

1867-11

College of Soil Physics

22 October - 9 November, 2007

Aridity and drought indices

Donald Gabriels Dept. Soil Management Ghent University Belgium

COLLEGE ON SOIL PHYSICS

ARIDITY AND DROUGHT INDICES

Donald Gabriels

Department of Soil Management International Center for Eremology

Ghent University, Belgium

Why aridity indices????

DESERTIFICATION

 The Earth Summit (UNCED, Rio de Janeiro, 1992) <u>defined</u> and
 The General Assembly of UN (UNCED, Paris, 1994) <u>approved</u> the definition of DESERTIFICATION :

Desertification is land degradation in arid, semi-arid and dry sub-humid areas resulting from climatic variations and human activities'

DESERTIFICATION = drylands

- Drylands = arid , semi-arid, (dry)subhumid
- 40 % of earth's surface
- 20% of earth's population
- Drylands are susceptible to 'humaninduced soil degradation' and 'degradation of vegetation'

Global extent of desertification

3 assessments

(mainly for political reasons) Map 1/25.000.000 by FAO, UNESCO, WMO

1. UNCOD (1977):

United Nations Conference on Desertification

Total area susceptible to desertification: 5281 Mha Total area affected by desertification : 3970 Mha

Global extent of desertification

2. GAP I (1984):

General Assessment of Progress (Plan of action to combat desertification)

questionnaire to 91 countries →failure UNEP used consultants

Distinction between: rainfed & irrigated cropland rangeland STILL NO METHODOLOGY!!!!!!!!!

Global extent of desertification

3. GAP II (1992)

Used the Soil Data Base of GLASOD (Global Assessment of Soil Degradation) Human induced soil degradation: - Degraded irrigated lands: 43 Mha - Degraded rainfed croplands: 216 Mha - Degraded rangelands: 757 Mha Rangelands with degraded vegetation: 2576 Mha total 3592 Mha

Global extent of desertifiation

Example of Africa

16% of surface:
45% of surface:
25% of surface:
61% of surface:
45% of surface:

water erosion wind erosion salinisation animal pressure population pressure

ARIDITY VERSUS DROUGHT

<u>Permanent</u> pluviometric deficit (long-term climatic phenomenon) Linked to specific climatic data:

- strong insolation
- elevated temperatures
- low air humidity
- strong evapotranspiration

ARIDITY VERSUS DROUGHT

DROUGHT

<u>Temporary</u> pluviometric deficit (short-term phenomenon) Below <u>average</u> availibility of natural water physical aspect: below the long-term mean (normal) social aspect: below expected volume to satisfy needs for agriculture, livestock, domestic use

DROUGHT is also: - annual/seasonal/monthly rainfall less than normal

- reduced river flow

DESERTIFICATION is commonly related to DROUGHT

DROUGHT

Drylands are affected in an irregular manner by droughts

Types of drought

- meteorological drought
 - hydrological drought
 - agricultural drought
 - edaphic drought

Meteorological drought

 Annual precipitation < average for one or several successive years
 example: Sahel 1960s, 1970s, 1980s
 BUT!!! Average is misleading because rain can be scattered or dry periods can alternate with periods of excessive rains.

Hydrological drought

Water resources used for industry, human, and animal consumption or support of agriculture (irrigation) is low.

Agricultural drought

Related to rainfed agriculture

Related to soil moisture deficit during growing season

Soil moisture deficit can be determined by:

- precipitation
- PET
- soil moisture
- crop coefficient (moisture requirements)

Absolute annual or seasonal deficit of precipitation is not a good indicator $\rightarrow \rightarrow$ better: rainfall distribution

Edaphic drought

■ →→decrease of infiltrability of the soil

 \rightarrow increase in runoff and erosion

DELINEATING ARIDITY ZONES

Based on INDEX OF MOISTURE DEFICIT

or

ARIDITY INDEX AI = P/PET

DETERMINATION OF PET

1) direct measurements using lysimeters **NO STANDARDIZATION** 2) empirical formulas Penman & Penman Monteith NEEDS LOT OF DATA: solar radiation, wind velocity, relative humidity, temperature 3) relation between measured PET and two parameters ex. Thornthwaite: mean monthly temperature and average number of daylight-hours/month OVERESTIMATES PET FOR DRY CONDITIONS **UNDERESTIMATES** PET FOR MOIST AND **COLD** CONDITIONS

GLOBAL EXTENT OF ARIDITY ZONES

	Aridity Index AI= P/PET	Million (ha)	% world land area
1.Cold	> 0.65	1765.0	13.6
2.Humid	> 0.65	5100.4	39.2
3.Dry sub-humid	0.50-0.65	1294.7	9.9
4.Semi-arid	0.20-0.50	2305.3	17.7
5.Arid	0.05-0.20	1569.1	12.1
6.Hyper-arid	< 0.05	978.2	7.5
Drylands (3+4+5+6)	< 0.65	6147.3	47.2
Susceptible Drylands (3+4+5)	0.05-0.65	5169.1	39.7

