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5.1   BASIC CONCEPTS 
 
The flow of water in soil can be described microscopically and macroscopically. On the 
microscopic scale, the flow in each individual pore is considered and for each defined 
continuous pore, the Navier-Stokes equations apply. For their solution we lack detailed 
knowledge of the geometrical characteristics of individual pores to obtain a solution for the 
REV. Even with this knowledge, a tremendous effort would be required necessitating 
voluminous calculations for even a relatively small soil domain. Nevertheless, this type of 
procedure is often applied in some theoretical investigations where the basic laws of fluid 
mechanics are invoked. In such studies the real porous system is usually defined by a model 
assuming great simplification of reality. 
 The macroscopic or phenomenological approach of water transport relates to the entire 
cross-section of the soil with the condition of an REV being satisfied. The rate of water 
transport through the cross section of the REV (the representative elementary area REA) is 
the flux. In order to emphasize the fact that water does not flow through the entire 
macroscopic areal cross section, the term flux density (or flux ratio, macroscopic flow rate et 
al.) is used to describe the flow realized through only that portion of the area not occupied by 
the solid phase and, by the air phase eventually when we deal later on with unsaturated soil. 
Moreover, we use the term flux density understanding that we actually mean  the  volumetric  
water flux density having the dimensions of velocity [LT-1]. 
 Inasmuch as the principal equation derived for this macroscopic approach is Darcy's 
equation, the scale for which this approach is valid is often denoted as the Darcian scale. For 
soils, the area of this scale is usually in the range of cm2 to m2. Beyond this scale in either 
direction, larger or smaller, Darcian scale equations may not be realistic. Unless we state 
otherwise, equations will be derived and solved mainly for the Darcian scale related to a 
particular REV. 
 On the Darcian scale, water flow in soils is comparable to other transport processes 
such as heat flow, molecular diffusion etc. when the appropriate driving force is defined. For 
example, when the distant ends of a metal rod are kept at different temperatures, heat flow 
exists. Similarly, molecular diffusion depends upon a difference of concentration in two 
mutually interconnected pools. Soil water flow is conditioned by the existence of a driving 
force stemming from a difference of total potentials between two points in the soil. Laymen 
mistakenly suppose that the driving force of water flow in an unsaturated soil is related to 
differences in soil water content. This supposition, valid only for a few specified conditions, 
generally leads to erroneous conclusions. 
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 Here, we first formulate basic flow equations for the simplest case of flow in a 
saturated, inert rigid soil. Afterwards, we deal with water flow in a soil not fully saturated 
with water.  This latter type of flow is commonly called unsaturated flow while the former is 
called saturated flow. To be more precise, we should distinguish the former from the latter 
flows as those occurring at positive and negative soil water pressures, respectively. If the flow 
of both air and water in the soil system is simultaneously considered, we speak of two phase 
flow. Initially, we assume that the concentration of the soil solution does not affect the soil 
water flow. Subsequently, our discussion is extended to swelling and shrinking soils. Finally, 
we examine linked or coupled flows together with some specific phenomena of transport at 
temperatures below 0°C. 
 All equations that we derive are supposed to be applicable to not only analytical and 
approximate mathematical solutions of the components of the soil hydrological system but to 
all deterministic models of soil hydrology. 
 
 
5.2   SATURATED FLOW 
 
We assume that water is flowing in all pores of the soil under a positive pressure head h. In 
field situations the soil rarely reaches complete water saturation. Usually it is quasi-saturated 
with the soil water content θW = mP where m has values of 0.85 to 0.95 at h ≥  0, and P is the 
porosity. Entrapped air occupies the volume P(1 - m). And for this discussion of saturated 
flow, the impact of entrapped air is not considered. 
 
 
5.2.1 Darcy's Equation 

Fig. 5.1. Steady flow experiments on saturated soil columns. On the right, the soil is placed in 
a cylinder provided with piezometers for measuring pressure heads h1 and h2 at depth z1 and 
2, respectively. The total potential head is H = h + z. 
 
