regime,
in which energy and angular momentum from the disk are
carried predominantly by the electromagnetic field, which is
relevant to extragalactic and microquasar jets and possibly
to gamma-ray burst sources.

Stationary Poynting flux–dominated jets have been found
in axisymmetric magnetohydrodynamic (MHD) simula-
tions of the opening of magnetic loops threading a Kepler-
ian disk (Romanova et al. 1998; Ustyugova et al. 2000).
Theoretical studies have developed models for Poynting
outflows from accretion disks (Lovelace, Wang, & Sulkanen

1987; Colgate & Li 1998). The present work represents a
continuation of the study by Li et al. (2001), in which self-
consistent, axisymmetric, nonrelativistic solutions of the
Grad-Shafranov (GS) equation are calculated inside given
conducting boundaries. The solutions are self-consistent in
the respect that the twist of each field line is that due to the
differential rotation of a Keplerian disk.

In x 2 we summarize the theory, and in x 3 we discuss the
different types of solutions found. In x 4 we develop an ana-
lytic model for Poynting jets. In x 5 we discuss the conse-
quences of expanding the boundaries. Sections 6–9 discuss
the relevant conservation laws. In x 10 we compare the
Poynting outflows with centrifugally launched winds. In
x 11 we discuss the collapse of the inner part of the disk due
to angular momentum outflow to Poynting jets. In x 12 we
discuss conditions for occurrence of Poynting jets, including
the influence of the kink instability. In x 13 we give results of
MHD simulations that give Poynting jets similar to our GS
solutions. Section 14 gives conclusions from this work.

2. THEORY OF POYNTING OUTFLOWS

Here, we consider further the theory of Poynting out-
flows (Li et al. 2001). We assume that magnetic field
loops thread a differentially rotating, highly conducting
Keplerian accretion disk at some initial time t ¼ 0. Above
the disk, we assume a ‘‘ coronal ’’ or force-free magnetic
field in the nonrelativistic limit. This situation is
described by the force-free GS equation for the flux func-
tion �(r, z), which labels the poloidal field lines (in cylin-
drical coordinates). The GS equation involves a function
H(�) that describes the distribution of poloidal current,
which is determined by the differential rotation or
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‘‘ twist ’’ of the disk that increases linearly with time. We
numerically solve the GS equation in a sequence of vol-
umes of increasing size corresponding to the expansion of
the outer perfectly conducting boundaries at (Rm, Zm).
The outer boundaries model the influence of an external
nonmagnetized plasma. The sequence of GS solutions
provides a model for the dynamical evolution of the mag-
netic field in response to (1) the increasing twist of the
disk and (2) the pressure of external plasma.

Cylindrical (r, �, z) coordinates are used, and axi-
symmetry is assumed. Thus, the magnetic field has
the form B ¼ Bp þ B�}̂}; with Bp ¼ Brr̂rþ Bzẑz: We can
write Br ¼ �ð1=rÞð@�=@zÞ;Bz ¼ ð1=rÞð@�=@rÞ; where
�ðr; zÞ � rA�ðr; zÞ. In the force-free limit, the magnetic
energy density B2=ð8�Þ is much larger than the kinetic or
thermal energy densities; that is, the flow speeds are sub-Alf-
vénic, v25 v2A ¼ B2=4��, where vA is the Alfvén velocity. In
this limit, 0 � J � B; therefore, J ¼ �B (Gold & Hoyle
1960). Because

D

x J ¼ 0, ðB x

D

Þ� ¼ 0, and consequently
� ¼ �ð�Þ, as is well known. Thus, Ampère’s equation
becomes

D

� B ¼ 4��ð�ÞB=c. The r and z components of
Ampère’s equation imply

rB� ¼ Hð�Þ ; dHð�Þ
d�

¼ 4��ð�Þ
c

;

where H(�) is another function of �. Thus, Hð�Þ ¼ const
are lines of constant poloidal current density;
Jp ¼ ðc=4�ÞðdH=d�ÞBp so that ðJp xrÞH ¼ 0. The toroidal
component of Ampère’s equation gives

D�� ¼ �Hð�Þ dHð�Þ
d�

; ð1Þ

with D� � @2=@r2 � ð1=rÞð@=@rÞ þ @2=@z2; which is the GS
equation for� (see, e.g., Lovelace et al. 1987; Li et al. 2001).

Ampère’s law gives
H
dl xB ¼ ð4�=cÞ

R
dS x J , so that

rB�ðr; zÞ ¼ Hð�Þ is ð2=cÞ times the current flowing through
a circular area of radius r (with normal ẑz) labeled by
�ðr; zÞ ¼ const. Equivalently, �H½�ðr; 0Þ� is ð2=cÞ� the
current flowing into the area of the disk �r. For all cases
studied here, �Hð�Þ has a maximum so that the total cur-
rent flowing into the disk for r � rm is Itot ¼ ð2=cÞð�HÞmax;
where rm is such that �H½�ðrm; 0Þ� ¼ ð�HÞmax so that rm is
less than the radius of the O-point, r0. The same total cur-
rent Itot flows out of the region of the disk r ¼ rm to r0.

We consider an initial value problem in which the disk at
t ¼ 0 is threaded by a dipole-like poloidal magnetic field.
The form ofH(�) is then determined by the differential rota-
tion of the disk; the azimuthal twist of a given field line going
from an inner footpoint at r1 to an outer footpoint at r2 is
fixed by the differential rotation of the disk. The field line
slippage speed through the disk due to the disk’s finite mag-
netic diffusivity is estimated to be negligible compared with
the Keplerian velocity. For a given field line, we have
r d�=B� ¼ dsp=Bp, where dsp � dr2 þ dz2ð Þ1=2 is the poloi-
dal arc length along the field line, and Bp � B2

r þ B2
zð Þ1=2.