World drylands (Mha)

	Africa	Asia	Australia	Europe	North America	South America	World Total	%
Hyper - arid	<u>672</u>	277	0	0	3	26	978	16
Arid	504	<u>626</u>	303	11	82	45	1571	26
Semi-arid	514	<u>693</u>	309	105	419	265	2305	37
Dry sub-humid	269	<u>353</u>	51	184	232	207	1296	21
Total	<u>1959</u>	<u>1949</u>	663	300	736	543	6150	100
% World Total	<u>32</u>	<u>32</u>	11	5	12	8	100	
% Total Global Land Area	13.1	13.0	4.4	2.0	4.9	3.6	<u>41.0</u>	
% Continent Area	<u>66</u>	46	<u>75</u>	32	34	31	41	

DRYLAND ZONES

Based on climate and environmental attributes BUT!!!! Dryland boundaries are neither static nor abrupt because of: 1. high inter-annual variability in mean rainfall 2. occurrence of drought which may last for several years. \implies Individual aridity zones do not represent homogeneous climates, either in the long term or during a particular time band Dryland boundaries may not be defined in terms of natural vegetation or soil type because of human induced processes.

Hyper-arid zones (environments) Arid zones Semi-arid zones Dry sub-humid zones

DRYLAND ZONES

Hyper-arid areas

Very limited rainfall Highly variable rainfall: inter-annualy (100%), monthly Year-long periods without rainfall

true deserts hot prone to desertification

very low biological productivity

Arid zones

Semi-arid zones

Highly seasonal rainfall distribution < 500 mm in winter rainfall regimes < 800 mm in summer rainfall regimes Inter-annual variability: 25-50% Grazing of grassland Sedentary agricultural activities are susceptible to seasonal and inter-annual deficiency

Dry sub-humid zones

ARIDITY INDICES

Problem??

- Data collection
- The more parameters, the more errors

EVALUATION AND CLASSIFICATION OF CLIMATIC INDICES FOR YAZD REGION (IRAN)

Mohammad Zare Ernani and Donald Gabriels

 Department of Soil Management and Soil Care, International Centre for Eremology, Ghent University, Belgium

PURPOSE:

This study aims at comparing different climatic indices for evaluating the aridity and the rain aggressivity and rain distribution based on climatic data from 21 weather stations in the Yazd-Ardakan basin (Iran) and this for 5 to 48 successive years.

Five aridity indices were used to assess the aridity in the basin:

- De Martonne Aridity Index
- Emberger Aridity Index
- UNEP Aridity Index
- Thornthwaite Classification
- Gaussen-Bagnouls Classification.

□ For rain distribution and rain concentration

- Modified Fournier Index (MFI)
- Precipitation Concentration Index (PCI)

1. Aridity index of De Martonne

$$I_{M} = \frac{P}{t+10}$$

P = Annual average rainfall in mm.t = Annual average temperature in degrees centigrade.

Climate Type	Aridity Index
Arid	0-10
Semi-arid	10-20
Mediterranean	20-24
Semi-humid	24-28
Humid	28-35
Very Humid	35-55
Extremely Humid	>55

2. Aridity index of Emberger

$$I_{\rm B} = \frac{100 \times P}{M^2 - m^2}$$

M = Average temperature of the hottest month in degrees centigrade. m = Average temperature of the coldest month in degrees centigrade. P = Annual average rainfall in mm.

3. UNEP aridity index (P/ETP)

- **ETo = 16 x Nm ((10 x Tm) / I)**^a
- Tm = mean monthly temperature
- Nm = adjustment factor related to hours of daylight
- Heat Index or I = Sum (Tm / 5)1.514 for m = 1 12
- a = 6.75 x 10⁻⁷ x l³ 7.71 x 10⁻⁵ x l² + 1.792 x 10⁻² x l + 0.49239

$$I = \sum_{1}^{12} (Tm/5)^{1.514}$$

Index	Class
P/ETP < 0.03	hyper-arid zone
0.03 < P/PET < 0.2	arid zone
0.2< P/PET <0.5	semi-arid zone
P/PET >0.5	humid zone

4. Thornthwaite classification

$$PE_{1}^{n=12} = \sum 115 \times \left(\frac{P}{T-10}\right)^{\frac{10}{9}}$$

- P = monthly precipitation in inches;
- T = temperature in °F; and n = months = 12.