For the derivation of Darcy's equation we shall discuss a simple experiment demonstrated in 
Fig. 5.1. The soil is placed in a horizontal cylinder connected on both sides with vessels 
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containing water maintained at a constant level in each vessel by an overflow valve. If the 
water level on the left side is higher than that on the right side, water flows to the right. The 
rate of discharge Q = V/t is simply measured by the volumetric overflow V in time t. The  flux 
density q [LT-1] (macroscopic flow rate) is  

    
q =

V
At          (5.1) 

where A is the cross-sectional area of the soil column perpendicular to the direction of flow. 
Sometimes, the term q is also called the Darcian flow rate. The mean water flow rate 
(velocity) in the soil pores vp is  

      vp = q / P  .        (5.2) 
 In 1856, Darcy experimentally demonstrated for columns of sand a linear relationship 
between the flux density q and the hydraulic gradient Ih. In our experiment shown on the right 
side of Fig. 5.1 

  
    
q = KS

∆h
L

= KS
∆h '
L '

= KS Ih      (5.3) 

where ∆h/L or ∆h'/L' is the hydraulic gradient Ih, ∆h the difference between water levels on 
both ends of the soil column of length L and ∆h' the difference between water levels in the 
piezometers separated by the distance L' in the direction of flow. Both ∆h and ∆h' are 
considered the hydraulic head drop along the soil. Inasmuch as ∆h/L is dimensionless, KS has 

the dimension of q [LT-1]. When we read piezometer levels h1 and h2 at elevations z1 and z2, 
respectively, we have in terms of the total potential H 

      
q = − KS

H2 − H1

z2 − z1

⎛ 

⎝ 
⎜ ⎞ 

⎠ 
⎟ 

      (5.4) 
where the total potential head H (= h + z) is related to a unit weight of water. In a more 
general way (5.4) becomes 
    q = − KS grad H  .       (5.5) 
Equation (5.5) states that the flux density is proportional to the driving force of the water flow 
which is the gradient of the potential. Inasmuch as KS is a constant for a given soil, we write 
φ* = KSH, and hence, 

    q = − grad φ ∗

       (5.6) 
where φ* is KSH. The negative sign in the above equations means that water flows in the 
direction of decreasing potential or against the positive direction of z in Fig. 5.1. The value of 
KS depends upon the nature of the soil and is numerically equal to the flow rate when the 

hydraulic gradient is unity. Values of KS commonly range from less than 0.1 cm.day-1 (10-8 

m.s-1) to more than 102 cm.day-1 (10-5 m.s-1). 
 In layered soils we have to specify the direction of the flow relative to that of the 
layering. When the flow is parallel to the layers, the total flux is the sum of the fluxes for each 
of the individual layers, see Fig. 5.2. Hence, Q = Q1 + Q2 + Q3 and 
      q b1 + b2 + b3( )d = q1b1 + q2b2 + q3b3( )d .    (5.7) 
For a column of width d = 1, length L and thickness b composed of three layers each of 
thickness bi, the total flux density for a hydraulic head drop ∆h is 

  
    
q =

K1 b1 + K2 b2 + K3 b3
b1 + b2 + b3

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

∆h
L
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or 

  
    
q = KS

' ∆h
L

 .        (5.8) 

Here, the apparent hydraulic conductivity     KS
'  is the arithmetic mean of the individual values 

for each layer. 
 
 When water flows perpendicular to the layering, we introduce, analogous to an 
electrical resistance, the hydraulic resistance of each layer Ri = Li/KSi having units of time. In 
Fig. 5.2 the flow combined from the three layers is 

  
    
q =

∆h
R 1 + R 2 +R 3

.         (5.9) 

With the total resistance of the system R = ΣRi we obtain the harmonic mean or the apparent 
hydraulic conductivity     KS

"  = L/R.  
 When the flow is at an angle < 90° to the layers, the difference of KS in each of the 
layers causes a change of the direction of streamlines (Zaslavsky and Sinai, 1981, and 
Miyazaki, 1990), see Fig. 5.3. 

