Variance reduction techniques used in BEAMnrc

D.W.O. Rogers

Carleton Laboratory for Radiotherapy Physics. Physics Dept, Carleton University Ottawa, Canada

http://www.physics.carleton.ca/~drogers ICTP,Trieste, Nov 13, 2007

How do we get calculational efficiency?

efficiency of a calculation is given by

2/47

- s^2 is an estimate of the variance (σ^2) on a quantity of interest
 - fluence in 1x1 cm² grid
 - dose on central axis or profile
- T is the CPU time for the calculation

$$s^2 \propto \frac{1}{N}$$
 $T \propto N \Rightarrow \epsilon$ is independent of N

Improve the efficiency by decreasing s^2 or T

Variance estimation

Batch method

-Break cal'n into N batches and determine uncertainty by

distribution of results for batches -large uncertainty in the uncertainty

$$s_{\overline{X}} = \sqrt{rac{\sum_{i=1}^{N} (X_i - \overline{X})^2}{N(N-1)}}$$

History by history method

batches = #histories
-much better estimate
-algebraically equivalent

$$s_{\overline{X}} = \sqrt{rac{1}{N-1} \left(rac{\sum_{i=1}^{N} X_i^2}{N} - \left(rac{\sum_{i=1}^{N} X_i}{N}
ight)^2
ight)}$$

-problem: needed to do the sum at the end of every

history for a large number of regions=> very slow

Salvat's trick

Salvat recognized that we didn't have to do the sum for every region at the end of each history, just do for each region being affected, and clean up at end.

IF(nhist=X_last) THEN
 X_tmp=X_tmp+delta
ELSE
 X=X+X_tmp
 X2=X2+(X_tmp)**2
 X_tmp=delta
 X_last=nhist
ENDIF

nhist counts which history we are on

delta is some quantity being scored on this step.

History by history technique (cont)

History by history technique (cont)

Advantage of history by history

Condensed history technique

- as electrons slow, they have many interactions
- Berger's grouping into condensed history steps made Monte Carlo transport of electrons feasible.
 - individual scattering events grouped via multiple-scattering theories
 - low-energy-loss events grouped into restricted stopping powers
- this increases efficiency by decreasing T (by a lot)
- modern transport mechanics algorithms are very sophisticated in order to maximize step size while maintaining accuracy (to gain speed).

Variance reduction techniques (VRTs)

- A VRT is a method which increases the efficiency for some quantity of interest by decreasing s² for a given N while not biasing the result.
 - they often increase time per history
 - VRTs may simultaneously make s² for some other quantity increase
 - eg pathlength shrinking will improve the efficiency for dose near the surface but decrease the efficiency for dose at depth

Variance reduction techniques

- For a recent review, see Sheikh-Bagheri et al's 2006 AAPM summer school chapter http://www.physics.carleton.ca/~drogers/pubs/papers/SB06.pdf
- examples
 - splitting (brem splitting: UBS, DBS; in-phantom)
 - Russian roulette
 - interaction forcing
 - enhanced cross sections (brem: BCSE)
 - track repetition*
 - STOPS (simultaneous transport of particle sets)*

*last 2 applied in phantom and not discussed here 0/47

Splitting, Roulette & particle weight

Photon forcing

X = number of mfp in geometry where interaction forced.

Interaction forcing for photons

In normal transport, the number of mean free paths that a photon is to traverse. N_{λ} is given by:

$$N_{\lambda} = -ln(1-\zeta) \qquad 0 \leq \zeta < 1$$

If geometry has M_{λ} mfp in current direction, then:

$$N_{\lambda} = -ln\left(1-\zeta\left(1-e^{-M_{\lambda}}
ight)
ight) \qquad W' = W\left(1-e^{-M_{\lambda}}
ight)$$

will limit N_{λ} to a value less than M_{λ} , ie force it to interact in the medium, but give it a reduced weight.

For small
$$M_{\lambda}$$
: $W' = W \left(1 - e^{-M_{\lambda}} \right) pprox M_{\lambda} W$ for $M_{\lambda} << 1$

Interaction forcing for photons

To force interactions in a region between $M_{\lambda 1}~~and~M_{\lambda 2}~~mfp$ away:

$$N_{\lambda} = M_{\lambda 1} - ln \left(1 - \zeta \left(1 - e^{(+M_{\lambda 1} - M_{\lambda 2})}
ight)
ight)$$

$$W'=W\left(e^{-M_1}-e^{-M_{m\lambda 2}}
ight)$$

In this case, the fictitious photon is more critical to consider (because there is some geometry on the far side).

from Sheikh-Bagheri's 2006 summer school lecture 14/47

Other efficiency-improving techniques

- one can improve the efficiency by decreasing T
 - usually implies an approximation being made
 - must demonstrate the approximation does not lead to significant errors
- Examples
 - range rejection: terminate an e- history if it cannot reach any boundary
 - an approximation since no brem possible
 - higher cutoff energies: terminate tracks sooner
 - an approximation since energy deposited locally

