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5.1 BASIC CONCEPTS

The flow of water in soil can be described microscopically and macroscopically. On the
microscopic scale, the flow in each individual pore is considered and for each defined
continuous pore, the Navier-Stokes equations apply. For their solution we lack detailed
knowledge of the geometrical characteristics of individual pores to obtain a solution for the
REV. Even with this knowledge, a tremendous effort would be required necessitating
voluminous calculations for even a relatively small soil domain. Nevertheless, this type of
procedure is often applied in some theoretical investigations where the basic laws of fluid
mechanics are invoked. In such studies the real porous system is usually defined by a model
assuming great simplification of reality.

The macroscopic or phenomenological approach of water transport relates to the entire
cross-section of the soil with the condition of an REV being satisfied. The rate of water
transport through the cross section of the REV (the representative elementary area REA) is
the flux. In order to emphasize the fact that water does not flow through the entire
macroscopic areal cross section, the term flux density (or flux ratio, macroscopic flow rate et
al.) is used to describe the flow realized through only that portion of the area not occupied by
the solid phase and, by the air phase eventually when we deal later on with unsaturated soil.
Moreover, we use the term flux density understanding that we actually mean the volumetric

water flux density having the dimensions of velocity [LT'l].
Inasmuch as the principal equation derived for this macroscopic approach is Darcy's
equation, the scale for which this approach is valid is often denoted as the Darcian scale. For

soils, the area of this scale is usually in the range of cm? to m?. Beyond this scale in either
direction, larger or smaller, Darcian scale equations may not be realistic. Unless we state
otherwise, equations will be derived and solved mainly for the Darcian scale related to a
particular REV.

On the Darcian scale, water flow in soils is comparable to other transport processes
such as heat flow, molecular diffusion etc. when the appropriate driving force is defined. For
example, when the distant ends of a metal rod are kept at different temperatures, heat flow
exists. Similarly, molecular diffusion depends upon a difference of concentration in two
mutually interconnected pools. Soil water flow is conditioned by the existence of a driving
force stemming from a difference of total potentials between two points in the soil. Laymen
mistakenly suppose that the driving force of water flow in an unsaturated soil is related to
differences in soil water content. This supposition, valid only for a few specified conditions,
generally leads to erroneous conclusions.



Here, we first formulate basic flow equations for the simplest case of flow in a
saturated, inert rigid soil. Afterwards, we deal with water flow in a soil not fully saturated
with water. This latter type of flow is commonly called unsaturated flow while the former is
called saturated flow. To be more precise, we should distinguish the former from the latter
flows as those occurring at positive and negative soil water pressures, respectively. If the flow
of both air and water in the soil system is simultaneously considered, we speak of two phase
flow. Initially, we assume that the concentration of the soil solution does not affect the soil
water flow. Subsequently, our discussion is extended to swelling and shrinking soils. Finally,
we examine linked or coupled flows together with some specific phenomena of transport at
temperatures below 0°C.

All equations that we derive are supposed to be applicable to not only analytical and
approximate mathematical solutions of the components of the soil hydrological system but to
all deterministic models of soil hydrology.

5.2 SATURATED FLOW

We assume that water is flowing in all pores of the soil under a positive pressure head 4. In
field situations the soil rarely reaches complete water saturation. Usually it is quasi-saturated
with the soil water content &y = mP where m has values of 0.85t0 0.95at # = 0, and P is the
porosity. Entrapped air occupies the volume P(1 - m). And for this discussion of saturated
flow, the impact of entrapped air is not considered.

5.2.1 Darcy's Equation

Fig. 5.1. Steady flow experiments on saturated soil columns. On the right, the soil is placed in
a cylinder provided with piezometers for measuring pressure heads h; and h; at depth z; and
2, respectively. The total potential head is H = h + z.