PE Index	Climate
More than 128	Wet
64-127	Humid
32-63	Sub-Humid
16-31	Semi-arid
Less than 16	Arid

5. Gaussen-Bagnouls classification method

- combination of average monthly temperature and total rainfall
- gives more precise climatic classification
- easily climatic identification by determining separately the numbers of dry and wet months

6. Precipitation concentration index

to estimate the temporal variability of monthly rainfall

$$PCI = 100 \frac{\sum p_i^2}{P^2}$$

p = monthly precipitationP = annual precipitation

PCI	Concept
8.3 – 10	uniform
10 – 15	Moderately seasonal
15 - 20	seasonal
20 - 50	Highly seasonal
50 - 100	Irregular

Station	PCI1	PCI2	Pmean	PERIOD
ABARKUH	29.87	14.3	60.1	1967-1995
ARDEKAN	28.36	16.54	55.56	1966-1990
ASHKZAR	24.98	16.07	67.65	1978-1995
BAJGAN	26.66	15.05	235.61	1966-1995
DEHSHIR	26.67	14.34	95.87	1967-1995
GHOTROOM	23.87	15.62	140.8	1966-1995
HAJIABAD	26.66	14.2	77.36	1966-1995
KHARANAGH	22.05	14.98	129.82	1966-1995
KHOOR BIABANAK	28.43	16.61	88.02	1986-1995
MAZRAEH NOW	28.21	16.21	98.54	1967-1995
NASRABAD	21.01	15.22	211.97	1967-1995
ROBATPOSHTE	25.15	15.55	131.75	1967-1989
TAFT	23.57	15.75	131.68	1966-1994*
VARZANEH	28.21	13.76	73.01	1958-1995
ANAR	29.64	16.16	84.90	1986-2000
BAFGH	30.15	18.44	58.10	1993-2000
HOJATABAD	21.33	15.74	155.48	1967-1985
KAVIR SIYAHKOOH	31.59	19.62	73.70	1988-2000
NAEEN	25.88	14.74	99.95	1969-2000
SAGHAND	28.23	15.74	67.94	1967-2000
YAZD	29.80	15.29	61.58	1953-2000

Dry and humid periods

 $LP_D = N^\circ$ of dry months = $P < 0.5 ET_0$

 $LP_R = N^\circ$ of rainy months = P> 0,5 ET₀

where: LP_D : length of the water shortage period LP_R : length of the water surplus period

Water shortage

$$DH = \sum_{1}^{12} \left(P - ET_0 \right)$$

DH = yearly water shortage (mm) P = monthly precipitation (mm)

MAP of Aridity Zones in Latin America

Project CAZALAC (Centro del Agua para Zonas Áridas y Semiáridas de América LAtina y El Caribe), La Serena, Chili

Penman-Monteith-FAO

- Tm, monthly mean temperature (°C)
- RS, solar radiation in calcm-2d-1
- HR, monthly mean relative humidity (%)
- U2, wind speed in ms-1

Characteristics of a hypothetical reference crop (green grass of 0.12 m high with an albedo of 0.23)

- r_a: aerodynamic resistance
- r_s : surface resistance of the green grass = 70 s/m

Penman-Montheith-FAO

$$ET_{o} = \frac{0.408\Delta(R_{n} - G) + \gamma \frac{900}{T + 273}u_{2}(e_{s} - e_{a})}{\Delta + \gamma(1 + 0.34u_{2})}$$

Where:

- ET₀ baseline evapotranspiration [mm day-1],
- Rn net radiation on the crop surface [MJ m-2 day-1],
- **G** heat flow density in the soil [MJ m-2 day-1],
- **T** average daily temperature at a 2 m height [°C],
- u₂ wind speed at a 2 m height [m s-1],
- es saturation vapor pressure [kPa],
- ea current vapor pressure [kPa],
- e_sy- e_a saturation vapor pressure gap [kPa],
- Δ slope of the saturation vapor pressure line in function of temperature [kPa °C-1], psychrometric coefficient [kPa °C-1].

Protocol to calculate the baseline Evapotranspiration by using the FAO/Penman-Monteith equation

Step 1. Calculation of Net Radiation, Rn (MJ/m2 day) from global solar radiation, RG (Cal/cm2 day) Rn = RG * .0419 * .8

Factor 0.0419 converts cal/cm2 day into MJ/m2 day Factor 0.8 is the Rn/RG quotient for a vegetated area with a good water supply

Step 2. Calculation of air vapor pressure at saturation, es (kPa) es = =0.707 * EXP(.05979 * Ta) Ta is the average air temperature (°C)

Step 3. Calculation of air saturation shortage Ds(kPa) Ds = es * (1 - HR/ 100) HR is relative humidity in %

Step 4. Calculation of the saturation vapor pressure curve slope, Δ (kPa/°C) TETA = (Ta + 237.3) ^ 2 ALFA = 17.27 * Ta / (Ta + 237.3) Δ = 4098 * (.6108 * EXP(ALFA)) / TETA

Step 5. Calculation of advective contribution $Adv = (\gamma * 900 * U * Ds) / (Ta+273)$ $\gamma = .066 (kPa/^{\circ}C)$ U= wind speed in m/s Ds = saturation shortage (kPa)

Step 6. Calculation of the radioactive contribution Rad = $0.408 * \Delta * Rn$

Step 7. Calculation of denominator (resistance to vapor diffusion in the limit layer)

 $Dn = \Delta + .066 * (1 + .34 * U)$

Step 8. Calculation of the radioactive component of ETo ETRAD = Rad / Dn

Step 9. Calculation of the advective component of ETo

ETADV = Adv / Dn

Step 10. Calculation of ETo ETo = ETRAD + ETADV