 
 
Fig. 5.2. Flux density q in  layered soils: a. Direction of flow is parallel to layering. B. 
Direction of flow is perpendicular to layering.  
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Fig. 5.3. Change of the direction of flow in a soil with inclined direction of layers. 
 
 
 
5.2.2   Saturated Hydraulic Conductivity  
 
Inasmuch as the soil water potential H can be expressed in three modes, the dimension of the 
hydraulic conductivity is not necessarily [LT-1]. From (5.5) we obtain for the three 
dimensions of H three different dimensions of KS. Although expressing KS in units of 
velocity is usually more convenient, any one of the following sets of units is occasionally 
preferred. 

             H                                  grad H                                    KS _________ 

J.kg-1    [L2T-2]              J.kg-1.m-1  [LT-2]           s    [T] 
Pa       [ML-1T-2]            Pa.m-1   [ML-2T-2]        m.s-1.ρW-1.g-1   [M-1L3T] 

m    [L]                            dimensionless                   m.s-1   [LT-1] 
 The empirical, intuitive derivation of Darcy's equation (5.5) can be theoretically 
justified from Navier-Stokes equations applied to an REV of a model of a porous medium and 
scaled with a characteristic length. In order to obtain (5.5), inertial effects were neglected and 
the density and viscosity of water were assumed invariant (Bear, 1972; Whitaker, 1986). 
Scheidegger (1957) showed that KS should be considered a scalar quantity for isotropic soils, 
and a tensor of rank 2 for anisotropic soils with the value of KS dependent upon the direction 
of flow. When the tensor KS is assumed to be symmetric, its principal axes, defined by six 
values, are identical to those of an ellipsoid of conductivity. If the gradient of the potential is 
not in the direction of a principal axis, the direction of flow is different from that of the 
gradient. 
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Fig. 5.4. In Kozeny´s model, the complicated soil porous system (right) is represented by a 
bundle of parallel capillary tubes of uniform radius (left). The flux density q, saturated 
hydraulic conductivity KS, porosity P and surface area of pores Am are the same in both, the 
model and the soil. 
 
From a theoretical treatment we can obtain a physical interpretation of the hydraulic 
conductivity. We develop here a modified and simplified model of Kozeny (cf. Scheidegger, 
1957) consisting of a bundle of parallel capillary tubes of uniform radius. We assume that the 
soil and the model are identical with respect to porosity P, specific surface Am [L-1] and 
water flux density q [LT-1], see Fig. 5.4. The mean flow rate vp in a capillary of radius r is 
described by Hagen-Poiseuille's equation 

      
vp =

ρW gr 2

8µ
Ih

        (5.10) 
where g is the acceleration of gravity [LT-2], ρW the density of water [ML-3], µ the dynamic 
viscosity [ML-1T-1] and Ih the hydraulic gradient [dimensionless]. With n being the number 
of capillaries of unit length x, the porosity of the model is 
      P = nπr 2 x/Vu         (5.11) 
where Vu is the unit volume and the specific surface is 
      Am = 2nπ rx/ Vu.        (5.12) 
From (5.11) and (5.12) we obtain 

  
    
r =

2P
Am

.        (5.13) 

And, from (5.2) and (5.10) we obtain 

      
q =

1
2

ρW g
µ

P 3

A m
2 Ih

.       (5.14) 
Because soil pores are irregularly shaped and mutually interconnected, a shape factor c 
replaces 1/2 in (5.14). Letting  

      
Kp =

c P 3

A m
2

        (5.15) 
we obtain 
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q = Kp

ρW g
µ

I h
       (5.16) 

which is identical to (5.3). Because the term Kp relates to the flow of any fluid through a soil, 

it is called the permeability [L2]. The unusual dimension of Kp represents the cross-sectional 
area of an equivalent pore. Although now almost obsolete, the historical unit of 1 Darcy = 1 
µm2 was used for describing permeability.  
 Inasmuch as flow channels in the soil are curved compared with those of a capillary 
model, a tortuosity factor τ introduced in (5.15) yields the Kozeny equation 