For the derivation of Darcy's equation we shall discuss a simple experiment demonstrated in
Fig. 5.1. The soil is placed in a horizontal cylinder connected on both sides with vessels



containing water maintained at a constant level in each vessel by an overflow valve. If the
water level on the left side is higher than that on the right side, water flows to the right. The
rate of discharge Q = VIt is simply measured by the volumetric overflow ¥V in time ¢. The flux

density ¢ [LT'l] (macroscopic flow rate) is
Vv

At
(5.1)
where A is the cross-sectional area of the soil column perpendicular to the direction of flow.
Sometimes, the term ¢ is also called the Darcian flow rate. The mean water flow rate
(velocity) in the soil pores vp is
v,=q/P (5.2)

In 1856, Darcy experimentally demonstrated for columns of sand a linear relationship
between the flux density ¢ and the hydraulic gradient 7. In our experiment shown on the right
side of Fig. 5.1

q = KSATh = KS% = K I, (5.3
where Ah/L or Ah'/L" is the hydraulic gradient 77, Ah the difference between water levels on
both ends of the soil column of length L and A4’ the difference between water levels in the
piezometers separated by the distance L’ in the direction of flow. Both A% and Ak’ are
considered the hydraulic head drop along the soil. Inasmuch as Ax4/L is dimensionless, K has

the dimension of ¢ [LT'l]. When we read piezometer levels 47 and 42 at elevations z7 and z2,
respectively, we have in terms of the total potential #
Hz — Hlj

= - K
q S

54
where the total potential head H (= 4 + z) is related to a unit weight of wate(r. |21 a more
general way (5.4) becomes

q=—- Ksgrad H (5.5)
Equation (5.5) states that the flux density is proportional to the driving force of the water flow
which is the gradient of the potential. Inasmuch as Kg is a constant for a given soil, we write

¢* = K§H, and hence,

g=—grad ¢’ (5.6)
where ¢* is KSH. The negative sign in the above equations means that water flows in the
direction of decreasing potential or against the positive direction of z in Fig. 5.1. The value of
Kg depends upon the nature of the soil and is numerically equal to the flow rate when the
hydraulic gradient is unity. Values of K§ commonly range from less than 0.1 cm-day'1 (10'8

m-s'l) to more than 102 cm-day'1 (10'5 m-s'l).

In layered soils we have to specify the direction of the flow relative to that of the
layering. When the flow is parallel to the layers, the total flux is the sum of the fluxes for each
of the individual layers, see Fig. 5.2. Hence, Q = 01 + 02 + 03 and

q(by +by +b3 )d =(‘71b1+ 72 +q3b3)l- (5.7)
For a column of width 4 = 1, length L and thickness 5 composed of three layers each of
thickness bj, the total flux density for a hydraulic head drop 44 is
| Ky +Kyby+ Ky by | 4R
- by +by + by L




or

. Ah
q = Kg— L (5.8)

Here, the apparent hydraulic conductivity KS is the arithmetic mean of the individual values
for each layer.

When water flows perpendicular to the layering, we introduce, analogous to an
electrical resistance, the hydraulic resistance of each layer R; = L;j/Ks; having units of time. In

Fig. 5.2 the flow combined from the three layers is

go—2 (5.9)
R,+R,+R,

With the total resistance of the system R = XR; we obtain the harmonic mean or the apparent

hydraulic conductivity K, = L/R.

When the flow is at an angle < 90° to the layers, the difference of Kg in each of the
layers causes a change of the direction of streamlines (Zaslavsky and Sinai, 1981, and
Miyazaki, 1990), see Fig. 5.3.
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Fig. 5.2. Flux density q in layered soils: a. Direction of flow is parallel to layering. B.
Direction of flow is perpendicular to layering.




Fig. 5.3. Change of the direction of flow in a soil with inclined direction of layers.

5.2.2 Saturated Hydraulic Conductivity

Inasmuch as the soil water potential A can be expressed in three modes, the dimension of the

hydraulic conductivity is not necessarily [LT'l]. From (5.5) we obtain for the three
dimensions of H three different dimensions of Kg. Although expressing Kg in units of
velocity is usually more convenient, any one of the following sets of units is occasionally
preferred.

H grad H KS
Jkgl [L2T2 Jkglml LT s [T]
Pa  [ML1T? paml [ML2T2]  mslpwlgl mlL3T
m [L] dimensionless m-s1 [LT'l]

The empirical, intuitive derivation of Darcy's equation (5.5) can be theoretically
justified from Navier-Stokes equations applied to an REV of a model of a porous medium and
scaled with a characteristic length. In order to obtain (5.5), inertial effects were neglected and
the density and viscosity of water were assumed invariant (Bear, 1972; Whitaker, 1986).
Scheidegger (1957) showed that Kg should be considered a scalar quantity for isotropic soils,
and a tensor of rank 2 for anisotropic soils with the value of K§ dependent upon the direction
of flow. When the tensor K¢ is assumed to be symmetric, its principal axes, defined by six
values, are identical to those of an ellipsoid of conductivity. If the gradient of the potential is
not in the direction of a principal axis, the direction of flow is different from that of the
gradient.