The total twist of a field-line loop is

D�ð�Þ ¼
Z 2

1

dsp
�B�

rBp
¼ �Hð�Þ

Z 2

1

dsp
r2Bp

; ð2Þ

with the sign included to give D� > 0. For a Keplerian disk
around an object of mass M, the angular rotation is

!K ¼ GM=r3ð Þ1=2, so that the field-line twist after a time t is

D�ð�Þ ¼ !0 t
r0
r1

� �3=2

� r0
r2

� �3=2
" #

¼ ð!0 tÞ F �

�0
; ð3Þ

where r0 is the radius of the O-point, !0 � GM=r30
� �1=2

, and
F is a dimensionless function (the quantity in the square
brackets). The O-point is the point in the midplane of the
disk encircled by the poloidal magnetic field lines; at this
point Bp ¼ 0. At sufficiently small r1, one reaches the inner
radius of the disk rið5 r0Þ, where we assume !K saturates at
the value !Ki ¼ GM=r3i

� �1=2
. For the dipole-like field of

Figure 1, F � 39=8ð�0=�Þ3=4 for �=�05 1, while
F � 3:64ð1��=�0Þ1=2 for 1��=�05 1.

For an accretion disk around a massive black hole
M ¼ M8108 M� in the nucleus of galaxy, the twist is
T ¼ ðt=3:17 daysÞðr0=1015 cmÞ3=2=

ffiffiffiffiffiffiffi
M8

p
. The inner radius

of the disk is ri � M8 9� 1013ð Þ cm for a Schwarzschild
black hole.

3. NUMERICAL SOLUTIONS OF GRAD-SHAFRANOV
EQUATION

We solve equation (1) inside a cylindrical ‘‘ box,’’ r ¼ 0 to
Rm and z ¼ 0 to Zm, with H(�) determined by iteratively
solving equations (1)–(3) (see Li et al. 2001; Finn & Chen
1990). The outer boundaries (r ¼ Rm and z ¼ Zm) are
treated as conducting surfaces representing the interface

0.1

0.2
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0

2
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z Bp

Βφ=0

disk

=Ψ

Fig. 1.—‘‘ Initial ’’ dipole-like vacuum magnetic field. In this and
subsequent plots, r and z are measured in units of the radius r0 of the
O-point in the disk plane. The solid lines are the magnetic field lines for
the case in which the flux function on the disk surface is
�ðr; z ¼ 0Þ ¼ a3r2K=ða2 þ r2Þ3=2 with a ¼ r0=

ffiffiffi
2

p
. In this and subsequent

plots, � is measured in units of �0 ¼ r20K=3
3=2. Note that

Bzð0Þ ¼ 6
ffiffiffi
3

p
�0=r20 � 10:4�0=r20. The dashed lines are the field lines for the

case in which the outer boundaries (Rm ¼ 10; Zm ¼ 10) are perfectly con-
ducting; for this case, �ðr; z ¼ 0Þ ! �ðr; 0Þ½1� ðr=r0 � 1Þ2=81�, so that the
O-point is still at r0, and �0 is unchanged. Because of axisymmetry and
reflection symmetry about the z ¼ 0 plane, the field need only be shown in
one quadrant.
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between the coronal B field and external, nonmagnetized
plasma. The external plasma will be pushed outward by the
coronal field as it is twisted. Thus, we consider the B field
behavior asRm ! 1 andZm ! 1.

For a dipole-like field threading the disk (Fig. 1), it is nat-
ural to measure lengths in terms of the radius of the O-point
in the disk, r0. The natural value of the flux function � is its
maximum value at the O-point, �0. In turn, a natural unit
for the magnetic field strength is �0=r

2
0. Notice that in the

case of Figure 1, �0=r
2
0 � Bzð0Þ=10:4. Further, a natural

unit for the total current (times c=2), cItot=2 ¼ ð�HÞmax, is
�0=r0. Also, we measure the total toroidal flux and the
magnetic energy,

�t ¼
Z

dr dzB�; Wm ¼ 1
4

Z
r dr dzB2 ; ð4Þ

in units of �0 and �2
0=r0, respectively. For boundary condi-

tions, on the disk surface, �(r, 0) is fixed and equal to its
‘‘ initial ’’ value on the disk because of the disk’s perfect con-
ductivity. On the z-axis, we can take �ð0; zÞ ¼ 0, because
Br ¼ �ð1=rÞð@�=@zÞ ¼ 0. On the conducting outer bounda-
ries, �ðr;ZmÞ ¼ 0 and �ðRm; zÞ ¼ 0. Note, however, that in
x 14 we discuss simulation results for the case of open outer
boundaries. A uniform (r, z) grid of 200� 200 was used.

Figure 2 shows the behavior of a set of field solutions of
equation (1) as the twist T ¼ !0t is increased. The nature of
the solutions changes dramatically as the twist increases
above a critical value Tc � 1:14 rad. For T < Tc, the nature
of the field solutions is shown in Figures 3 and 4. The twist-
ing of the field by the differential rotation of the disk
‘‘ pumps ’’ magnetic flux and energy into the disk corona,
and the field tends to ‘‘ inflate.’’ This behavior of coronal
magnetic field loops of the Sun as a result of footpoint twist-
ing is well known from the works of Aly (1984, 1991) and
Sturrock (1991). The self-similar inflation of a force-free

field threading a non-Keplerian disk without outer bounda-
ries was studied by Lynden-Bell & Boily (1994), and their
solution for small twists is analogous to our low-twist solu-
tions. The expansion of a force-free field into finite-pressure
external plasma has been studied by Lynden-Bell (1996) and
Li et al. (2001), and the poloidal field is found to fairly uni-
formly fill the coronal space.