      
Kp =

c P 3

τ A m
2

.        (5.17) 
The tortuosity τ is the ratio between the real flow path length Le and the straight distance L 
between the two points of the soil. Because Le > L, τ > 1. In a monodispersed sand 
manifesting a value of τ ≈  2, the flow path forms approximately a sinusoidal curve (Corey, 
1977). 
 Equations identical or of similar type to (5.17) have been derived by many authors. If a 
model of parallel plates is used instead of capillary tubes and the slits are oriented in the 
direction of the laminar flow, we obtain the mean flow rate 

      
vp =

ρW g d 2

3µ
Ih

       (5.18) 
where 2d is the distance between the plates. When B is the width of the plates, P = 2ndBx/Vu 
and Am = 2nx(2d + B)/Vu. Taking x = 1 and B = 1, we obtain d = P(Am - 2P) and hence, 

      
Kp =

c P 3

τ A m − 2P( )2

.       (5.19) 
Looking at (5.17) and (5.19), we are reminded of the Kozeny-Carman equation 

      
Kp =

P 3

5 A m
2 1 − P( )2

.                 (5.20) 
Its derivation was shown in detail by Scheidegger (1957). 
 From (5.3) and (5.16) the relationship between KS and any formulation of Kp is 
 

  .   
KS = Kp

ρW g
µ       (5.21) 

Kozeny's equation shows that KS is sensitive to porosity. However, in his model the pore radii 
are considered uniform while those in real soils have broad distributions, see the Fig. 5.4a.  

For real soils, we subdivide the pores according to their radii into j categories each having an 
equivalent radius rj. For rj > rj+1 the flux in each category qj(    r j

4 ,nj) where nj is the 
percentage of the j-th category in the whole soil, qj >> qj+1 .Total flux q = Σ qj as shown for 
parallel layering. Thus, let us assume for j = 1, the percentage of the category of largest pores 
is eliminated by compaction. Although the porosity may be only marginally reduced, the 
value of KS may be reduced by orders of magnitude. 
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Fig. 5.4.a Contribution of soil pore categories with r1<r2<…rj and their fluxes q1, q2,..qj. tp 
the total flux q = q1 + q2 + …qj. Elimination of coarse pores results in substantial reduction 
of q and for the given grad H reduction of KS. Coarse pores are either eliminated, or their 
volume is strongly reduced due disaggregation or soil compaction. 
 
It is logical, therefore, that aggregation of a soil may increase KS by orders of magnitude, yet 
the porosity may remain nearly the same. And, vice versa, soil dispersion or disaggregation 
substantially decreases KS. For example, in a loess soil, the saturated hydraulic conductivity 
of its surface after a heavy rain decreases 3 to 4 orders of magnitude compared with its 
original value owing mainly to two processes – disaggregation and the blockage of pores by 
the released clay particles (McIntyre, 1958). Compaction of soil in the A-horizon and in the 
bottom of the plowed sub horizon causes a much greater decrease of KS  than that predicted 
from a decrease of porosity in the simple Kozeny equation because compaction reduces 
primarily the content of large soil pores associated with values of pressure head h = 0 to -100 
cm.  
 Although the textural class of a soil may have a large influence on the value of KS, any 
attempt to establish a correlation between the two attributes usually fails. Only for those soils 
and soil horizons of the same genetic development occurring in the same region and being 
similarly managed will a correlation between texture and KS be manifested. On the other 
hand, a few generalities may exist. For example, the smallest values of KS in each of the main 
textural classes can be approximated. In sandy soils, the minimum value of KS is about 100 

cm.day-1, in silty loams about 10 cm.day-1 and in clays about 0.1 cm.day-1. In peats, KS 
decreases with an increasing degree of decomposition of the original organic substances. 
When the degree of decomposition of a peat is about 40 to 50%, the value of KS diminishes to 
values of KS typical of unconsolidated clays. Extreme drainage and concomitant drying of 
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peat soils causing compaction and an increase of soil bulk density also reduce the magnitude 
of KS. Moreover, because this drying increases hydrophobism, entrapment of air during 
wetting is enhanced and contributes even further to the decrease of KS.  
 In loams and clays, the nature of the prevalent exchangeable cation plays an important 
role relative to the value of KS, see Fig. 5.5. In vertisols, an increase of the percentage of 
exchangeable sodium (ESP) is accompanied by a decrease in KS when the ESP reaches 15 to 
20%, provided that the soluble salt content of the soil water is small. For example, with the 
electrical conductivity of the soil paste EC being 1 mS.cm-1 or less, the value of KS can 
decrease two or three orders of magnitude. On the other hand, even for the same soil having a  