Fig. 5.4. In Kozeny's model, the complicated soil porous system (right) is represented by a
bundle of parallel capillary tubes of uniform radius (left). The flux density q, saturated
hydraulic conductivity Ks, porosity P and surface area of pores A, are the same in both, the
model and the soil.

From a theoretical treatment we can obtain a physical interpretation of the hydraulic
conductivity. We develop here a modified and simplified model of Kozeny (cf. Scheidegger,
1957) consisting of a bundle of parallel capillary tubes of uniform radius. We assume that the

soil and the model are identical with respect to porosity P, specific surface A, [L'l] and

water flux density ¢ [LT'l], see Fig. 5.4. The mean flow rate vy in a capillary of radius r is
described by Hagen-Poiseuille's equation
2
r
Pn & I,
Bu (5.10)
where g is the acceleration of gravity [LT'2], pw the density of water [M L'3], 4 the dynamic

Up:

viscosity [ML'lT'l] and /j, the hydraulic gradient [dimensionless]. With »n being the number
of capillaries of unit length x, the porosity of the model is

P=nnxr’x/V, (5.11)
where ¥, is the unit volume and the specific surface is
A, =2nrrx/V,. (5.12)
From (5.11) and (5.12) we obtain
2P
== 5.13
r A (5.13)
And, from (5.2) and (5.10) we obtain
1 p°’
= EMAZ Ih
B (5.14)

Because soil pores are irregularly shaped and mutually interconnected, a shape factor ¢
replaces 1/2 in (5.14). Letting
K - cP23
A
" (5.15)

we obtain



(5.16)
which is identical to (5.3). Because the term K, relates to the flow of any fluid through a soil,

it is called the permeability [L2]. The unusual dimension of K}, represents the cross-sectional
area of an equivalent pore. Although now almost obsolete, the historical unit of 1 Darcy = 1
umz was used for describing permeability.
Inasmuch as flow channels in the soil are curved compared with those of a capillary
model, a tortuosity factor3 rintroduced in (5.15) yields the Kozeny equation
cP
K, = TA?

. (5.17)
The tortuosity 7 is the ratio between the real flow path length L and the straight distance L
between the two points of the soil. Because Le > L, 7 > 1. In a monodispersed sand
manifesting a value of r ~ 2, the flow path forms approximately a sinusoidal curve (Corey,
1977).

: Equations identical or of similar type to (5.17) have been derived by many authors. If a
model of parallel plates is used instead of capillary tubes and the slits are oriented in the
direction of the laminar flow, we obtain the mean flow rate

Ay 8d”
=745 1y
3u (5.18)
where 2d is the distance between the plates. When B is the width of the plates, P = 2ndBx/Vy,
and Ay, = 2nx(2d + B)/Vy,. Taking x = 1 and B = 1, we obtain d = P(A4y, - 2P) and hence,
cP?

Oy

K =———
14 . 2
r(A,-2P) (5.19)
Looking at (5.17) and (5.19), we are reminded of the Kozeny-Carman equation
P 3
& =sara-ry
m . (5.20)

Its derivation was shown in detail by Scheidegger (1957).
From (5.3) and (5.16) the relationship between K and any formulation of X, is

KS:KppLg

: H (5.21)
Kozeny's equation shows that K¢ is sensitive to porosity. However, in his model the pore radii
are considered uniform while those in real soils have broad distributions, see the Fig. 5.4a.

For real soils, we subdivide the pores according to their radii into ;j categories each having an
equivalent radius r;. For rj > rj+] the flux in each category qj(rj4,nj) where n; is the

percentage of the j-th category in the whole soil, gj >> g;+7 .Total flux ¢ = £ gj as shown for

parallel layering. Thus, let us assume for j = 1, the percentage of the category of largest pores
is eliminated by compaction. Although the porosity may be only marginally reduced, the
value of K5 may be reduced by orders of magnitude.
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Fig. 5.4.a Contribution of soil pore categories with r;<r;<...r; and their fluxes q,, q>,..q;. tp
the total flux q = q; + q> + ...q;. Elimination of coarse pores results in substantial reduction
of q and for the given grad H reduction of Ks. Coarse pores are either eliminated, or their
volume is strongly reduced due disaggregation or soil compaction.

