College of Soil Physics

22 October - 9 November, 2007

Aridity and drought indices

Donald Gabriels
Dept. Soil Management
Ghent University
Belgium
ARIDITY AND DROUGHT INDICES

Donald Gabriels
Department of Soil Management
International Center for Eremology
Ghent University, Belgium
Why aridity indices???

To delineate zones prone to **desertification**
Those areas characterized by **low rainfall** and by **high summer temperatures**, so that the vegetation has little opportunity to restore after destruction by **human impact** or prolonged **droughts**.

---- desertification???
---- aridity???
---- droughts???
The Earth Summit (UNCED, Rio de Janeiro, 1992) defined and The General Assembly of UN (UNCED, Paris, 1994) approved the definition of DESERTIFICATION:

"Desertification is land degradation in arid, semi-arid and dry sub-humid areas resulting from climatic variations and human activities’
DESER TIFICATION = drylands

- Drylands = arid, semi-arid, (dry)sub-humid
- 40% of earth’s surface
- 20% of earth’s population
- Drylands are susceptible to ‘human-induced soil degradation’ and ‘degradation of vegetation’
Global extent of desertification

3 assessments
(mainly for political reasons)
Map 1/25.000.000 by FAO, UNESCO, WMO

1. UNCOD (1977):

United Nations Conference on Desertification

Total area susceptible to desertification: 5281 Mha
Total area affected by desertification: 3970 Mha
Global extent of desertification

2. GAP I (1984):
General Assessment of Progress
(Plan of action to combat desertification)

questionnaire to 91 countries → failure
UNEP used consultants

Distinction between: rainfed & irrigated cropland
rangeland

STILL NO METHODOLOGY!!!!!!!!!
Global extent of desertification

3. GAP II (1992)

Used the Soil Data Base of GLASOD
(Global Assessment of Soil Degradation)

Human induced soil degradation:
- Degraded irrigated lands: 43 Mha
- Degraded rainfed croplands: 216 Mha
- Degraded rangelands: 757 Mha

Rangelands with degraded vegetation: 2576 Mha

Total: 3592 Mha
Global extent of desertification

- Example of Africa

 - 16% of surface: water erosion
 - 45% of surface: wind erosion
 - 25% of surface: salinisation
 - 61% of surface: animal pressure
 - 45% of surface: population pressure
ARIDITY VERSUS DROUGHT

- **ARIDITY**

 Permanent pluviometric deficit
 (long-term climatic phenomenon)

 Linked to specific climatic data:
 - strong insolation
 - elevated temperatures
 - low air humidity
 - strong evapotranspiration
ARIDITY VERSUS DROUGHT

- **DROUGHT**
 - *Temporary* pluviometric deficit
 - (short-term phenomenon)
 - Below **average** availability of natural water
 - **Physical aspect:** below the long-term mean (normal)
 - **Social aspect:** below expected volume to satisfy needs for agriculture, livestock, domestic use

 DROUGHT is also:
 - annual/seasonal/monthly rainfall less than normal
 - reduced river flow

 DESERTIFICATION is commonly related to DROUGHT
Drylands are affected in an irregular manner by droughts.

Types of drought
- meteorological drought
- hydrological drought
- agricultural drought
- edaphic drought
Meteorological drought

- Annual precipitation < average for one or several successive years

 example: Sahel 1960s, 1970s, 1980s

BUT!!! Average is misleading because rain can be scattered or dry periods can alternate with periods of excessive rains.
Hydrological drought

- Water resources used for industry, human, and animal consumption or support of agriculture (irrigation) is low.
Agricultural drought

- Related to rainfed agriculture
- Related to soil moisture deficit during growing season

Soil moisture deficit can be determined by:
- precipitation
- PET
- soil moisture
- crop coefficient (moisture requirements)

Absolute annual or seasonal deficit of precipitation is not a good indicator
better: rainfall distribution
Edaphic drought

- Decrease of infiltrability of the soil
- Increase in runoff and erosion
DELINEATING ARIDITY ZONES