Fig. 5.5. The influence of sodium adsorption ratio SAR and salt concentration upon the value 
of the saturated hydraulic conductivity is very strong in Aridisols, Ustolls and Vertisols (see 
top), while in Oxisols with a large accumulation of free iron oxides the influence of SAR and 
salt concentration is weak (see bottom) (Mc Neal et al., 1968). 
 
large ESP, if the concentration of soluble salts is increased substantially to an EC value of  
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about 8 mS.cm-1 or more, the KS value is not significantly affected. The value of ESP is 
closely related to the sodium adsorption ratio SAR of percolating water [SAR = Na/(Ca + 
Mg)1/2]. If Ca is completely absent (i.e. only Mg appears in the denominator), the value of 
KS is more greatly reduced than when Mg is absent (McNeal et al., 1968). When monovalent 
cations are considered in addition to Na, we find that potassium leads to a decrease of KS but 
its influence is not as strong as that of exchangeable Na. It has been shown that large organic 
cations such as pyridinium cause the value of KS to increase by several orders of magnitude in 
montmorillonitic clay while their impact on the value of KS  of kaolinitic clays is less 
significant (Kutílek and Salingerová, 1966). These variations are closely related to the degree 
of flocculation or peptization of the soil colloidal particles that can be quantified with the 
value of the ζ-potential derived from double layer theory. Applying this theory, the decrease 
in KS owing to the action of rain water (very small EC) is easily predicted for soils having 
large SAR values. These predictions are not necessarily successful for soils that differ 
pedologically. For example, a solution of high SAR value percolating through an Oxisol does 
not decrease the value of KS even after reducing the solute concentration because the 
abundant free iron oxides prevent peptization and disaggregation of the soil particles. The 
value of KS also depends upon the composition of the clay fraction. It decreases in the order 
kaolinite, illite and montmorillonite. And, soil organic matter has a profound impact upon the 
magnitude of KS, owing to its cementing action that promotes aggregate stability. Bacteria 
and algae may reduce the value of hydraulic conductivity in long term laboratory tests and in 
some field conditions when sewage treatment effluents are either used for irrigation or 
disposed on special lands. These same effects can also exist in an irrigated soil well supplied 
with plant nutrients and sunshine. The process is not necessarily restricted to only anaerobic 
conditions inasmuch as some aerobic bacteria may cause a reduction in the value of KS. The 
reduction is partly attributed to cells of bacteria and algae mechanically clogging the soil 
pores and to slimy, less pervious products of microbial activity being deposited on the walls 
and necks of the soil pores. For long term laboratory experiments, bactericides are commonly 
used to prevent the value of KS  from decreasing. In general, there are many factors 
influencing the value of KS that are usually not considered in simplified models. 
 Soils classified according to their values of KS are  

very low permeability         KS < 10-7 m.s-1 

low permeability     10-7 < KS < 10-6 m.s-1 
medium permeability    10-6 < KS < 10-5 m.s-1 

high permeability                                                   10-5 < KS < 10-4 m.s-1 
excessive permeability                                                KS > 10-4 m.s-1 