It is logical, therefore, that aggregation of a soil may increase Kg by orders of magnitude, yet
the porosity may remain nearly the same. And, vice versa, soil dispersion or disaggregation
substantially decreases Kg. For example, in a loess soil, the saturated hydraulic conductivity
of its surface after a heavy rain decreases 3 to 4 orders of magnitude compared with its
original value owing mainly to two processes — disaggregation and the blockage of pores by
the released clay particles (Mcintyre, 1958). Compaction of soil in the A-horizon and in the
bottom of the plowed sub horizon causes a much greater decrease of Kg than that predicted
from a decrease of porosity in the simple Kozeny equation because compaction reduces
primarily the content of large soil pores associated with values of pressure head # = 0 to -100
cm.

Although the textural class of a soil may have a large influence on the value of K, any
attempt to establish a correlation between the two attributes usually fails. Only for those soils
and soil horizons of the same genetic development occurring in the same region and being
similarly managed will a correlation between texture and Kg be manifested. On the other
hand, a few generalities may exist. For example, the smallest values of Kg in each of the main

textural classes can be approximated. In sandy soils, the minimum value of K is about 100

cm-day'l, in silty loams about 10 cm-day'1 and in clays about 0.1 cm-day'l. In peats, Kg

decreases with an increasing degree of decomposition of the original organic substances.
When the degree of decomposition of a peat is about 40 to 50%, the value of K diminishes to

values of Kg typical of unconsolidated clays. Extreme drainage and concomitant drying of



peat soils causing compaction and an increase of soil bulk density also reduce the magnitude
of KS. Moreover, because this drying increases hydrophobism, entrapment of air during

wetting is enhanced and contributes even further to the decrease of K.

In loams and clays, the nature of the prevalent exchangeable cation plays an important
role relative to the value of Kg, see Fig. 5.5. In vertisols, an increase of the percentage of

exchangeable sodium (ESP) is accompanied by a decrease in Kg when the ESP reaches 15 to
20%, provided that the soluble salt content of the soil water is small. For example, with the
electrical conductivity of the soil paste EC being 1 mS-cm™L or less, the value of Kg can
decrease two or three orders of magnitude. On the other hand, even for the same soil having a
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Fig. 5.5. The influence of sodium adsorption ratio SAR and salt concentration upon the value
of the saturated hydraulic conductivity is very strong in Aridisols, Ustolls and Vertisols (see
top), while in Oxisols with a large accumulation of free iron oxides the influence of SAR and
salt concentration is weak (see bottom) (Mc Neal et al., 1968).

large ESP, if the concentration of soluble salts is increased substantially to an EC value of



about 8 mS-cm™L or more, the Kg value is not significantly affected. The value of ESP is
closely related to the sodium adsorption ratio SAR of percolating water [SAR = Na/(Ca +

Mg)llz]. If Ca is completely absent (i.e. only Mg appears in the denominator), the value of
K is more greatly reduced than when Mg is absent (McNeal et al., 1968). When monovalent
cations are considered in addition to Na, we find that potassium leads to a decrease of K but
its influence is not as strong as that of exchangeable Na. It has been shown that large organic
cations such as pyridinium cause the value of K to increase by several orders of magnitude in
montmorillonitic clay while their impact on the value of Kg of kaolinitic clays is less
significant (Kutilek and Salingerova, 1966). These variations are closely related to the degree
of flocculation or peptization of the soil colloidal particles that can be quantified with the
value of the ¢-potential derived from double layer theory. Applying this theory, the decrease
in Kg owing to the action of rain water (very small EC) is easily predicted for soils having
large SAR values. These predictions are not necessarily successful for soils that differ
pedologically. For example, a solution of high SAR value percolating through an Oxisol does
not decrease the value of Kg even after reducing the solute concentration because the
abundant free iron oxides prevent peptization and disaggregation of the soil particles. The
value of Kg also depends upon the composition of the clay fraction. It decreases in the order
kaolinite, illite and montmorillonite. And, soil organic matter has a profound impact upon the
magnitude of K, owing to its cementing action that promotes aggregate stability. Bacteria
and algae may reduce the value of hydraulic conductivity in long term laboratory tests and in
some field conditions when sewage treatment effluents are either used for irrigation or
disposed on special lands. These same effects can also exist in an irrigated soil well supplied
with plant nutrients and sunshine. The process is not necessarily restricted to only anaerobic
conditions inasmuch as some aerobic bacteria may cause a reduction in the value of K§. The
reduction is partly attributed to cells of bacteria and algae mechanically clogging the soil
pores and to slimy, less pervious products of microbial activity being deposited on the walls
and necks of the soil pores. For long term laboratory experiments, bactericides are commonly
used to prevent the value of Kg from decreasing. In general, there are many factors
influencing the value of K¢ that are usually not considered in simplified models.
Soils classified according to their values of Kg are