Based on INDEX OF MOISTURE DEFICIT

or

ARIDITY INDEX $\text{AI} = \frac{P}{\text{PET}}$
DETERMINATION OF PET

1) direct measurements using lysimeters
 NO STANDARDIZATION

2) empirical formulas
 Penman & Penman Monteith
 NEEDS LOT OF DATA: solar radiation, wind velocity, relative humidity, temperature

3) relation between measured PET and two parameters
 ex. Thornthwaite: mean monthly temperature and average number of daylight-hours/month
 OVERESTIMATES PET FOR DRY CONDITIONS
 UNDERESTIMATES PET FOR MOIST AND COLD CONDITIONS
Global Extent of Aridity Zones

<table>
<thead>
<tr>
<th>Aridity Index</th>
<th>Million (ha)</th>
<th>% World Land Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cold (> 0.65)</td>
<td>1765.0</td>
<td>13.6</td>
</tr>
<tr>
<td>Humid (> 0.65)</td>
<td>5100.4</td>
<td>39.2</td>
</tr>
<tr>
<td>Dry sub-humid (0.50-0.65)</td>
<td>1294.7</td>
<td>9.9</td>
</tr>
<tr>
<td>Semi-arid (0.20-0.50)</td>
<td>2305.3</td>
<td>17.7</td>
</tr>
<tr>
<td>Arid (0.05-0.20)</td>
<td>1569.1</td>
<td>12.1</td>
</tr>
<tr>
<td>Hyper-arid (< 0.05)</td>
<td>978.2</td>
<td>7.5</td>
</tr>
<tr>
<td>Drylands (3+4+5+6) (< 0.65)</td>
<td>6147.3</td>
<td>47.2</td>
</tr>
<tr>
<td>Susceptible Drylands (3+4+5) (0.05-0.65)</td>
<td>5169.1</td>
<td>39.7</td>
</tr>
</tbody>
</table>
World drylands (Mha)

<table>
<thead>
<tr>
<th></th>
<th>Africa</th>
<th>Asia</th>
<th>Australia</th>
<th>Europe</th>
<th>North America</th>
<th>South America</th>
<th>World Total</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hyper - arid</td>
<td>672</td>
<td>277</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>26</td>
<td>978</td>
<td>16</td>
</tr>
<tr>
<td>Arid</td>
<td>504</td>
<td>626</td>
<td>303</td>
<td>11</td>
<td>82</td>
<td>45</td>
<td>1571</td>
<td>26</td>
</tr>
<tr>
<td>Semi-arid</td>
<td>514</td>
<td>693</td>
<td>309</td>
<td>105</td>
<td>419</td>
<td>265</td>
<td>2305</td>
<td>37</td>
</tr>
<tr>
<td>Dry sub-humid</td>
<td>269</td>
<td>353</td>
<td>51</td>
<td>184</td>
<td>232</td>
<td>207</td>
<td>1296</td>
<td>21</td>
</tr>
<tr>
<td>Total</td>
<td>1959</td>
<td>1949</td>
<td>663</td>
<td>300</td>
<td>736</td>
<td>543</td>
<td>6150</td>
<td>100</td>
</tr>
<tr>
<td>% World Total</td>
<td>32</td>
<td>32</td>
<td>11</td>
<td>5</td>
<td>12</td>
<td>8</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>% Total Global Land Area</td>
<td>13.1</td>
<td>13.0</td>
<td>4.4</td>
<td>2.0</td>
<td>4.9</td>
<td>3.6</td>
<td>41.0</td>
<td></td>
</tr>
<tr>
<td>% Continent Area</td>
<td>66</td>
<td>46</td>
<td>75</td>
<td>32</td>
<td>34</td>
<td>31</td>
<td>41</td>
<td></td>
</tr>
</tbody>
</table>
DRYLAND ZONES

- Based on climate and environmental attributes
 - BUT!!!! Dryland boundaries are neither static nor abrupt because of:
 1. high inter-annual variability in mean rainfall
 2. occurrence of drought which may last for several years.