For T > Tc, a new field configuration appears with a dif-
ferent topology. This is shown in Figure 5, where it is seen
that a ‘‘ plasmoid ’’ consisting of toroidal flux has detached
from the disk and is separated by the dashed field line, which
has an X-point above the O-point on the disk. Figure 6
shows a three-dimensional view of two representative field
lines for the same case. These high-twist equilibria consist of
a region near the axis that is magnetically collimated by the
toroidal B� field, and a region far from the axis, on the outer
radial boundary, which is anticollimated in the sense that it
is pushed against the outer boundary. The field lines return-
ing to the disk at r > r0 are anticollimated by the pressure of
the toroidal magnetic field. The poloidal field fills only a
small part of the coronal space. In a purely analytical analy-
sis, Heyvaerts (2001) has independently foundMHD equili-
bria involving the simultaneous formation of a collimated
axial jet and an uncollimated outflow. Figure 6 shows a
three-dimensional view of sample field lines.

As a test of our numerical solutions, note that conserva-
tion of axial momentum can be written as

D

x ðT x ẑzÞ ¼ 0 ; T x ẑz � B2ẑz

8�
� BzBp

4�
: ð5Þ

Integration of equation (5) over the ‘‘ box ’’ (Rm, Zm) givesZ Rm

0

r dr ðB2
r þ B2

� � B2
zÞz¼0 ¼

Z Rm

0

r dr ðB2
r Þz¼Zm

; ð6Þ
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Fig. 2.—Summary of dependences of numerical solutions of eq. (1) on
the twist T ¼ !0t. For these solutions,H(�) satisfies eqs. (2) and (3). Here,
Wm is the magnetic energy (withWm0 � 0:57 the energy for zero twist),�t is
the toroidal flux, and (�H )max is the total poloidal current (times c=2). The
solutions are inside a conducting box with Rm ¼ 10 ¼ Zm for an initial
dipole-like field with O-point at r0 ¼ 1, as shown by the dashed lines in
Fig. 1. The value of T where the curves jump separates the two types of
solutions found. The error bar indicates the estimated uncertainty in the
values at T 	 2, which results from the finite grid used in calculating
D�(�).
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Fig. 3.—Poloidal field solutions for case of conducting boundaries for
twists T ¼ 0:67 rad (dashed lines) and T ¼ 1:1 rad (solid lines). The initial
poloidal magnetic field is shown by the dashed lines in Fig. 1.
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where the integral on the left-hand side represents the flux of
momentum from the disk into the box, and the other inte-
gral the flux of momentum out of the top of the box. This
equation is accurately satisfied by our numerical solutions;
the typical errors are less than 0.1%.

4. ANALYTIC SOLUTION FOR POYNTING JET

Most of the twist D� of a field line of a Poynting jet occurs
along the jet from z ¼ 0 to Zm. Because
�r2d�=Hð�Þ ¼ dz=Bz, we have

D�ð�Þ
�Hð�Þ ¼

ð!0tÞFð�=�0Þ
�Hð�Þ � Zm

r2Bz
; ð7Þ

where r2Bz(r, z) is evaluated on the straight part of the jet at
r ¼ rð�Þ. In the core of the jet �5�0, we have
F � 39=8ð�0=�Þ3=4, and in this region we can take
� ¼ C�0ðr=r0Þq and H ¼ �Kð�0=r0Þð�=�0Þs; where C, q,
K, and s are dimensionless constants. Equation (1) for
the straight part of the jet implies q ¼ 1=ð1� sÞ and
C2ð1�sÞ ¼ sð1� sÞ2K2=ð1� 2sÞ. Thus, we find s ¼ 1=4, so
that q ¼ 4=3,C ¼ 9=32ð ÞK4=3, andK ¼ 31=84ðr0!0t=ZmÞ.

In order to have a Poynting jet, we find that K must be
larger than �0.5. This corresponds directly to the condition
T > Tc for the occurrence of the high-twist solutions. The
condition arises from the fact that there is a competition
between the buildup of toroidal flux inside the box due to
twisting by the disk, which acts to increase B�, and the
expansion of the boundaries, which acts to decrease B� (see
x 12). If the boundaries expand too rapidly, B� does not
increase sufficiently to give a self-collimated Poynting jet.
For the case of uniform expansion of the top boundary,
Zm ¼ Vzt, this condition is the same as Vz < 9:2ðr0!0Þ. For

Fig. 4.—Top: The field-line twist functionF(�), with the circles indicat-
ing the derived numerical values and the smooth curve the theoretical
dependence for a Keplerian disk given by eq. (3). The case shown corre-
sponds to the solid field lines in Fig. 2, where the twist is T ¼ 1:1 rad. Here,
� is measured in units of �0, the value at the O-point. For this case, the
bottom panel shows the poloidal current flow �H(�) (in units of �0=r0),
with the points indicating the numerical values and the smooth curve an
analytic fit. The initial poloidal magnetic field is shown by the dashed lines
in Fig. 1.
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Fig. 5.—Poloidal field lines for Poynting jet case for twist T ¼ 1:84 rad
and ð�HÞmax ¼ 1:13. The initial poloidal magnetic field is shown by the
dashed lines in Fig. 1. The dashed contour is the separatrix with the X-point
indicated. Note that the radial width of the upgoing field lines along the axis
is about one-half the width of downgoing field lines at the outer wall as
required for equilibrium.