very low permeability K§< 10" ms!

low permeability 107 < Kg< 106 ms1

medium permeability 106 <kg< 10 ms!

high permeability 10 < K§< 104 ms!

excessive permeability KS> 104 ms!
Geological materials are similarly classified as

compacted clays 1011 < Kg < 109 ms1

gravel 101 < Ks < 101 ms1

All such classification schemes above are problematical. For soils in a certain region, a more
appropriate classification would be based upon the frequency distribution of Ks. Based upon

that frequency distribution, we can identify sub regions where a particular range of Kg is

expected.
When values of Kg are considered relative to their position within a soil profile, soils

are grouped into these seven classes.

10



1. K5 does not change substantially in the profile.

2. Kg of the A-horizon is substantially greater than that of the remaining soil profile
and no horizon of extremely low K§ exists.

3. K gradually decreases with soil depth without distinct minima or maxima.

4. Ks manifests a distinct minimum value in the illuvial horizon or in the compacted
layer just below the plow layer.

5. Soil of high permeability with its development belonging to one of the first four
classes covering the underlying soil of very low permeability.

6. Soil of very low permeability with its development belonging to one of the first four
classes covering the underlying soil of very high permeability.

7. Ks changes erratically within the profile owing to extreme heterogeneity in the soil
substrata.

The influence of the temperature upon the value of Kg can be examined with (5.21).

Inasmuch as o is negligibly influenced by temperature, changes of K5(7) depend primarily
upon the viscosity (7).

5.2.3 Darcian and Non-Darcian Flow

We have already mentioned that Darcy's equation is valid only for small rates when the
inertial terms of the Navier-Stokes equations are negligible. For engineering purposes the
upper limit of the validity of Darcy's equation given by (5.3) through (5.6) is indicated by the
critical value of Reynolds' number for porous media

Re =442 (5.22)

MU

where d denotes length. In sands, d is the effective diameter of the particles, or with some
corrections, the effective pore diameter. Sometimes d is related to the permeability of the
sand, e.g. d = K ,"*. However, in all soils other than sands, d is not at all definable and hence,

(5.22) is not applicable. The difficulty in defining & is manifested by controversy in the
literature regarding the assignment of critical values of Re. Most frequently, critical values of
Re have been reported to range from 1 to 100. In this post linear region, the flow is often
described by the Forchheimer equation (Bear, 1972)
dH 2
=gt bg (5.23)
where a is the material constant analogous to Kg and 5 is functionally dependent upon the
water flux density. This non linearity is caused primarily by inertia and by turbulence starting
only at very large values of flux density, see Fig. 5.6. A more detailed theoretical discussion is
given by Cvetkovic (1986).

Deviations from Darcy's equation have also been observed in laboratory experiments
for very small flux density values. We define, therefore, the pre linear region of flow where ¢
increases more than proportionally with 7z, see Fig. 5.6. This deviation from Darcy's equation,

most often observed within pure clay having very large specific surfaces (e.g. 102 m2-g'1),
has been explained by the action of three factors: a) Clay particles shift and the clay paste
consolidates owing to the imposed hydraulic gradient and the flow of water, b) It is
theoretically assumed that the viscosity of water close to the clay surfaces is different than
that of bulk water or that in the center of the larger soil pores. According to Eyring's
molecular model where the viscosity depends upon the activated Gibbs' free energy, the first