Geological materials are similarly classified as 
compacted clays                                                     10-11 < KS  < 10-9 m.s-1 

gravel                                                            10-1  < KS  < 101 m.s-1 
All such classification schemes above are problematical. For soils in a certain region, a more 
appropriate classification would be based upon the frequency distribution of KS. Based upon 
that frequency distribution, we can identify sub regions where a particular range of KS is 
expected. 
 When values of KS are considered relative to their position within a soil profile, soils 
are grouped into these seven classes.  
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1. KS does not change substantially in the profile. 
2. KS of the A-horizon is substantially greater than that of the remaining soil profile 
and no horizon of extremely low KS  exists. 
3. KS gradually decreases with soil depth without distinct minima or maxima. 
4. KS manifests a distinct minimum value in the illuvial horizon or in the compacted 
layer just below the plow layer. 
5. Soil of high permeability with its development belonging to one of the first four 
classes covering the underlying soil of very low permeability. 
6. Soil of very low permeability with its development belonging to one of the first four 
classes covering the underlying soil of very high permeability. 
7. KS changes erratically within the profile owing to extreme heterogeneity in the soil 
substrata. 

 The influence of the temperature upon the value of KS can be examined with (5.21). 
Inasmuch as ρW is negligibly influenced by temperature, changes of KS(T) depend primarily 
upon the viscosity µ(T). 
 
 
5.2.3   Darcian and Non-Darcian Flow 
 
We have already mentioned that Darcy's equation is valid only for small rates when the 
inertial terms of the Navier-Stokes equations are negligible. For engineering purposes the 
upper limit of the validity of Darcy's equation given by (5.3) through (5.6) is indicated by the 
critical value of Reynolds' number for porous media 

  
  
Re =

qdρ
µ

        (5.22) 

where d denotes length. In sands, d is the effective diameter of the particles, or with some 
corrections, the effective pore diameter. Sometimes d is related to the permeability of the 
sand, e.g. d =     K p

1/2 . However, in all soils other than sands, d is not at all definable and hence, 
(5.22) is not applicable. The difficulty in defining d is manifested by controversy in the 
literature regarding the assignment of critical values of Re. Most frequently, critical values of 
Re have been reported to range from 1 to 100. In this post linear region, the flow is often 
described by the Forchheimer equation (Bear, 1972) 

  
  
dH
dx

= a q + bq 2       (5.23) 

where a is the material constant analogous to KS and b is functionally dependent upon the 
water flux density. This non linearity is caused primarily by inertia and by turbulence starting 
only at very large values of flux density, see Fig. 5.6. A more detailed theoretical discussion is 
given by Cvetkovic (1986). 
 Deviations from Darcy's equation have also been observed in laboratory experiments 
for very small flux density values. We define, therefore, the pre linear region of flow where q 
increases more than proportionally with Ih, see Fig. 5.6. This deviation from Darcy's equation, 
most often observed within pure clay having very large specific surfaces (e.g. 102 m2.g-1), 
has been explained by the action of three factors: a) Clay particles shift and the clay paste 
consolidates owing to the imposed hydraulic gradient and the flow of water, b) It is 
theoretically assumed that the viscosity of water close to the clay surfaces is different than 
that of bulk water or that in the center of the larger soil pores. According to Eyring's 
molecular model where the viscosity depends upon the activated Gibbs' free energy, the first 
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two to five molecular layers have a distinct increased viscosity. Owing to the great value of 
the specific surface in clays, the contribution of the first molecular layers to the alteration of 
averaged viscosity may not be negligible. c) The coupling of the transfer of water, heat, 
solutes et al. may also contribute to the existence of the pre linear region (Swartzendruber, 
1962; Kutílek, 1964 and 1972; Nerpin and Chudnovskij, 1967). 

Fig. 5.6. Deviations from the ůinearity of Darcy´s equation 
 
 Deviations from Darcian flow are not frequently described or observed, and the post 
linear region is only rarely reached in sands and gravelly sands. There is not yet any field 
experimental evidence of the existence of a pre linear region. Darcy's equation is, therefore, 
either exact or at least a very good approximation entirely adequate for soil hydrology. 
 