Fig. 6.—Three-dimensional view of two field lines originating from the
disk at x ¼ 
0:32r0 (� ¼ 0:4) for the Poynting jet of Fig. 5. Each field line
has a twist of �8.22 rad or about 1.31 rotations about the z-axis from its
beginning at r1 and end at r2. The z-axis is tilted toward the viewer by 30

�.
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the case of Figure 5, K � 0:844. The field components in
the straight part of the jet are

B� ¼ �
ffiffiffi
2

p
Bz ¼ �

ffiffiffi
2

p 3

16

� �1=3

K4=3 �0

r20

� �
r0
r

� �2=3

: ð8Þ

These dependences agree approximately with those found in
numerical simulations of Poynting jets (Ustyugova et al.
2000). On the disk,� � 33=2�0ðr=r0Þ2 for r < r0=33=4. Using
this and the formula for �(r) gives the relation between the
radius of a field line in the disk, denoted rd, and its radius in
the jet, r=r0 ¼ 6:5ðrd=r0Þ3=2K�1. Thus, the power law for �
is applicable for r1 < r < r2, where r1 ¼ 6:5r0ðri=r0Þ3=2=K
and r2 ¼ 1:9r0=K, with ri the inner radius of the disk. The
outer edge of the Poynting jet has a transition layer where
the axial field changes from Bz(r2) to zero, while (minus) the
toroidal field increases from �B�(r2) to ð�HÞmax=r2. Using
equation (6), which is only approximate at r2, gives
ð�HÞmax � 1:2K�0=r0. This dependence agrees approxi-
mately with our GS solutions.

5. EXPANSION OF BOUNDARIES

The magnetic forces on the outer wall increase by a large
factor in going from the low-twist to high-twist solutions.
The radial force on the cylindrical wall and the axial force
on the top wall are

Fr ¼ 1
4Rm

Z Zm

0

dz B2
z

����
Rm

; Fz ¼ 1
4

Z Rm

0

r dr B2
r

����
Zm

: ð9Þ

For the low-twist solution of Figure 3 (T ¼ 1:1),
ðFr;FzÞ � ð0:0061; 0:013Þ, whereas for the high-twist
solution of Figure 5 (T ¼ 1:79), ðFr;FzÞ � ð0:26; 0:45Þ in
units of ð�0=r0Þ2.

Figure 7 shows the radial dependence of the magnetic
pressure on the top boundary for the cases of low-twist and
high-twist solutions.

Different behavior is exhibited by the low-twist and high-
twist solutions as the conducting boundaries are moved out-
ward. For the low-twist solutions, the poloidal field tends to
expand outward to fairly uniformly fill the available space.
As Rm ! 1 and Zm ! 1, we find that these solutions are

similar to those obtained by Lynden-Bell & Boily (1994),
where there are no outer boundaries.

In contrast, for the high-twist solutions, the poloidal field
near the axis maintains its collimation because of B�,
whereas the ‘‘ return ’’ poloidal field far from the axis is
pushed against the outer cylindrical wall because of the B�

field. As Rm ! 1 and Zm ! 1, the collimated field near
the axis will extend outward along the z-axis in the absence
of instabilities. It is clear from Figure 7 that the magnetic
pressure on the top boundary peaks near the axis. Thus, this
region of the boundary should expand most rapidly in the
physical case in which the boundary is an interface with
external plasma.

Estimation of the axial expansion of a Poynting jet can
readily be made, assuming that a region of radius 	gr2
(g 	 2 3) of the jet expands with velocity Vz into a constant
density external medium. For likely conditions, Vz is much
larger than the sound speed in the external medium so that
the ram pressure due to the jet motion is �extV 2

z , assuming
ðVz=cÞ25 1 as required by our nonrelativistic treatment.
Balancing this pressure with the magnetic pressure of the jet
gives

�extV
2
z 	 ð�HÞ2max

4�g2r22
	 0:14

Bzð0Þ
g

	 
2 r0!0

Vz

� �4

;

or

Vz 	 ðr0!0Þ2=3
Bzð0Þ
g

	 
1=3�
�
1=6
ext : ð10Þ

The condition for a Poynting jet K > 0:5 corresponds to
Vz < 9:2ðr0!0Þ. For Bzð0Þ ¼ 100 G, r0 ¼ 1015 cm, and
M ¼ 108 M�, the external density �ext must be larger than
~2� 10�22 g cm�3 in order to have Vz < c. For larger mag-
netic fields, a much larger external density is needed to give
Vz < c. This points out the need for a relativistic treatment
of the Poynting jet expansion.

6. ANGULAR MOMENTUM CONSERVATION

Conservation of angular momentum about the z-axis can
be written as

D

x ~JJ ¼ 0 ; ~JJ � � rBpB�

4�
¼ �BpH

4�
; ð11Þ

where ~JJ is the angular momentum flux-density vector. Inte-
gration of equation (11) over the ‘‘ box ’’ (Rm,Zm) gives

0 ¼ �1
2

Z Rm

0

r dr HðBzÞz¼0 : ð12Þ

The subscript z ¼ 0 here and subsequently indicates that
the quantity is evaluated on the top surface of the disk.
For a dipole-like field threading the disk where
�ðRm; 0Þ ¼ 0 ¼ �ð0; 0Þ, equation (12) gives

0 ¼ �1
2

Z �0

0

d�Hð�Þ � 1
2

Z 0

�0

d�Hð�Þ : ð13Þ

The first integral represents the outflow of angular momen-
tum from the inner part of the disk (interior to the O-point),
and this equals the angular momentum inflow into the outer
part of the disk given by the second integral.