11



two to five molecular layers have a distinct increased viscosity. Owing to the great value of
the specific surface in clays, the contribution of the first molecular layers to the alteration of
averaged viscosity may not be negligible. ¢c) The coupling of the transfer of water, heat,
solutes et al. may also contribute to the existence of the pre linear region (Swartzendruber,
1962; Kutilek, 1964 and 1972; Nerpin and Chudnovskij, 1967).
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Fig. 5.6. Deviations from the iiinearity of Darcy’s equation

Deviations from Darcian flow are not frequently described or observed, and the post
linear region is only rarely reached in sands and gravelly sands. There is not yet any field
experimental evidence of the existence of a pre linear region. Darcy's equation is, therefore,
either exact or at least a very good approximation entirely adequate for soil hydrology.

5.2.4 Measuring Kg

Saturated hydraulic conductivity is one of the principal soil characteristics and for its
determination, only direct measurement is appropriate. Indirect methods, derived from soil
textural characteristics which are sometimes combined with aggregate analyses, generally do
not lead to reliable values. Considering soil texture as an example, soil water flow is totally
independent from the laboratory procedure of dispersing, separating and measuring the
percentage of "individual™ soil particles which do not even exist "individually" in natural field
soils. It has been shown in section 5.2.2 that the value of Kg is closely related physically to
the porous system within a soil. Inasmuch as a quantitative description of this porous system
is much more difficult than the measurement of K, direct measurement of K is preferred.

When Kg is ascertained by water flux density and potential gradient measurements, we will
speak about the determination of K. In order to avoid misunderstanding, when additional

assumptions are used to evaluate these two quantities somewhat less directly, we will speak
about the estimation of Kg.

12



Measuring is realized either in the laboratory on soil core samples previously taken
from the field, or directly in the field without removing a soil sample. Field methods are
preferred. They provide data that better represent the reality of water flow in natural
conditions. Their main disadvantage is the lack of rigorous quantitative procedures for
measuring soil attributes in the majority of field tests. For laboratory measurements, the size
of the REV should be theoretically estimated in order that an appropriate soil core sampler be
selected. In practice, because the REV is rarely determined, a standard core or cylinder size is
used for most soils. As a result, larger numbers of samples are taken with appropriate
statistical evaluation of the data in order to partly reduce the error associated with samples
having smaller volumes than the REV. In soils without cracks and frequently occurring

macropores a soil sample volume of 200 to 500 cmS is assumed satisfactory. In subsoils, a

100 ¢cm3 sample will sometimes suffice. Methods relying on "undisturbed™ core samples are
generally not applicable in stony soils, in forests and in soils that crack excessively upon

drying.
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Fig. 5.7. Falling head permeameter

In the laboratory, the test is usually performed in a way similar to that demonstrated in Fig.
5.1. When both elevations of the water level are kept constant, i.e. in the vessel before water
passes the soil ("upper level™) and in the vessel after water has passed through the soil ("lower
level™), (5.1) and (5.3) are applied. Apparatuses so constructed are usually called constant
head permeameters. More frequently, the upper water level is allowed to fall, see Fig. 5.7. The
fall of the water level dh in the measuring tube above the soil sample relates to the flux of
water through the soil in time dr. Equating the two volumes, that moving in the measuring
tube and that moving through the soil, we have
—Aqdh =Ayqdt (5.24)
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where 47 is the cross-sectional area of the tube above the soil and 4> is the cross-sectional

area of the soil. Substituting ¢ from (5.3) into (5.24) and recognizing that 4% in (5.3) is the
total potential head difference % in Fig. 5.7, we have

AL on, .
| @:—jtdt. (5.25)
Ay Kg *ho R 0
After integrating and rearranging,
AL hy
Kg= In|—|. (5.26)
Aoty hq

The method is sometimes modified by having 47 = 42 and by keeping the bottom vessel

without an overflow. Construction details of these apparatuses, usually referred to as falling
head permeameters, are given in Klute and Dirksen (1986).
In the field, we generally deal with two cases relative to the determination of Kg. In

the first case, a water saturated zone is formed by an unconfined aquifer close to the surface
with the ground water level being not deeper than about 1.5 m. In the second case, the soil is
not fully saturated.

There exists a number of field methods for determining Kg in the saturated zone.

Among them, the auger-hole method and the piezometer method are the most commonly
practiced.