- Individual aridity zones do not represent homogeneous climates, either in the long term or during a particular time band.

- Dryland boundaries may not be defined in terms of natural vegetation or soil type because of human induced processes.
DRYLAND ZONES

Hyper-arid zones (environments)
Arid zones
Semi-arid zones
Dry sub-humid zones
Hyper-arid areas

Very limited rainfall
Highly variable rainfall: inter-annually (100%), monthly
Year-long periods without rainfall

true deserts not prone to desertification
very low biological productivity
Arid zones

- < 200 mm in annual winter rainfall
- < 300 mm in summer rainfall
- Inter-annual variability 50-100%
- Pastoralisme is possible
- Use of groundwater is highly susceptible to climate variability
Semi-arid zones

Highly seasonal rainfall distribution
< 500 mm in winter rainfall regimes
< 800 mm in summer rainfall regimes
Inter-annual variability: 25-50%
Grazing of grassland

Sedentary agricultural activities are susceptible to seasonal and inter-annual deficiency
Dry sub-humid zones

High seasonal rainfall regimes
< 25% inter-annual variability
Rainfed agriculture

Susceptible to degradation enhanced by seasonal rainfall, drought periods and increasing intensity of human use.

Dry sub-humid zones are included in the definition of desertification
ARIDITY INDICES

- Problem??

- Data collection
- The more parameters, the more errors
EVALUATION AND CLASSIFICATION OF CLIMATIC INDICES FOR YAZD REGION (IRAN)

Mohammad Zare Ernani and Donald Gabriels

Department of Soil Management and Soil Care, International Centre for Eremology, Ghent University, Belgium
PURPOSE:

- This study aims at comparing different climatic indices for evaluating the aridity and the rain aggressivity and rain distribution based on climatic data from 21 weather stations in the Yazd-Ardakan basin (Iran) and this for 5 to 48 successive years.
Five aridity indices were used to assess the aridity in the basin:

- De Martonne Aridity Index
- Emberger Aridity Index
- UNEP Aridity Index
- Thornthwaite Classification
- Gaussen-Bagnouls Classification.

For rain distribution and rain concentration

- Modified Fournier Index (MFI)
- Precipitation Concentration Index (PCI)
1. Aridity index of De Martonne

\[I_{\text{DM}} = \frac{P}{t + 10} \]

\(P \) = Annual average rainfall in mm.
\(t \) = Annual average temperature in degrees centigrade.

<table>
<thead>
<tr>
<th>Climate Type</th>
<th>Aridity Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arid</td>
<td>0-10</td>
</tr>
<tr>
<td>Semi-arid</td>
<td>10-20</td>
</tr>
<tr>
<td>Mediterranean</td>
<td>20-24</td>
</tr>
<tr>
<td>Semi-humid</td>
<td>24-28</td>
</tr>
<tr>
<td>Humid</td>
<td>28-35</td>
</tr>
<tr>
<td>Very Humid</td>
<td>35-55</td>
</tr>
<tr>
<td>Extremely Humid</td>
<td>>55</td>
</tr>
</tbody>
</table>

2. Aridity index of Emberger

\[I_E = \frac{100 \times P}{M^2 - m^2} \]

\(M \) = Average temperature of the hottest month in degrees centigrade.
\(m \) = Average temperature of the coldest month in degrees centigrade.
\(P \) = Annual average rainfall in mm.
3. UNEP aridity index (P/ETP)

- $ETo = 16 \times Nm \times (10 \times Tm / I)^a$
 - $Tm = \text{mean monthly temperature}$
 - $Nm = \text{adjustment factor related to hours of daylight}$
 - Heat Index or $I = \text{Sum} \ (Tm / 5)^{1.514}$ for $m = 1 \ldots 12$
 - $a = 6.75 \times 10^{-7} \times I^3 - 7.71 \times 10^{-5} \times I^2 + 1.792 \times 10^{-2} \times I + 0.49239$