15/47

Effect of changing ECUT and AE

AE is the lowest energy secondary electron created ECUT is the lowest energy electron transported ECUT>= AE

18 MeV electron beam from a Varian accelerator.

Case	AE	ECUT	cpu s per	total to	e^{-} per	$\gamma~{ m per}$
	(MeV)	(MeV)	history	file/inc e^-	$100 \text{ inc } e^-$	$100 \text{ inc } e^-$
1	0.700	0.700	0.0124	0.417	9.15	32.4
5 6	0.700 0.700	$0.900 \\ 1.100$	0.0118 0.0083	$0.417 \\ 0.411$	9.09 9.13	$32.5 \\ 31.9$
7 10	$0.521 \\ 0.521$	$0.521 \\ 0.700$	$0.0538 \\ 0.0178$	$0.414 \\ 0.416$	8.79 9.09	32.6 32.4

BEAM paper, Med Phys 22 (2007) 503-524

16/47

Range rejection: effects of threshold

ESAVE is the energy below which range rejection is done. ESAVE=0 => no range rejection is done

18 MeV electron beam from a Varian accelerator.

Case	AE	ECUT	ESAVE	cpu s per	total to	e ⁻ per	γ per
	(MeV)	(MeV)	(MeV)	history	${\rm file}/{\rm inc}~{\rm e}^-$	$100~{ m inc}~{ m e}^-$	$100 \ {\rm inc} \ {\rm e}^-$
1	0.700	0.700	5.0	0.0124	0.417	9.15	32.4
3	0.700	0.700	2.0	0.0125	0.420	9.07	32.8
4	0.700	0.700	0.0	0.0249	0.421	9.03	33.0
7	0.521	0.521	5.0	0.0538	0.414	8.79	32.6
8	0.521	0.521	2.0	0.0631	0.416	8.83	32.7
9	0.521	0.521	0.0	0.300	0.421	8.94	33.1

BEAM paper, Med Phys 22 (2007) 503-524

Problems to overcome

-in photon accelerators, majority of time is spent following electrons

-creating brem photons is a relatively rare event

-most photons are absorbed in the primary collimator

Uniform Brem Splitting

Designed to get over brem creation being rare and getting more photons into the simulation.

19/47

Uniform Brem Splitting

All examples are for a 6 MV beam from an Elekta SL25

Selective Brem Splitting (SBS)

Kawrakow et al Med Phys 31 (2004) 2883-2898 21/47

Directional Brem Splitting (DBS)

-goal: all particles in field when reach phase space have same weight

Procedure

i) brem from all fat electrons split nsplit times
ii) if photon aimed at field of interest, keep it, otherwise Russian roulette it:
if it survives, weight is 1 (i.e. fat)
iii) if using only leading term of Koch-Motz angular dist'n for brem: do_smart_brems and similar tricks for other interactions

do smart brems

-if EGSnrc is using the leading term of the Koch-Motz distribution, then:

do_smart_brems calculates how many of the nsplit brem photons will head to the field and only generates those photons;

samples 1 photon from the entire dist'n -if not heading into the field, kept with weight 1.

Kawrakow et al Med Phys 31 (2004) 2883-2898

Probability photon heading at field 6 MeV electron in high-Z

-pair production/photo-effect: (Russian roulette before sampling)

-fluorescence: (uniform_photons)

photons - reaching field have weight 1/nsplit - outside field are fat

electrons in the field -usually fat -a few have weight 1/nsplit from interactions in the air

Directional Brem Splitting

Directional Brem Splitting

Kawrakow's `tricks'

		do_smart_brems			
		ON	OFF		
do smart compton	ON	1.0	5.3		
	OFF	3.3	7.6		
No electron splitting. With electron splitting					
		do_smar	t_brems		
		ON	OFF		
do smart compton	ON	1.0	2.43		
	OFF	1.77	3.2		

Kawrakow et al Med Phys 31 (2004) 2883-2898

Tx head simulation using BEAMnrc with Directional Bremsstrahlung Splitting

from Sheikh-Bagheri et al. Efficiency Improvement Techniques and Statistical Considerations AAPM Summer School 2006 ______30/47

-efficiency gain for electrons is only 2 Basis of the solution

-electrons are, almost entirely, from flattening filter and below

-major gains are from treatment of electrons in primary collimator

Electron solution

introduce 2 planes

-splitting plane: split weight 1 charged particles nsplit times (may distribute symmetrically)
-Russian roulette plane: below this turn off Russian roulette and split all fat photon

interactions nsplit times

Efficiency increase for e

Kawrakow et al Med Phys 31 (2004) 2883-2898

Efficiency: total dose

34/47

Summary re DBS

DBS, directional brem splitting, improves BEAMnrc's efficiency by a factor of 800 (10 vs SBS) for photon beams (ignore small dose from photons outside field).