0

0.002

0.004

0.006

0.008

0 2 4 6 8 10r

p
mag

10 pmag

Fig. 7.—Radial dependences of the magnetic pressure pmag ¼
B2ðr;ZmÞ=4� on the top boundary for the cases of high-twist (T ¼ 1:79;
top curve) and low-twist (T ¼ 1:1; bottom curve) solutions. The pressure is
in units of ð�0=r

2
0Þ

2 � Bzð0Þ=10:4½ �2.
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The outflow of angular momentum from the inner part
of the disk causes enhanced accretion of this part of the
disk, whereas the inflow of angular momentum to the
outer disk reduces the accretion rate. Because the
Poynting outflows carry negligible matter, the continuity
equation for the disk is

@�

@t
þ

D

x ð�vrr̂rÞ ¼ 0 ; ð14Þ

where �(r, t) is the surface mass density of the disk. The
continuity equation for the disk angular momentum is

@ð�lÞ
@t

þ

D

x ð�vrl r̂rþTvis
r r̂rÞ ¼ rðB�BzÞz¼0

2�
; ð15Þ

where Tvis
r represents the viscous transport of angular

momentum in the disk, the term on the right-hand side is
the outflow or inflow of angular momentum (from the
two sides of the disk) due to the magnetic field, and l is
the specific angular momentum of the disk matter. The
disk is assumed almost Keplerian, so that
l ¼ GMrð Þ1=2¼ rvK, and consequently the two continuity
equations give the mass accretion rate _MM ¼ _MMB þ _MMvis,

where

_MMBðrÞ � �2�r�vr ¼ �2
r2

vK

� �
ðB�BzÞz¼0 ð16Þ

is the ‘‘ magnetically driven ’’ mass accretion rate, and
_MMvis ¼ 6�

ffiffi
r

p
dð�

ffiffi
r

p
�Þ=dr is the viscous accretion rate

with � the kinematic viscosity (Lovelace, Newman, &
Romanova 1997). We have _MMB > 0 (or less than 0) for
r < r0 (or r > r0). The accretion speed is
u � �vr ¼ uB þ uvis, with uB ¼ _MMB=ð2�r�Þ and
uvis ¼ _MMvis=ð2�r�Þ.

Figure 8 shows the radial dependence of _MMB for a
high-twist case. That _MMB due to the Poynting outflow is
a function of r emphasizes the fact that disk is not
stationary.

7. MAGNETIC FIELD TRANSPORT IN THE DISK

The poloidal magnetic field threading the disk tends to
be advected inward with the accretion flow, but at the
same time it may diffuse through the disk because of a
finite magnetic diffusivity �m of the disk. The continuity
equation for poloidal flux through the disk Bzðr; 0; tÞ is

@Bz

@t
þ

D

x ½vrBzr̂rþUrBzr̂r� ¼ 0 ; ð17Þ

where Ur ¼ ð�m=hÞ tanð�Þ is the outward diffusive drift
speed, h the half-thickness of the disk, tanð�Þ �
ðBr=BzÞz¼0, and a smaller, second-order diffusion term
(�m@2Bz=@r2) has been omitted (see Lovelace et al. 1997).
For cases in which the diffusivity is of the order of the
viscosity and where the viscosity is given by the Shakura
& Sunyaev (1973) prescription � ¼ �csh (with � < 1 and
cs the midplane sound speed), the diffusive drift speed is
Ur 	 �cs tanð�Þ. For a strong magnetic field threading
the disk, the accretion speed u in the inner part of the
disk (r < r0) may be large with uB4uvis and uB > Ur, so
that the disk flow advects the Bz(r, 0) field inward. On
the other hand, at large radii, the magnitude of u is prob-
ably much smaller, so that the Bz(r, 0) field tends to drift
outward, Ur > u.

8. ENERGY CONSERVATION

We assume the coronal plasma is perfectly conducting,
so that E ¼ �v� B=c. For quasi-stationary and axisym-
metric conditions,

D

� E ¼ 0, and thus E� ¼ 0; and
Ep ¼ �r�, so that vp / 
Bp, and the electrostatic
potential � ¼ �ð�Þ. Thus, E ¼ ��r�=c, with �ð�Þ �
d�ð�Þ=d�. For the situations considered here, all field
lines pass through the disk. At the disk surface,
Erðr; 0Þ ¼ �ðv�ÞdiskBzðr; 0Þ=c, since vz ¼ 0. Therefore,
�½�ðr; 0Þ� ¼ ðv�Þdisk=r.

For a force-free plasma, we have

@

@t

B2

8�

� �
þ

D

x
c

4�
E � B

� �
¼ 0 : ð18Þ

Integration of equation (18) over the ‘‘ box ’’ (r ¼ 0 to
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Fig. 8.—Top: Radial dependence of the mass accretion rate of the disk
_MMB due to the Poynting outflow from the disk, and (0:1�) the Poynting
power outflow per unit radius d _EEB=dr for quasi-stationary conditions.
Bottom: The radial dependence of the angle between poloidal field lines and
the z-axis at the disk surface, � ¼ tan�1ðjBr=BzjÞ. Both panels are for the
high-twist case of Figs. 5–7. As mentioned, for � > 0:95 or
0:764 < r < 1:33, the field lines are closed. In the interval 1 < r < 1:5,
Br=Bz is less than zero.
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Rm; z ¼ 0 toZm) gives

dWm

dt
¼ � 1

2

Z Rm

0

rdr ðv�B�BzÞz¼0

� 1

4
_RRmaxRm

Z Zm

0

dz B2ðRm; zÞ

� 1

4
_ZZm

Z Rm

0

rdr B2ðr;ZmÞ ; ð19Þ

where Wm is the magnetic field energy in the box (eq. [4]).
The second and third integrals in equation (19) represent
the energy expended in ‘‘ pushing ’’ the boundaries outward
(the p dV work). The first integral represents the outflow
of energy from the inner part of the disk surface (inside
the O-point) and the inflow into the outer part of the
disk. For a dipole-like field threading the disk where
�ðRm; 0Þ ¼ 0 ¼ �ð0; 0Þ, the first integral for the power out-
put from the disk can be rewritten as