 
5.2.4 Measuring   KS 
 
Saturated hydraulic conductivity is one of the principal soil characteristics and for its 
determination, only direct measurement is appropriate. Indirect methods, derived from soil 
textural characteristics which are sometimes combined with aggregate analyses, generally do 
not lead to reliable values. Considering soil texture as an example, soil water flow is totally 
independent from the laboratory procedure of dispersing, separating and measuring the 
percentage of "individual" soil particles which do not even exist "individually" in natural field 
soils. It has been shown in section 5.2.2 that the value of KS is closely related physically to 
the porous system within a soil. Inasmuch as a quantitative description of this porous system 
is much more difficult than the measurement of KS, direct measurement of KS is preferred. 
When KS is ascertained by water flux density and potential gradient measurements, we will 
speak about the determination of KS. In order to avoid misunderstanding, when additional 
assumptions are used to evaluate these two quantities somewhat less directly, we will speak 
about the estimation of KS. 
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 Measuring is realized either in the laboratory on soil core samples previously taken 
from the field, or directly in the field without removing a soil sample. Field methods are 
preferred. They provide data that better represent the reality of water flow in natural 
conditions. Their main disadvantage is the lack of rigorous quantitative procedures for 
measuring soil attributes in the majority of field tests. For laboratory measurements, the size 
of the REV should be theoretically estimated in order that an appropriate soil core sampler be 
selected. In practice, because the REV is rarely determined, a standard core or cylinder size is 
used for most soils. As a result, larger numbers of samples are taken with appropriate 
statistical evaluation of the data in order to partly reduce the error associated with samples 
having smaller volumes than the REV. In soils without cracks and frequently occurring 
macropores a soil sample volume of 200 to 500 cm3 is assumed satisfactory. In subsoils, a 
100 cm3 sample will sometimes suffice. Methods relying on "undisturbed" core samples are 
generally not applicable in stony soils, in forests and in soils that crack excessively upon 
drying.  
  

Fig. 5.7. Falling head permeameter 
 
In the laboratory, the test is usually performed in a way similar to that demonstrated in Fig. 
5.1. When both elevations of the water level are kept constant, i.e. in the vessel before water 
passes the soil ("upper level") and in the vessel after water has passed through the soil ("lower 
level"), (5.1) and (5.3) are applied. Apparatuses so constructed are usually called constant 
head permeameters. More frequently, the upper water level is allowed to fall, see Fig. 5.7. The 
fall of the water level dh in the measuring tube above the soil sample relates to the flux of 
water through the soil in time dt. Equating the two volumes, that moving in the measuring 
tube and that moving through the soil, we have 
      − A1dh = A2 q dt        (5.24) 
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where A1 is the cross-sectional area of the tube above the soil and A2 is the cross-sectional 
area of the soil. Substituting q from (5.3) into (5.24) and recognizing that ∆h in (5.3) is the 
total potential head difference h in Fig. 5.7, we have 

  
    

A 1 L
A 2 KS

dh
hh 0

h 1

∫ = − dt
0

t 1

∫  .      (5.25) 

After integrating and rearranging, 

  
    
K S =

A 1 L
A 2 t1

ln
h 0

h 1

⎛ 

⎝ 
⎜ 
⎜ 

⎞ 

⎠ 
⎟ 
⎟ .       (5.26) 

The method is sometimes modified by having A1 = A2 and by keeping the bottom vessel 
without an overflow. Construction details of these apparatuses, usually referred to as falling 
head permeameters, are given in Klute and Dirksen (1986).  
 In the field, we generally deal with two cases relative to the determination of KS. In 
the first case, a water saturated zone is formed by an unconfined aquifer close to the surface 
with the ground water level being not deeper than about 1.5 m. In the second case, the soil is 
not fully saturated. 
 There exists a number of field methods for determining KS in the saturated zone. 
Among them, the auger-hole method and the piezometer method are the most commonly 
practiced.  
 In the auger-hole method, a hole is drilled to a depth well below the ground water 
level. After the water from the hole is rapidly pumped out, the rate of rise of the water level in 
the hole is registered. A general equation for the computation of KS is simply 

  
  