For total dose calculations the efficiency improves by factor of 150 (5 vs SBS)

SBS is optimized for greater nsplit than previously realized (5000)

See Kawrakow et al Med Phys 31 (2004) 2883 -- 2898

Some remaining issues

- DBS is better when scoring in small regions since as the regions get larger, the correlation between particles from the same brem emission become more important.
- DBS is not as effective for very large fields, since it becomes less selective. It is totally useless in 4π geometries.
- It still requires a brem event to occur, and these are very rare for low energy electrons (eg in x-ray devices).

BCSE

brem cross section enhancement

UBS "saturates" sooner because many photons in

UBS = uniform

brem splitting

Ali & Rogers, Med Phys 34 (2007) 2143-215438/47

BCSE with uniform brem splitting

4π	side of				
geometry	cubic voxel	$(f_{enh}^{opt}, N_{split}^{opt})$	ε_{opt}	R_{BCSE}	R_U
1 cm cube	(mm)	1			
about	0.3	(500, 200)	13,032	1.13	2.22
50 keV	1.0	(500, 100)	14,750	1.42	6.43
x-ray	2.5	(1000, 50)	$4,\!510$	1.44	9.81
COURCE					

efficiency gain relative to no VRT

improvement using combination rather thar BCSE or UBS alone

39/47

43% (21%) improvement over DBS for 6MV(18 MV)

Implementation

- Scale up the brem. cross section by a factor f
- Reduce emitted brem. photon weight to 1/f
- Randomly decrement charged particle energy once every f times of brem. emission
- Get less correlation vs. splitting, but time penalty
- Combine with splitting to get best of both worlds
- Optimization algorithm very user-friendly

Benchmarking

This is a VRT => no bias

but must prove coding is correct

pencil beam of 130 keV e- on W

41/47

Results: directional geometries (diagnostic, mammography & orthovoltage tubes)

field	scoring	the pair	max. eff. from this work	max. eff. from this work		
size	zone size	(opt. enh. factor,				
(cm^2)	(cm^2)	opt. split. number)	eff. with no variance reduction	best eff. before this work		
diagnos	tic tube, I	130 kV DC, 100 cm	n SSD			
	1×1	(200, 2000)	84,450	1.74		
20×20	2×2	(200, 1000)	$54,\!874$	2.22		
	4×4	(200, 500)	$30,\!181$	3.37		
mammo	graphy tu	ube, 20 kV DC, 65	cm SSD			
18×18	1.5×1.5	(500, 2000)	251,240	4.80		
orthovoltage tube, 230 kV DC, 52 cm SSD						
10×10	1×1	(100, 2000)	83,511	2.10		

Results: clinical linear accelerators

- Much more brem. emission than in kV range
- Target self-attenuation & time issues
- Enhance brem. cross section for both e⁻ & e⁺
- Varian 6 & 18 MV linacs simulated
- 10x10 cm² @ 100 cm SSD

beam	scoring	the pair	max. eff. from this work	max. eff.	from	this work
energy	zone size	(opt. enh. factor,				
(MV)	(cm^2)	opt. split. number)	eff. with no variance reduction	best eff. h	oefore	this work
6	1×1	(20, 750)	823		1.43	
	10×10	(20, 50)	125		2.62	
18	1×1	(20, 100)	83		1.21	

Speed of x-ray tube simulations

Realistic clinical situations, 3.0 GHz Intel WC processor, 977,

2% average uncertainty on fluence, easy optimization

		field	scoring		
simulation case	SSD	size	zone size	T(2%)	
	(cm)	(cm^2)	(cm^2)	(seconds)	
130 kV DC diagnostic tube	100	20×20	1×1	100	
			2×2	56	adout
			4×4	21	1
20 kV DC mammography tube	65	18×18	1.5×1.5	43	
230 kV DC orthovoltage tube	52	10×10	1×1	37	
6 MV Varian accelerator	100	10×10	1×1	20	
			10×10	1.4	
18 MV Varian accelerator	100	10×10	1×1	56	

ninute

Verhaegen et al, McGill Univ., PMB 44 (1999) 1767-1789

"Typically, calculation times of *several days* were required on any one machine for simulations of the complete setup" 44/47

Results: graphical

45/47

Summary

- BEAMnrc system is extremely fast for doing accelerator simulations, especially for photon beams.
- Although EGSnrc is generally 3-5 times faster than GEANT4 or PENELOPE in simple geometries, the major reason for the efficiency increase is the dedicated VRT's as well as several accurate approximations which save considerable time.

Acknowledgements

- I would particularly like to acknowledge that Iwan Kawrakow and Blake Walters have been the major developers of BEAMnrc for the last few years and much of what I have presented is based on their work.
- Thanks to Daryoush Sheikh Bagheri for a slide from his summer school presentation.
- Elsayed Ali is responsible for the BCSE work described.
- Support from the Canada Research Chairs program and

Canada Foundation for Innovation Fondation canadienne pour l'innovation