� 1

2

Z �0

0

d�D _�� ð�ÞHð�Þ ¼
!0�2

0

2r0

Z 1

0

d ~�� ~FF½� ~HHð~��Þ� ; ð20Þ

where !0 � GM=r30
� �1=2

, and the tildes indicate dimension-
less variables. For the low-twist solution (T ¼ 1:1) of Figure
3, the dimensionless integral denotedI � 1:75, whereas for
the high-twist solution of Figure 5 (T ¼ 1:84), I � 3:05.
Thus,

_EE � 0:9� 1045 ergs s�1 I

3

� �
Bzð0Þ
3 kG

	 
2
r0

1015 cm

� �3=2

� M

108 M�

� �1=2

ð21Þ

for the power output from the two sides of the disk.
The Poynting power outflow per unit radius from the two

sides of the disk is

d _EEB

dr
¼ �rvKðB�BzÞz¼0 ¼

v2K
2r

� �
_MMB ð22Þ

for quasi-stationary conditions. Figure 8 shows the radial
dependence of d _EEB=dr, which indicates that most of the
power outflow occurs in the inner part of the disk.

9. GENERATION OF TOROIDAL FLUX

Perfect conductivity and Faraday’s law imply

@B

@t
¼

D

� ðv� BÞ ; ð23Þ

where v is the plasma flow velocity. We apply this equation
to a ‘‘ box ’’ extending from the disk at z ¼ 0 to a nonrotat-
ing, perfectly conducting surface at z ¼ Zm, and from the
axis r ¼ 0 to a cylindrical, nonrotating, perfectly conducting
surface at r ¼ Rm. These outer surfaces are allowed tomove,
so that Rm and Zm are generally time dependent. The toroi-
dal flux�t (eq. [4]) obeys

d�t

dt
¼

Z Rm

0

drðv�Bz � vzB�Þ
����
Zm

0

�
Z Zm

0

dzðvrB� � v�BrÞ
����
Rm

0

: ð24Þ

On the top boundary, z ¼ Zm, Bz ¼ 0, and B� ¼ 0; on the
outer cylindrical boundary, r ¼ Rm, Br ¼ 0, and B� ¼ 0;
on the z-axis, B� ¼ 0 and Br ¼ 0; and on the disk,
vzðr; z ¼ 0Þ ¼ 0. Consequently, equation (24) simplifies to

d�t

dt
¼ �

Z Rm

0

dr v�Bzðr; z ¼ 0Þ ; ð25Þ

where v� ¼ GM=rð Þ1=2 is the azimuthal velocity of the disk.
The integrand of equation (25) is independent of time
in view of our assumption that �ðr; 0Þ, and thus,
Bzðr; 0Þ ¼ ð1=rÞ@�ðr; 0Þ=@r is time independent.

For a dipole-like field threading the disk [where �(r, 0)
increases from zero to a maximum �0 and then decreases to
zero at r ¼ Rm], equation (25) can be rewritten as

d�t

dt
¼ �

Z �0

0

d� D _�� ð�Þ ; ð26Þ

where D _��ð�Þ is the time derivative of equation (3),
which is independent of time. For the dipole-like
field of Figure 1, evaluation of this integral gives
d�t=dt � �12:1!0�0 � �12:1!0½Bzð0Þ=10:4�r20. Thus,

d�t

dt
� � 1:3� 1028

G cm2

s

Bzð0Þ
3 kG

	 

r0

1015 cm

� �1=2

� M

108 M�

� �1=2

ð27Þ

is the toroidal flux generation rate from one side of the disk.

10. POYNTING VERSUS CENTRIFUGAL OUTFLOWS

The centrifugal force near the surface of a Keplerian disk
has a role in launching hydromagnetic outflows (Blandford
& Payne 1982). The ‘‘ centrifugal launching ’’ requires that
the field lines (projected into the poloidal plane) be tilted
away from the z-axis by an angle h greater than 30�. The
magnetic force, dominantly dðB2

�=8�Þ=dz, is comparably
important for launching hydromagnetic outflows (Love-
lace, Berk, & Contopoulos 1991; Ustyugova et al. 1999); it
also increases as h increases. Figure 8 shows the radial varia-
tion of �ðrÞ ¼ tan�1ðjBr=BzjÞz¼0 for a high-twist case. For
this case, � < 30� for r < 0:3r0, which includes the part of
the disk giving the largest power output per unit radius,
d _EEB=dr, shown in the top panel of Figure 8. Thus, there is a
Poynting outflow under conditions where no centrifugal
outflow occurs.

However, for the part of the disk at which � > 30�,
we predict a centrifugal hydromagnetic outflow with
�ðB�BzÞ > 0 and inward magnetically driven accretion,
uB > 0 (see Ustyugova et al. 1999). Hydromagnetic outflows
from the region r > r0 are found in the MHD simulations
discussed by Ustyugova et al. (2000) and in x 13.

