Future Monte Carlo Applications in Medicine

JOZEF STEFAN

Robert Jeraj UW Paul P. Carbone Comprehensive Cancer Center, Departments of Medical Physics, Human Oncology and Biomedical Engineering, University of Wisconsin, Madison, Wisconsin, USA Jozef Stefan Institute, Ljubljana, Slovenia

Future Monte Carlo applications

W

- MC-based radiation dosimetry had a profound effect on dosimetry standards (Rogers) MC-based treatment planning most likely will become a standard in the future (Kawrakow, Rogers) MC proton and heavy ion simulations more and more widespread (Jones, Qaim, Paganetti, Wambersi)

UNIVERSITY OF WISCONSIN

AND PUBLIC HEALTH

W

- Sent and Future: MC-based intensity modulated radiotherapy (IMRT) MC-based image-guided radiotherapy (IGRT) Continuous MC simulations (spatial and temporal)
- MC-based adaptive radiotherapy MC-based non-transport applications

.

Intensity modulated radiation therapy

- All commercial IMRT systems use non-Monte Carlo-based dose calculations (pencil beam or convolution/superposition)
- Questions:
 - Is inclusion of Monte Carlo calculated dose into inverse treatment planning trivial?
 - How does MC-based IMRT compare to the non-MC-based IMRT?

Can we speed up Monte Carlo-based IMRT?

Correction vs model-based dose calculation • Dose calculation for treatment planning has to be fast and accurate Speed Correction-based Pencil beam C/5 Monte Carlo • Inverse treatment planning for IMRT requires calculation of multiple dose beamlets many times... • Is Monte Carlo dose calculation feasible at all?

Monte Carlo-based IMRT

- If Monte Carlo-based dose calculation is used we face two errors:
 - Statistical error because of the statistical noise itself
 - Noise convergence error because optimisation converges to the optimal solution for the noisy beamlets, which is not optimal for the noise-free beamlets

Non-Monte Carlo-based IMRT

- If non-Monte Carlo-based dose calculation is used we face two errors:
 - Systematic error because of the inaccurate dose calculation
 - Convergence error because optimisation converges to the optimal solution for the inaccurate beamlets, which is not optimal for the accurate beamlets

Errors for lung case				
C/S dose calculation				
	Error [% D _{max}]	Tumour	Lung	
	Systematic	-0.1 ± 2	-1 ± 1	
	Convergence	$0.1\text{-}0.8\pm2\text{-}5$	$0.5\text{-}1\pm1\text{-}4$	
Pencil beam dose calculation				
	Error [% D _{max}]	Tumour	Lung	
	Systematic	$+ 8 \pm 3$	$+6\pm5$	
	Convergence	$7-10 \pm 3-5$	$7-8\pm 6-7$	
W	Jeraj <i>et al,</i> Phys Med Biol 47, 2002, 391			

- Monte Carlo dose calculation can be of advantage in IMRT only if the statistical error is <2%
- If the statistical error is >2% than the statistical errors and noise convergence errors are higher/comparable to systematic errors and convergence errors of the plans calculated with C/S dose calculation
- Note that Monte Carlo dose calculation includes some fraction of the systematic error due to inaccurate commissioning

<section-header><image><image>

Summary: MC-based IMRT

Clinically significant in heterogeneous regions (e.g., head and neck, lung) Not clinically significant in homogeneous regions (e.g., prostate)

- If you have it, why not use it
- Underlying uncertainties due to inaccurately known source
- Noise

Image-guided radiation therapy

- Image-guidance can clearly improve the accuracy of therapy, the question is whether Monte Carlo has anything to add there
- Questions:

W

- Can Monte Carlo simulations be used for optimization of imaging systems Can Monte Carlo simulations be useful for characterization of kV and MV imaging sources
- Can Monte Carlo simulations help with the imaging scatter

Summary: MC-based IGRT

- Monte Carlo simulations of imaging systems can reveal many useful details that can be used in their characterization and optimization
- Particular important application is estimation of the scatter, which can be used to improve the imaging quality

Continuous therapy – continuous simulations

- Radiotherapy treatment is a dynamic process:
 - Source motion
 - Collimator motion (MLC)
 - Patient motion
- Time and position are continuous variables Monte Carlo sampling is a natural choice
- Questions:
 - Can Monte Carlo transport help in continuous environment?
 - How much improvement can we expect if we include Monte Carlo dose calculation?

Summary: Continuous MC simulations

- Monte Carlo simulations are ideal for continues simulations, both spatial and temporal
- Monte Carlo simulations not only account for continuous motion, but also properly for heterogeneities (need 4D-CT)
- Not much yet, but it will become very important in the future

.

Adaptive radiotherapy

- IGRT enables treatment adaptation
- Treatment adaptation is yet to happen
- Questions:
 - Can Monte Carlo transport help in adaptive process?
 - Can Monte Carlo transport help in reoptimization convergence?

:

Forward vs. adjoint problem

Typically: • few source positions • many voxel scoring positions Solution:

• variance reduction techniques

Initial guess: beam weights

• Determine relative importance of nonzero beams: $D^*_{TGTj} / \sum_j D^*_{TGTj}$

• Assign initial weights according to beam importance

• Reset zero-valued beams to value of least important beam

::

Adaptive radiotherapy

- Adaptive radiotherapy has yet to become clinical reality – many issues to overcome
- Adjoint Monte Carlo transport can:
 - Provide extremely valuable sensitivity information for adaptation
 - Help constructing initial guess
 - Improve optimization convergence
 - Can speed-up re-optimization

Do Monte Carlo simulations stop here

- Monte Carlo transport simulations are only a small part of Monte Carlo simulations
- Questions:
 - Is there a way to combine Monte Carlo transport with biological information available from functional/molecular imaging?
 - Is there a room for Monte Carlo nontransport applications?

.

Conclusions

- Monte Carlo simulations will continue to play important role in the future
- Many new challenges and opportunities:

W

- Characterization and optimization of (new) delivery systems lots of opportunities, limitations Imaging systems for IGRT detectors, improved image quality (scatter)
- Continuous treatments underutilized right now
- Adaptation fast corrections/re-optimization
- Non-transport/hybrid Monte Carlo applications how far can we push the limit?