4. Thornthwaite classification

$$PE_{index} = \sum_{1}^{n=12} \left(\frac{P}{T-10} \right)^{10/9}$$

- $P = \text{monthly precipitation in inches}$
- $T = \text{temperature in } ^\circ\text{F}$; and $n = \text{months} = 12$.
5. Gaussen-Bagnouls classification method

- combination of average monthly temperature and total rainfall
- gives more precise climatic classification
- easily climatic identification by determining separately the numbers of dry and wet months

P > 3T → Humid
3T > P > 2T → Semi-humid
P < 2T → Arid
YAZD RAINFALL MOVING AVERAGE

YEAR

RAINFALL (mm)

Series 1
7 per. Mov. Avg. (Series 1)
61.58
6. Precipitation concentration index

- to estimate the temporal variability of monthly rainfall

\[PCI = 100 \frac{\sum p_i^2}{P^2} \]

- \(p \) = monthly precipitation
- \(P \) = annual precipitation

<table>
<thead>
<tr>
<th>PCI</th>
<th>Concept</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.3 – 10</td>
<td>uniform</td>
</tr>
<tr>
<td>10 – 15</td>
<td>Moderately seasonal</td>
</tr>
<tr>
<td>15 – 20</td>
<td>seasonal</td>
</tr>
<tr>
<td>20 – 50</td>
<td>Highly seasonal</td>
</tr>
<tr>
<td>50 – 100</td>
<td>Irregular</td>
</tr>
<tr>
<td>Station</td>
<td>PCI1</td>
</tr>
<tr>
<td>-------------------</td>
<td>-------</td>
</tr>
<tr>
<td>ABARKUH</td>
<td>29.87</td>
</tr>
<tr>
<td>ARDEKAN</td>
<td>28.36</td>
</tr>
<tr>
<td>ASHKZAR</td>
<td>24.98</td>
</tr>
<tr>
<td>BAJGAN</td>
<td>26.66</td>
</tr>
<tr>
<td>DEHSHIR</td>
<td>26.67</td>
</tr>
<tr>
<td>GHOTROOM</td>
<td>23.87</td>
</tr>
<tr>
<td>HAJIABAD</td>
<td>26.66</td>
</tr>
<tr>
<td>KHAHARANAGH</td>
<td>22.05</td>
</tr>
<tr>
<td>KHOOR BIABANAK</td>
<td>28.43</td>
</tr>
<tr>
<td>MAZRAEH NOW</td>
<td>28.21</td>
</tr>
<tr>
<td>NASRABAD</td>
<td>21.01</td>
</tr>
<tr>
<td>ROBATPOSHTE</td>
<td>25.15</td>
</tr>
<tr>
<td>TAFT</td>
<td>23.57</td>
</tr>
<tr>
<td>VARZANEH</td>
<td>28.21</td>
</tr>
<tr>
<td>ANAR</td>
<td>29.64</td>
</tr>
<tr>
<td>BAFGH</td>
<td>30.15</td>
</tr>
<tr>
<td>HOJATAABAD</td>
<td>21.33</td>
</tr>
<tr>
<td>KAVIR SIYAHKOOGH</td>
<td>31.59</td>
</tr>
<tr>
<td>SAGHAND</td>
<td>28.23</td>
</tr>
<tr>
<td>YAZD</td>
<td>29.80</td>
</tr>
</tbody>
</table>
Dry and humid periods

\[LP_D = \text{N° of dry months} = P < 0.5 \ ET_0 \]

\[LP_R = \text{N° of rainy months} = P > 0.5 \ ET_0 \]

where: \(LP_D \): length of the water shortage period
\(LP_R \): length of the water surplus period

Water shortage

\[DH = \sum_{1}^{12} (P - ET_0) \]

DH = yearly water shortage (mm)
P = monthly precipitation (mm)
MAP of Aridity Zones in Latin America

Project CAZALAC
(Centro del Agua para Zonas Áridas y Semiáridas de América Latina y El Caribe), La Serena, Chili
Penman-Monteith-FAO