In the auger-hole method, a hole is drilled to a depth well below the ground water
level. After the water from the hole is rapidly pumped out, the rate of rise of the water level in
the hole is registered. A general equation for the computation of Kg is simply

Kg=C— (5.27)

where z is the depth of the water level in the hole measured from the hydrostatic ground water
level in the soil and C is the shape coefficient dependent upon the geometry of the test. In
practice, the derivative in (5.27) is replaced by the differences Az/At and the coefficient C is
evaluated, e.g. according to the potential theory by Ernst (1950) quoted in Maasland and
Haskew (1957). Except at the extreme bottom of the hole, it is assumed that the flow paths of
water in the soil are perpendicular to the walls of the hole. In order that this assumption be
fulfilled, pumping should not be repeated in short sequences of time. Estimation of C for less
restrictive geometrical conditions has been described by Boast and Langbartel (1984).

The piezometric method is similar to the auger-hole method except that a tube driven
into the augered soil serves as a lining for the hole. The rate of the rise of the water level in
the lined hole is measured after pumping a portion of the water from the hole. The lining
prevents inflow except through the bottom of the hole. For isotropic soils, Kg is computed

from

2 z

Kg=Z—In L—lJ (5.28)
C At Zz

where 7 is the radius of the tube inserted into the hole, z; and z2 are the depths of water levels

in the hole measured from the hydrostatic ground water level during the time interval Az¢. The
shape factor C ~5.6r for a flat bottom and C =9 for a hemispherical bottom. Note the
similarity between (5.28) and (5.26). The falling head permeameter method modified here
with a shape factor C applies to the piezometer method. When the lining does not reach the
bottom of the hole, water penetrates additionally from the sides, and the value of the shape
factor C increases in relation to L/r where L is the height of the unlined portion of the hole
(Smiles and Youngs, 1965).
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The piezometric method is ideally suited to measure Kg of anisotropic soils. Two

measurements are required. For the first measurement, the lining reaches to the bottom of the
hole and we compute with (5.28) the product of the vertical and horizontal hydraulic

conductivities, Ky and Kg. In (5.28), Kg is replaced by (KVKH)U2 and we assume that the
main axes of the hydraulic conductivity tensor are vertical and horizontal. For the second
measurement the hole, deepened by the value L without pushing the lining tube deeper, allows
inflow into the hole through both the unlined wall of height Z and through the bottom. With a
new shape factor C2 in (5.28), the values of Ky and Kp, respectively, are simply calculated
with data from the second experiment. A detailed description of methods of measurement of
K in the field is given by Amoozegar and Warrick (1986). If the saturated soil or aquifer is of
great thickness and the locality allows installation of several observation wells, pumping tests
can be performed in order to obtain Kg. This method which deals with ground water
hydraulics is frequently described in detail in the literature. Data obtained from these pumping
tests are not generally compatible with data determined by the auger-hole method
representing a weighted average K value in the domain of the cone of depression compared
with the "point™ data of the auger hole method.

The task of measuring Kg in an unsaturated zone is more difficult. Infiltration tests are
most frequently used to measure K of the topsoil or other horizons near the soil surface. The
value of Kg is estimated from readings of cumulative infiltration as a function of time.
Alternatively, after a quasi-steady state infiltration rate is reached, its value together with that
of the hydraulic gradient estimated from tensiometers installed at two or more depths are used
in (5.5) to calculate the value of Kg. The details will be discussed in Chapter 6.

The auger-hole method is commonly modified to determine K§ below the soil surface
of an unsaturated soil. Because the zone is not saturated, the modified procedure is opposite to
that dealing with a saturated zone. Instead of water being removed from the saturated soil,
water is poured into the hole from a marriotte flask. After a relatively short time of 15 to 30
minutes, quasi-steady flow is reached. The steady water flux density ¢ is measured together
with the constant height / of the water level above the bottom of the hole. Amoozegar and
Warrick (1986) recommend that K¢ be calculated according to Glover's solution

q ﬁnh4(h/r)—@2/h2—1yﬂ—%r/h]

’ 27h* (5.29)
where 7 is the radius of the hole. This procedure is called the constant head well permeameter
method. A similar device, the so-called Guelph permeameter (Reynolds and Elrick, 1985, and
Elrick and Reynolds, 1990), is broadly used today owing to the efficiency of measurement.
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