BEAMnrc: a code to simulate radiotherapy external beam sources

D.W.O. Rogers

Carleton Laboratory for Radiotherapy Physics. Physics Dept, Carleton University Ottawa, Canada

http://www.physics.carleton.ca/~drogers ICTP,Trieste, Nov 13, 2007

VERSIT

Canada's Capital University

I used to work for, and still receive some royalty income from the National Research Council of Canada which has licensing agreements re Monte Carlo software with:

Elekta Philips/ADAC NAS/NOMOS Nucletron Varian

The following companies have provided support for my group at Carleton University:

Nucletron Canada TomoTherapy Inc Philips/ADAC MDS Nordion Varian

BEAM code

- general purpose code to simulate radiotherapy beams
 accelerators -electrons & photons
 - ^{60}Co units
 - x-ray units
 - originally part of the OMEGA project done in collaboration with Rock Mackie's group in Madison (1990-1996)
 - Ottawa Madison Electron Gamma Algorithm
 - many grad students, RAs and TOs involved

BEAM developers

Dave RogersBlake WaltersIwan KawrakowCharlie MaBruce FaddegonGeorge DingGeoff ZhangJiansu WeiMichel ProulxDaryoush Sheikh-BagheriJoanne TreurnietJoanne Treurniet

EGS4: Ralph Nelson and Alex Bielajew EGSnrc: Iwan Kawrakow

BEAM design features

- Component Modules (CMs)
 - between parallel planes
 - can combine in arbitrary order
 - builds in flexibility and extensibility
- Not restricted to cylindrical symmetry (all prior models had been cylindrical)
- variance reduction built in for accelerator modelling
- detailed testing
- expert user friendly (only need be expert to use it well)

Flow of the process

Overview of the entire process

IAEA recommended phase space variables (Capote et al. 2006).

Variable	Meaning	Type of variable returned
X	Position in X direction in cm	Real*4
У	Position in Y direction in cm	Real*4
Z	Position in Z direction in cm	Real*4
U	Direction cosine along X	Real*4
V	Direction cosine along Y	Real*4
E	Kinetic energy in MeV	Real*4
Statistical_ weight	Particle statistical weight	Real*4
Particle_type	Type of the particle	Integer*2
Sign_of_W	Sign of W (direction cosine in Z)	Logical*1
Is_new_history	Signifies if particle belongs to new history	Logical*1
Integer_extra	Extra storage space for variables (e.g., EGS LATCH, incremental history number, PENELOPE ILB, etc.)	n*(Integer*4) (n \ge 0)
Float_extra	Extra storage space for variables (e.g., EGS ZLAST)	m*(Real*4) (m \ge 0)
Canada's Capital University	heikh-Baaheri 2006 AAPM Summe	r school 8/29

20 MeV NRC depth-dose

20 MeV NRC radial profile

⁶⁰Co therapy unit

Thanks to Jerry Battista 14/29

Issued June 17, 1988

Simulating an Eldorado6

Mora et al Med Phys 26(1999) 2494

Output variation vs expt

10 & 20 MV beams from NRC linac

NRC research accelerator, everything is known about it, including incident electron beam energy. Ion chamber measurements.

A systematic problem near surface Carleton

Sheikh-Bagheri et al Med Phys 27(2000) 2256-2266

The effective point of measurement

Varied the offset for effective point of measurement of ion chamber to establish best offset.

Agreement becomes almost perfect.