Characteristics of a hypothetical reference crop
(green grass of 0.12 m high with an albedo of 0.23)

\[r_a = \frac{208}{u_2} \text{ s/m} \]

\[\alpha R_s = 0.23 R_s \]

\[r_s = 70 \text{ s/m} \]

\[T_m, \text{ monthly mean temperature (°C)} \]
\[RS, \text{ solar radiation in cal cm}^{-2} \text{ d}^{-1} \]
\[HR, \text{ monthly mean relative humidity (%)} \]
\[U_2, \text{ wind speed in m s}^{-1} \]

\[r_a : \text{ aerodynamic resistance} \]
\[r_s : \text{ surface resistance of the green grass} = 70 \text{ s/m} \]
Penman-Montheith-FAO

\[
ET_0 = \frac{0.408\Delta(R_n - G) + 900}{T + 273} \frac{u_2(e_s - e_a)}{\Delta + \gamma(1 + 0.34u_2)}
\]

Where:
- \(ET_0 \) baseline evapotranspiration [mm day\(^{-1}\)],
- \(R_n \) net radiation on the crop surface [MJ m\(^{-2}\) day\(^{-1}\)],
- \(G \) heat flow density in the soil [MJ m\(^{-2}\) day\(^{-1}\)],
- \(T \) average daily temperature at a 2 m height [°C],
- \(u_2 \) wind speed at a 2 m height [m s\(^{-1}\)],
- \(e_s \) saturation vapor pressure [kPa],
- \(e_a \) current vapor pressure [kPa],
- \(e_s - e_a \) saturation vapor pressure gap [kPa],
- \(\Delta \) slope of the saturation vapor pressure line in function of temperature [kPa °C\(^{-1}\)],
- \(\gamma \) psychrometric coefficient [kPa °C\(^{-1}\)].
Protocol to calculate the baseline Evapotranspiration by using the FAO/Penman-Monteith equation

Step 1. Calculation of Net Radiation, Rn (MJ/m² day) from global solar radiation, RG (Cal/cm² day)

\[R_n = R_G \times 0.0419 \times 0.8 \]

Factor 0.0419 converts cal/cm² day into MJ/m² day
Factor 0.8 is the Rn/RG quotient for a vegetated area with a good water supply

Step 2. Calculation of air vapor pressure at saturation, es (kPa)

\[es = 0.707 \times \exp(0.05979 \times T_a) \]
Ta is the average air temperature (°C)

Step 3. Calculation of air saturation shortage Ds(kPa)

\[D_s = es \times (1 - HR/100) \]
HR is relative humidity in %
Step 4. Calculation of the saturation vapor pressure curve slope, \(\Delta \) (kPa/°C)

\[
\text{TETA} = (T_a + 237.3)^2
\]

\[
\text{ALFA} = 17.27 \times T_a / (T_a + 237.3)
\]

\[
\Delta = 4098 \times (.6108 \times \text{EXP}(\text{ALFA})) / \text{TETA}
\]

Step 5. Calculation of advective contribution

\[
\text{Adv} = (\gamma \times 900 \times U \times D_s) / (T_a + 273)
\]

\(\gamma = .066 \) (kPa/°C)

\(U = \) wind speed in m/s

\(D_s = \) saturation shortage (kPa)

Step 6. Calculation of the radioactive contribution

\[
\text{Rad} = 0.408 \times \Delta \times R_n
\]

Step 7. Calculation of denominator (resistance to vapor diffusion in the limit layer)

\[
\text{Dn} = \Delta + .066 \times (1 + .34 \times U)
\]
Step 8. Calculation of the radioactive component of ETo
 \[\text{ETRAD} = \frac{\text{Rad}}{\text{Dn}} \]

Step 9. Calculation of the advective component of ETo
 \[\text{ETADV} = \frac{\text{Adv}}{\text{Dn}} \]

Step 10. Calculation of ETo
 \[\text{ETO} = \text{ETRAD} + \text{ETADV} \]