K S = C dz

dt
        (5.27) 

where z is the depth of the water level in the hole measured from the hydrostatic ground water 
level in the soil and C is the shape coefficient dependent upon the geometry of the test. In 
practice, the derivative in (5.27) is replaced by the differences ∆z/∆t and the coefficient C is 
evaluated, e.g. according to the potential theory by Ernst (1950) quoted in Maasland and 
Haskew (1957). Except at the extreme bottom of the hole, it is assumed that the flow paths of 
water in the soil are perpendicular to the walls of the hole. In order that this assumption be 
fulfilled, pumping should not be repeated in short sequences of time. Estimation of C for less 
restrictive geometrical conditions has been described by Boast and Langbartel (1984). 
 The piezometric method is similar to the auger-hole method except that a tube driven 
into the augered soil serves as a lining for the hole. The rate  of the rise of the water level in 
the lined hole is measured after pumping a portion of the water from the hole. The lining 
prevents inflow except through the bottom of the hole. For isotropic soils, KS is computed 
from 

  
    
K S =

π r 2

C ∆ t
ln

z1

z 2

⎛ 

⎝ 
⎜ 
⎜ 

⎞ 

⎠ 
⎟ 
⎟        (5.28) 

where r is the radius of the tube inserted into the hole, z1 and z2 are the depths of water levels 
in the hole measured from the hydrostatic ground water level during the time interval ∆t. The 
shape factor C ≈ 5.6r for a flat bottom and C ≈ 9 for a hemispherical bottom. Note the 
similarity between (5.28) and (5.26). The falling head permeameter method modified here 
with a shape factor C applies to the piezometer method. When the lining does not reach the 
bottom of the hole, water penetrates additionally from the sides, and the value of the shape 
factor C increases in relation to L/r where L is the height of the unlined portion of the hole 
(Smiles and Youngs, 1965). 
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 The piezometric method is ideally suited to measure KS of anisotropic soils. Two 
measurements are required. For the first measurement, the lining reaches to the bottom of the 
hole and we compute with (5.28) the product of the vertical and horizontal hydraulic 
conductivities, KV and KH. In (5.28), KS is replaced by (KVKH)1/2 and we assume that the 
main axes of the hydraulic conductivity tensor are vertical and horizontal. For the second 
measurement the hole, deepened by the value L without pushing the lining tube deeper, allows 
inflow into the hole through both the unlined wall of height L and through the bottom. With a 
new shape factor C2 in (5.28), the values of KV and KH, respectively, are simply calculated 
with data from the second experiment. A detailed description of methods of measurement of 
KS in the field is given by Amoozegar and Warrick (1986). If the saturated soil or aquifer is of 
great thickness and the locality allows installation of several observation wells, pumping tests 
can be performed in order to obtain KS. This method which deals with ground water 
hydraulics is frequently described in detail in the literature. Data obtained from these pumping 
tests are not generally compatible with data determined by the auger-hole method 
representing a weighted average KS value in the domain of the cone of depression compared 
with the "point" data of the auger hole method. 
 The task of measuring KS in an unsaturated zone is more difficult. Infiltration tests are 
most frequently used to measure KS of the topsoil or other horizons near the soil surface. The 
value of KS is estimated from readings of cumulative infiltration as a function of time. 
Alternatively, after a quasi-steady state infiltration rate is reached, its value together with that 
of the hydraulic gradient estimated from tensiometers installed at two or more depths are used 
in (5.5) to calculate the value of KS. The details will be discussed in Chapter 6. 
 The auger-hole method is commonly modified to determine KS below the soil surface 
of an unsaturated soil. Because the zone is not saturated, the modified procedure is opposite to 
that dealing with a saturated zone. Instead of water being removed from the saturated soil, 
water is poured into the hole from a marriotte flask. After a relatively short time of 15 to 30 
minutes, quasi-steady flow is reached. The steady water flux density q is measured together 
with the constant height h of the water level above the bottom of the hole. Amoozegar and 
Warrick (1986) recommend that KS be calculated according to Glover's solution 

      
K S =

q sinh −1 h / r( )− r 2 / h 2 − 1( )1/2
+ r / h[ ]

2π h 2
   (5.29) 

where r is the radius of the hole. This procedure is called the constant head well permeameter 
method. A similar device, the so-called Guelph permeameter (Reynolds and Elrick, 1985, and 
Elrick and Reynolds, 1990), is broadly used today owing to the efficiency of measurement. 
  