This offset is that used in TG51/TR5398

Sheikh-Bagheri et al Med Phys 27(2000) 2256-2266

Dose Components

LATCH bits in BEAMnrc

BEAM associates regions or groups of regions with LATCH-bits(1->23)

Bits are set by particle interacting in these regions

LATCH is part of phase-space file

20/29

Allows a simple method of tracking a particle's history

Uses of BEAM

- accelerator design
- study physics of beams
- dosimetry studies
- beam characterization
 - 1st step to treatment planning
- commissioning accelerators

Doing it with BEAMnrc an interactive demonstration

- use EX10MeVe accelerator model (comes with code)
- run beamnrc_gui
 - show a compilation
 - look at inputs for accelerator
 - note on-line help, LATCH dose components
 - show previews and how to run job
- look at .egsinp file, .egslst file
- beamdp_gui use to show spectrum, scatter plot
- demonstrate EGS_Windows, dosxyz_show

CT Treatment Planning

Parameter selection with BEAMnrc

- for electron beams, match measured R₅₀
 - little else matters (assuming symmetric energy)
- for photon beams,
 - determine the incident electron energy by matching the depth-dose curve in a narrow beam
 - determine the radius of the incident electron beam by matching an off-axis ratio or dose profile for a large beam (40x40)

A summary of the findings of Sheikh-Bagheri and Rogers from Verhaegen and Seuntjens (PMB48(2003)R107)

Linac Characteristic	Effect on off-axis factors	Effect on depth dose
Primary electron energy	Linear decrease with primary electron energy: -0.105/MeV for a 6 MV Siemens beam. 0.2 MeV change has an observable effect	0.2 MeV change effects an observable effect
Gaussian width of electron energy distribution	No effect of Gaussian widening (0– 20%) observed for a 6 MV beam. Asymmetrical energy distribution has small effect	Weak dependence on Gaussian energy spread at large depths. Asymmetrical energy dist'n affects dose in build-up region: up to 1.5% for 18 MV Siemens beam
Radial intensity distribution of electron beam	Quadratic decrease with radial spread: 6% for 0.15 cm FWHM increase for an 18 MV Varian beam	No effect
Divergence of the electron beam	Slight effect when changing beam divergence from 0–1° for 18 MV photon beam	No effect changing beam divergence from 0–5° for 18 MV photon beam
Upstream opening of primary collimator	Sensitive to a 0.01 cm change in lateral opening	No effect
Material / density of flattening filter	Large effect: 1 g cm ⁻³ change of tungsten density causes 6% change in off-axis ratio for 15 MV	Not reported

Beam models

- a beam model, in this context, is any algorithm that delivers the location, direction and energy of particles to the patient dose-calculating algorithm.
- one type of beam model is a direct MC simulation of the accelerator head, but we refer to it as a beam simulation for clarity
- beam simulations can be done accurately if all the parameters are known - but they often are not

Acknowledgements

- The work described here has been done in conjunction with many colleagues, grad students and research associates. BEAM developers are listed on slide 4.
- I would particularly like to acknowledge that Iwan Kawrakow and Blake Walters have been the major developers of BEAMnrc for the last few years.
- Elsayed Ali is responsible for the BCSE work described.
- Support from the Canada Research Chairs program and

Bibliography re BEAM/BEAMnrc

-BEAM: A Monte Carlo code to simulate radiotherapy units, Med Phys 22 (1995) 503-524. pdf versions of this & related publications are available at: http://www.physics.carleton.ca/~drogers/pubs/papers/ -BEAMnrc, DOSXYZnrc related manuals available via the BEAM home page http://www.irs.inms.nrc.ca/BEAM/beamhome.html -Large efficiency improvements in BEAMnrc using directional Med Phys 31 (2004) 2883-2898 brem splitting, -History by history statistical estimators in the BEAM code Med Phys 29 (2002) 2745-2752 system,

Bibliography re BEAM/BEAMnrc

-A HOWFARLESS option to increase efficiency of homogeneous phantom calculations with DOSXYZnrc, Med Phys 34 (2007) 3794-3807

-Efficient x-ray tube simulations,

Med Phys 33 (2006) 2683-2690

-Efficiency improvements of x-ray simulations in EGSnrc user-codes using bremsstrahlung cross section enhancement (BCSE), Med Phys 34 (2007) 2143-2154
 -On the efficiency of treatment head simulation Med Phys 34 (2007) 2320-2326

-Sensitivity of megavoltage photon beam Monte Carlo simulations to electron beam parameters

Med Phys 29 (2002) 379-390

