Activation Products in Proton Therapy

Syed M. Qaim Institut für Nuklearchemie Forschungszentrum Jülich GmbH D-52425 Jülich, Germany

Lecture delivered during the Workshop on Nuclear Data for Medical Applications, Abdus Salam ICTP, Trieste, Italy, 12 to 23 November 2007

Topics

- General considerations
- Determination of activation cross sections
- Beam collimator activation
- Long-lived activation products in biologically relevant elements
- Formation of short-lived β^+ emitters in human tissue
- Conclusions

General Considerations

- For therapy purposes, well collimated proton beams are needed
- Proton energy is tailored between 70 and 250 MeV, depending on the application
- In proton therapy atomic and molecular data are of great significance
- Nuclear interactions are of lesser importance, except for cases where high energy secondary particles are emitted
- Data for the formation of activation products are not of paramount importance; however, they are needed in several special contexts

Determination of Activation Cross Sections in the Medium Energy Range

Experimental Method

- Irradiation of target material with protons at a low current.
- Very often a stack of thin samples is irradiated (*stacked-foil technique*).
- Calculation of proton energy effective in each sample
- Determination of proton flux via a monitor reaction (or via a Faraday cup)
- Determination of absolute activity of the product nuclide , non-destructively or after chemical separation
- Calculation of cross section
- Construction of excitation function

Irradiation Facilities

Several types of cyclotrons and accelerators are needed to cover the full energy range.

The Jülich group used following machines:

compact cyclotron (\leq 21 MeV); injector of COSY (\leq 45 MeV); accelerators at PSI (\leq 72 MeV), Uppsala (\leq 180 MeV), iThemba LABS (\leq 200 MeV) and Saclay (\leq 350 MeV)

Nuclear Model Calculations

- Hauser-Feshbach and precompound formalism successfully applied up to 50 MeV
 - Commonly used codes: GNASH, STAPRE, EMPIRE II
- Hybrid exciton model commonly used in higher energy region
 Common code: ALICE-IPPE
- Direct interactions needed to be included
- Complex particle emission extremely difficult to treat

Activation Cross Section Needs

- Estimation of collimator activation in proton therapy facilities
- Estimation of long-lived activation products in biologically relevant elements
 - formation of ⁷Be
 - formation of ^{22,24}Na and other medium mass products
- Formation of short-lived β^+ emitters in human tissue

Activation of Beam Collimators

- Proton therapy demands high quality beams
- Tailoring of energy and homogenisation of intensity achieved through collimators
- Activation of collimators is of some concern
- Commonly used collimators include titanium, brass, tungsten, etc.

Results for a Pure Element as Target (Easily detectable products)

Example: ^{nat}Cu(p,x)^{55,56,58}Co processes

 Model calculations reproduce experimental data well up to E_p ≤ 120 MeV

Results for a Pure Element as Target (Difficult to detect product)

Example: ^{nat}Ti(p,x)⁴⁵Ca

 Good agreement between experiment and theory over the whole energy range

Results for an Alloy as Target

Example: Formation of ^{52,54}Mn from brass

 Model calculation reproduces experimental data with partial success up to proton energies of about 120 MeV.

Activation of Brass Collimator

Proper shielding of therapy facilities is mandatory

Long-Lived Activation Products in Biologically Relevant Elements

- Biologically relevant elements include H, C, N, O, F, Na, Mg, Si, P, S, Cl, Ca, Fe etc.
- Longer-lived activation products formed during proton therapy may include ⁷Be ($T_{\frac{1}{2}} = 53 \text{ d}$), ²²Na ($T_{\frac{1}{2}} = 2.6 \text{ a}$), ²⁴Na ($T_{\frac{1}{2}} = 15.0 \text{ h}$) and several other medium mass products, like ⁴²K ($T_{\frac{1}{2}} = 12.4 \text{ h}$), ⁴³K ($T_{\frac{1}{2}} = 22.2 \text{ h}$), ⁵¹Cr ($T_{\frac{1}{2}} = 27.7 \text{ d}$), ⁵²Mn ($T_{\frac{1}{2}} = 5.6 \text{ d}$), ⁵⁴Mn ($T_{\frac{1}{2}} = 312 \text{ d}$), ⁵⁵Co ($T_{\frac{1}{2}} = 17.5 \text{ h}$), etc.
- ⁷Be formation in interactions of protons with light elements C, N, O, F and Na involves both ⁷Be-emission (as a complex particle) and residual nucleus formation (after emission of several nucleons and α-particles). For heavier target elements, emission of complex particle ⁷Be is more probable.
- ^{22,24}Na and heavier mass radioactive products are formed as residual nuclei

Systematics of Excitation Functions of (p,⁷Be) Reactions

 Probability of ⁷Be emission decreases with increasing mass of the target nucleus

Formation of ^{22,24}Na in the Interactions of Protons with ^{nat}Cl

- Cross sections for the formation of 22,24 Na are relatively small (2 5 mb).
- Theory reproduces formation cross section with varying degree of success.

Formation of Short-lived β⁺ Emitters in Human Tissue

Interactions of protons with constituents of human tissue generate short-lived β^+ emitters like ¹¹C (T_{1/2} = 20 min), ¹³N (T_{1/2} = 10 min), ¹⁴O (T_{1/2} = 1.15min), ¹⁵O (T_{1/2} = 2 min), ¹⁸F (T_{1/2} = 110 min), etc.

Examples of contributing nuclear reactions

¹²C(p,pn)¹¹C
 ¹⁴N(p,pn)¹³N
 ¹⁴N(p,n)¹⁴O
 ¹⁸O(p,n)¹⁸F

 $^{16}O(p,\alpha)^{13}N$ $^{15}N(p,n)^{15}O$

 $^{14}N(p,\alpha)^{11}C$

¹⁶O(p,pn)¹⁵O

Significance of production data

 a)Estimation of extra dose due to activation products
 b)PET investigation of the patient after proton therapy (utilising the ¹¹C formed in the tissue); localises dose distribution in the treated area

Formation of Short-lived β⁺ Emitters

(Protons on human tissue)

Example : ¹¹C formation

Improved data base > 50 MeV

Estimated Activity in Human Tissue and Bone as a Result of Proton Therapy

Assumption: 200 MeV proton, 2 nA, 2 min irradiation

Radionuclide	Activity (MBq)		
	Muscle tissue	Adipose tissue	Bone tissue
¹¹ C	6.5	19.2	6.4
¹³ N	3.9	2.2	2.3
¹⁵ O	2.4	0.7	1.4
Total activity of β^+ emitters: $10 - 25 \text{ MBq}$ ^7Be activity: 40 kBq ^22,24 Na activity (in bone): < 250 Bq			

Conclusions

- Activation of beam collimators at proton therapy facilities is of some concern regarding the therapy personnel.
- Formation of long-lived radioactive products in tissue and bone can be regarded as negligible.
- Formation of short-lived β⁺ emitters is of some significance. Total activity (10 – 25 MBq) is sufficient for dose localisation via PET studies; the extra radiation dose from β⁺ emitters is, however, negligible (< 1 %).