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Astrophysical Fluids

Hydrostatics

By setting time derivatives to zero in the Euler equation, one finds to
condition of Hydrostatic Equilibrium. In a spherically symmetric case of
fluid in gravitational field this looks like

dP
dr

= −
dΦ(r)

dr
ρ(r) = −

GM(r)ρ(r)
r2

Where Φ(r) is the gravitational potential and M(r) is the mass included
within radius r. Either Φ(r) or M(r) needs to be specified: if the fluid’s self
gravity is dominant then

dM(r)
dr

= 4πr2ρ(r)

for example in the case of baryonic fluid in stars. On the other hand, if
the gravitational potential is determined by a different source (e.g. Dark
Matter, in case of baryonic fluid falling into a cluster halo), appropriate
specification for Φ(r) has to be given. If the Dark Matter density distribution
ρDM(r) is known, then

dM(r)
dr

= 4πr2ρDM(r)

To obtain a solution one needs to also specify a relation between Pressure
and Density: P(ρ). This is called the ”equation of state”. In some cases
this relation will involve other variables (e.g. thermal pressure depends
both on temperature and density). One additional equation for each such
variable is needed to solve the Hydrostatic Equilibrium equation.

A simple example is that of a highly degenerate white dwarf. In this case
the temperature is unimportant, the pressure-density relation goes from

P ∝ ρ5/3
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at low density, to
P ∝ ρ4/3

at high density where electrons become relativistic. Hydrostatic equilib-
rium for such ”polytropic” equations of state:

P ∝ ργ

can be rewritten in the form

1
z2

d
dz

(
z2 dw

dz

)
+ wn = 0

where n = 1/(γ − 1), z is a scaled (dimensionless) radius and w is the
gravitational potential in units of that at r = 0. One finds that the radius
R of the configuration is finite if n < 5, and the mass-radius scaling goes
as M ∝ R(n−3)/(n−1). For a white dwarf, the solution gives R ∝ M−1/3 for low
mass (γ = 5/3), but as γ → 4/3, the Mass of the configuration approaches
a unique value

Mcrit =
5.836
µ2

e
M�

which is known as the Chandrasekhar limit. Here µe is the mean molecular
weight per electron.

Another special case of a polytropic equation of state is that of an ”isother-
mal sphere”: T = constant, P ∝ ρ, for which the solution turns out to
be

ρ(r) =
σ2

2πGr2

which is often used as a simple model for the density profile of Dark Matter
halos, star clusters etc. The mass in this configuration increases linearly
with radius:

M(r) =
2σ2

G
r

If the pressure depends on temperature, then the temperature stratification
needs to be simultaneously solved for. Information about this comes from
energy transport. Energy flows down a temperature gradient, so one can
relate the luminosity of the object to the temperature profile. In a star,
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where the energy is generated by nuclear burning in a small core, The
amount of energy crossing any spherical shell outside the core per unit
time is the same, and is equal to the total luminosity L.

Much of the heat transport in stars is radiative. The radiation flux interacts
with matter and exerts a force which equals the radiation pressure gradient

L
4πr2c

κρ = −
d
dr

(1
3

aT4
)

= −
4
3

aT3 dT
dr

where κ is the opacity which gives

dT
dr

= −
3κρ

4acT3

L
4πr2

as the temperature gradient necessary to transport the flux radiatively.
Combining this with the Hydrostatic equilibrium equation, one may write

∇ ≡
d ln T
d ln P

∇rad =
3

16πacG
κLP

M(r)T4

When the luminosity or the opacity is large, however, the necessary tem-
perature gradient becomes so large that convection can set in.

Convection

The criterion for convective instability can be worked out as follows.

Let us consider a matter element at a radius r in the star, and displace
it upwards to r + dr. The element would come to pressure equilibrium
with the new surroundings, but its density and temperature would not
necessarily be the same as those of the surrounding material (see fig. 1).
If its density is smaller than the surrounding material then the element
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Figure 1: Perturbation of matter element to test for convective instability

would rise due to buoyancy. If the density is higher than the surroundings,
it would sink back. The situation will be stable against convection if(

dρ
dr

)
e

−

(
dρ
dr

)
s

> 0 (1)

where the subscript ‘e’ refers to the element and ‘s’ to the surroundings.
Since P = ρkT/µmp, one has

dρ
ρ

=
dP
P
−

dT
T

+
dµ
µ

Ignoring composition gradient for the time being, we can rewrite eq. (1) as(
1
P

dP
dr

)
e

−

(
1
T

dT
dr

)
e

−

(
1
P

dP
dr

)
s

+

(
1
T

dT
dr

)
s

> 0

The terms containing pressure gradient cancel due to the pressure equi-
librium established between the element and the surroundings, leaving a
stability condition in terms of the temperature gradients:

−

(
d ln T

dr

)
e

> −

(
d ln T

dr

)
s
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Writing in terms of derivatives w.r.t. pressure P instead of r,(
d ln T
d ln P

)
s

<

(
d ln T
d ln P

)
e

or
∇ < ∇e

since d ln P/dr < 0. If the element evolves adiabatically then

∇e = ∇ad =
γ − 1
γ

where γ is the ratio of specific heats. For monatomic gases with γ = 5/3 the
value of ∇ad is 0.4, except in regions of partial ionisation where addition of
energy causes an increase in number of particles and hence temperature
increases slower than normal, depressing ∇ad below its standard value of
0.4.

If indeed all the transport does take place via radiation then

∇ = ∇rad

We can then write the condition for stability against convection as

∇rad < ∇ad (2)

This is called the Schwarzschild criterion for dynamical stability. If a com-
position gradient is present, then the stablility criterion is modified to

∇rad < ∇ad + ∇µ (3)

where ∇µ = (d lnµ/d ln P)s. This is called the Ledoux criterion for dynamical
stability. If these conditions are violated then convection sets in to transport
energy and the temperature gradient ∇ is no longer given by ∇rad. ∇rad

now stands for the temperature gradient that would have been necessary
to transport the whole flux by radiation.

Convective motion present in the outer layers of solar-type stars is the
main contributor to the generation of strong magnetic fields, sunspots
(and starspots), and mechanical injection of energy into the atmosphere,
producing hot coronae.
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Stellar Wind

The hot corona of the Sun tends to expand and gives rise to the solar wind.
Parker (1958) constructed a model for the solar wind assuming that it is
steady, spherically symmetric and isothermal. The basic equations then
are:

Ṁ = −4πr2ρv

giving
1
ρ

∂ρ

∂r
= −

1
vr2

∂
∂r

(vr2)

The Euler equation gives

ρv
∂v
∂r

= −
∂P
∂r
−

GMρ

r2

Writing c2
s = ∂P/∂ρ, one can rearrange this to obtain

v
∂v
∂r
−

c2
s

vr2

∂
∂r

(vr2) +
GM
r2 = 0

or
1
2

(
1 −

c2
s

v2

)
∂(v2)
∂r

= −
GM
r2

(
1 −

2c2
s r

GM

)
we will see later that this equation has use beyond the solar wind.

Introducing a critical radius rc = GM/2c2
s , we see that at r = rc either v = cs

or dv/dr = 0. On the other hand if v = cs then either r = rc or dv/dr = ∞

This allows five different types of solution of the differential equation. One
can integrate the equation to give( v

cs

)2

− ln
( v
cs

)2

= 4
rc

r
+ 4 ln

( r
rc

)
+ C

where C is an integration constant. Different values of C may choose
different branches of solutions.
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Figure 2: Different solution classes for the Parker wind equation
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For solar wind, the velocity is finite at large r, while the wind is subsonic
at small r. So the flow is transonic, i.e. v = cs at r = rc. This is realised for
C = -3 and corresponds to the solution V drawn in figure 2. At large r this
gives

v
cs
≈ 2

(
ln

r
rc

)2

and hence
ρ ∝

1

r2
√

ln(r/rc)

The other solution (VI) passing though the critical point has, at large r,
v ∝ 1/r2, suggesting a constant density (and hence constant pressure). This
can not be contained by ISM pressure and is thus considered unphysical
for the solar wind. Also this solution would need the wind to start with a
very large speed at the solar surface, which is unlikely.

The time-reversed version of solution VI is, however, reasonable and cor-
responds to spherical accretion onto a central mass.

Solution IV is referred to as the ”Solar Breeze” solution, which would
correspond to a subsonic wind from the sun. Satellite measurements,
however, reveal that the solar wind at large r is indeed supersonic and
hence solution V provides the appropriate escription.