11. COLLAPSE OF INNER DISK

Quasi-stationary Poynting jets from the two sides of the
disk within r0 give an energy outflow per unit radius of the
disk d _EEB=dr ¼ rvKð�B�BzÞh, where h indicates evaluation
at the top surface of the disk. This outflow
~r0d _EEB=dr 	 vKðr0Þð�0=r0Þ2 is estimated in equation (22),
which agrees approximately with the values derived from
the simulations (see x 14).
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For long timescales, the Poynting jet is, of course, time
dependent because of the angular momentum it extracts
from the inner disk (r < r0). This loss of angular momentum
leads to a ‘‘ global magnetic instability ’’ and collapse of the
inner disk (Lovelace et al. 1997). An approximate model of
this collapse can be made if the inner disk mass Md is
concentrated near the O-point radius r0(t), if the field-line
slippage through the disk is negligible (see x 8), �0 ¼ const,
and if ð�rB�Þmax 	 �0=r0ðtÞ (as found here). Then,
Mddr0=dt ¼ �2�2

0ðGMr0Þ�1=2: If ti denotes the time at
which r0ðtiÞ ¼ ri (the inner radius of the disk), then
r0ðtÞ ¼ ri½1� ðt� tiÞ=tcoll�2=3; for t � ti, where tcoll ¼
GMð Þ1=2 Mdr

3=2
i =ð3�2

0Þ is the timescale for the collapse
of the inner disk. [Note that the timescale for r0 to decrease
by a factor of 2 is 	 tiðr0=riÞ3=24ti for r04ri.] The power
output to the Poynting jets is

_EEðtÞ ¼ 2

3

DEtot

tcoll
1� t� ti

tcoll

� ��5=3

; ð28Þ

where DEtot ¼ GMMd=2ri is the total energy of
the outburst. Roughly, tcoll 	 2 days M2

8 ðMd=M�Þ
�ð6� 1032 G cm2=�0Þ2 for a Schwarzschild black hole,
where validity of the analysis requires tcoll4ti. Such out-
bursts may explain the flares of active galactic nucleus
blazar sources (Romanova & Lovelace 1997; Romanova
1999; Levinson 1998) and the one-time outbursts of
gamma-ray burst sources (Katz 1997).

12. OCCURRENCE OF POYNTING JETS
AND KINK INSTABILITY

The rate at which toroidal flux �t is created in the region
above the disk is d�t=dt � �12!0�0 (see x 10). If the area
RmZm of this region is fixed because of a very dense external
plasma, the average value of�B� > 0 in it increases. On the
other hand, if the area RmZm increases rapidly enough, �B�

will decrease. The Poynting jets occur under conditions in
which �B� increases to a sufficient extent to cause pinching
of the poloidal magnetic field. Because the most rapid
expansion of theB field occurs in the z-direction, a necessary
condition for occurrence of a Poynting jet is that the rate of
expansion of the boundary Vz ¼ dZm=dt be bounded by
some constant. In fact, the condition obtained in x 4 for
occurrence of Poynting jets has this form,Vz < 9:2ð!0r0Þ.

Note that there may be ‘‘ self-regulation ’’ in the respect
that the field configuration that occurs is at the ‘‘ boundary ’’
between low- and high-twist solutions. In view of Figure 7,
the low-twist field gives a gradual expansion of the bounda-
ries, which allows buildup of toroidal flux, whereas the
high-twist field gives a more rapid expansion, which tends
to give a slower increase of�t.

The region of the collimated field (see Fig. 5)—the Poynt-
ing jet—has v25 v2A and is kink unstable according to the
standard nonrelativistic analysis (e.g., Bateman 1980). The
instability will lead to a helical distortion of the jet with the
nonlinear amplitude of shift of the helix Dr 	 vAt, and with
the helix having the same twist about the z-axis as the axi-
symmetric B field. Note, however, that for the astrophysical
conditions of interest, vA � jBj= 4��ð Þ1=2 is likely to be larger
than the speed of light. A relativistic perturbation analysis is
then required, including the displacement current. The
physical Alfvén speed is VA ¼ c=ð1þ c2=v2AÞ

1=2 < c. Thus,
the speed of lateral displacement of the helix is less than c.

The evolution of the Poynting jet evidently depends on both
VA and the velocity of propagation of the ‘‘ head ’’ of the jet
Vz (x 5), which may be relativistic. Relativistic propagation
of the jet’s head may act to limit the amplitude of helical
kink distortion of the jet. On the other hand, a subrelativis-
tic propagation of the head may allow the helix amplitude
to grow, but this amplitude can be limited by flux conserva-
tion as discussed by Kadomtsev (1963).

13. MHD SIMULATIONS OF POYNTING JETS

For theMHD simulations described here, the initial mag-
netic field has a dipole-like form, as shown in Figure 1. The
computational region r ¼ 0 to Rmax, z ¼ 0 to Zmax is taken
to haveRmax ¼ Zmax � 10r0. Initially, the corona of the disk
is in isothermal equilibrium without rotation. At t ¼ 0, the
disk starts to rotate with Keplerian velocity v�ðr; 0Þ ¼ r�K,
where �K ¼ GMð Þ1=2=ðr2 þ r2i Þ

3=4, where the smoothing
length ri ¼ 0:2r0 is interpreted as the inner radius of
the disk. The smoothed gravitational potential is
�GM=ðr2i þ r2Þ1=2.

On the disk surface, the boundary conditions are as fol-
lows (Ustyugova et al. 2000). Two of the boundary condi-
tions come from the fact that the tangential electric field
ðE0Þt in the frame rotating with the disk (at the Keplerian
velocity) is zero; Bz at the disk surface is time independent,
whereas Br andB� at the surface vary with time. Two further
boundary conditions fix the entropy of the plasma coming
out of the disk to be sd(r) and the density of the outflowing
plasma to be �d(r). If vz at the disk surface, calculated by
solving the MHD equations in the computational region,
increases to the point where it is larger than the slow magne-
tosonic speed in the z-direction at the disk’s surface csmz,
then we clamp it to be equal to csmz. This condition repre-
sents a limit on the mass efflux �vz from the disk. For sub-
slow magnetosonic outflow from the disk vz < csmz, we have
four boundary conditions, whereas when vz ¼ csmz, we have
five boundary conditions.

For the outer boundaries, we first consider the case in
which these surfaces are perfect conductors. Second, we
consider the case of ‘‘ free ’’ outer boundaries, where
@Fj=@n ¼ 0 on all scalar variables except for the toroidal
magnetic field. For this field component, we take
½Bp x

D

ðrB�Þ� ¼ 0 on the outer boundaries, which was shown
by Ustyugova et al. (1999) to avoid artificial collimation
that can come from using the ‘‘ free ’’ boundary condition
on rB�. The free outer boundary conditions allow matter
and Poynting flux to freely flow out through these surfaces.

For the cases we discuss, the strength of the poloidal
magnetic field at the inner radius of the disk corres-
ponds to ðvAp=vKÞi ¼ 16:5 and ðcs=vKÞi ¼ 1, where
vAp � jBpj= 4��ð Þ1=2. The i indicates evaluation at the inner
radius of the disk r ¼ ri on the disk surface. In the midplane
of the disk, ðvAp=vKÞz¼0 is less than or much less than unity.
Different radial profiles of cs on the disk surface have been
used with similar results, including cs=vK ¼ const and
cs ¼ const; the density profiles on the disk surface have been
obtained as in Ustyugova et al. (1999).

Figure 9 shows the evolution of the coronal plasma for
the case of fixed, conducting outer boundaries at (Rm, Zm).
After about six rotation periods of the inner disk, the out-
going poloidal field collimates along the z-axis, and the
returning poloidal field is pressed outward to the conduct-
ing walls. Most of the configuration is strongly field domi-
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Fig. 9.—Time evolution of dipole-like field threading the disk from the initial configuration t ¼ 0 (bottom panels) for the case of conducting outer
boundaries at Rm ¼ 10 and Zm ¼ 10. Here, ti is the period of rotation at the inner radius of the disk ri. The initial field is shown by the dashed lines in Fig. 1.
The left-hand panels show the poloidal field lines, which are the same as�ðr; zÞ ¼ const lines. The right-hand panels show the poloidal velocity vectors vp. For
this calculation, a uniform 100� 100 grid was used. For times longer than 	8ti, the numerical calculations crash, apparently because of the buildup of fine-
scale structure in the simulation region.



nated with flow speeds v25 v2A, where vA is the Alfvén veloc-
ity. The field configuration is similar to that found for the
high-twist GS solutions as shown in Figure 5.

Figure 10 shows the long time evolution of the coronal
plasma for the case in which the outer boundaries are free
(i.e., open) boundaries. These simulations evolve to a quasi-
stationary final state in which most of the region is strongly
field dominated. In the jet region along the z-axis, the poloi-
dal field is collimated by the B� field. We find that the pro-
files of B�(r) and Bz(r) from the simulations (Ustyugova et

al. 2000) agree to a good approximation with equation (6)
of our analytic model. The main respect in which the simula-
tions differ from the GS solutions is that the region close to
the disk where the magnetic field returns to the disk is not
field dominated. Instead, this region has a hydromagnetic
outflow from the disk. This is predicted theoretically
(Blandford & Payne 1982) and observed in simulations
(Ustyugova et al. 1999) to be the case when the angle h
between the disk normal and the poloidal field lines is larger
than 30�.
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Fig. 10.—Time evolution of dipole-like field threading the disk from the initial configuration t ¼ 0 (bottom panels) to the final quasi-stationary
configuration for the case of open outer boundaries at r ¼ Rm and z ¼ Zm. Here, tout is the rotation period of the disk at the outer radius Rm of the simulation
region; for the parameters used, tout 	 200ti . The initial field is shown by the dashed lines in Fig. 1. The left-hand panels show the poloidal field lines, which are
the same as �ðr; zÞ ¼ const lines; � is normalized by �0 [the maximum value of �(r, z)], and the spacing between lines is 0.1. The middle panels show the
poloidal velocity vectors vp. The right-hand panels show the constant lines of �rB�ðr; zÞ > 0 in units of �0=r0, and the spacing between lines is 0.1. For this
calculation, a 100� 100 inhomogeneous grid was used, with Drj and Dzk growing with distance r and z geometrically as Drj ¼ Dr1qj and Dzk ¼ Dz1qk, with
q ¼ 1:03 andDr1 ¼ Dz1 ¼ 0:05r0 (Ustyugova et al. 2000).
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14. CONCLUSIONS

An ordered magnetic field threading an accretion disk
can give powerful outflows or jets of matter, energy, and
angular momentum. Most of the studies have been in the
hydromagnetic regime, where there is appreciable mass out-
flow, and find asymptotic flow speeds of the order of the
maximum Keplerian velocity of the disk, vKi. These flows
are clearly relevant to the jets from protostellar systems that
have flow speeds of the order of vKi. In contrast, observed
very long baseline interferometry (VLBI) jets in quasars and
active galaxies point to bulk Lorentz factors � 	 10—much
larger than the disk Lorentz factor. In the jets of gamma-ray
burst sources, � 	 100. The large Lorentz factors as well as
the small Faraday rotation measures suggest that these jets
are in the Poynting flux regime. This work presents self-con-
sistent solutions for the axisymmetric, nonrelativistic
plasma equilibria described by the force-free Grad-Shafra-
nov equation. We find solutions with magnetically colli-
mated Poynting jets where there is a continuous outflow of
energy, angular momentum, and toroidal magnetic flux
from the disk into the external space. This behavior contra-

dicts the commonly accepted ‘‘ theorem ’’ of solar plasma
physics that the motion of the footpoints of a magnetic loop
structure leads to a stationary magnetic field configuration
with zero power, angular momentum, and flux outflows
(Aly 1984, 1991).

Important issues remain to be investigated—the relativis-
tic expansion of the head of a Poynting jet into an external
medium and the three-dimensional kink instability of the
jet. Further, the magnetic extraction of energy from a rotat-
ing black hole may be important (Blandford & Znajek 1977;
Livio, Ogilvie, & Pringle 1999).
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