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Future Monte Carlo applications
Past:
– MC-based radiation dosimetry – had a profound effect on 

dosimetry standards (Rogers)
– MC-based treatment planning – most likely will become a 

standard in the future (Kawrakow, Rogers)
– MC proton and heavy ion simulations – more and more 

widespread (Jones, Qaim, Paganetti, Wambersi)

Present and Future:
– MC-based intensity modulated radiotherapy (IMRT)
– MC-based image-guided radiotherapy (IGRT)
– Continuous MC simulations (spatial and temporal)
– MC-based adaptive radiotherapy
– MC-based non-transport applications

Monte Carlo-based 
Intensity Modulated Radiation Therapy
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Intensity modulated radiation therapy

All commercial IMRT systems use non-Monte 
Carlo-based dose calculations (pencil beam or 
convolution/superposition)
Questions:
– Is inclusion of Monte Carlo calculated dose 

into inverse treatment planning trivial?
– How does MC-based IMRT compare to the 

non-MC-based IMRT?
– Can we speed up Monte Carlo-based IMRT?

Correction vs model-based 
dose calculation

Dose calculation for treatment planning has to be 
fast and accurate

Inverse treatment planning for IMRT requires 
calculation of multiple dose beamlets many times…
Is Monte Carlo dose calculation feasible at all?

Speed

Accuracy

Correction-based                Model-based

Pencil beam               C/S              Monte Carlo

Monte Carlo-based IMRT

If Monte Carlo-based dose calculation is 
used we face two errors:
– Statistical error because of the 

statistical noise itself 
– Noise convergence error because 

optimisation converges to the optimal 
solution for the noisy beamlets, which is 
not optimal for the noise-free beamlets
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Statistical error
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Noise convergence error
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Dependence of errors
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Non-Monte Carlo-based IMRT

If non-Monte Carlo-based dose calculation 
is used we face two errors:
– Systematic error because of the 

inaccurate dose calculation 
– Convergence error because optimisation

converges to the optimal solution for the 
inaccurate beamlets, which is not optimal 
for the accurate beamlets

-20

-15

-10

-5

0

5

10

15

20

Errors
C/S Pencil beam

Convergence
error

-5

-4

-3

-2

-1

0

1

2

3

4

5

Systematic
error

-20

-15

-10

-5

0

5

10

15

20

-10

-8

-6

-4

-2

0

2

4

6

8

10

Jeraj et al, Phys Med Biol 47, 2002, 391

Errors for lung case

C/S dose calculation

Pencil beam dose calculation

Error [% Dmax] Tumour Lung 

Systematic − 0.1 ± 2 − 1 ± 1 

Convergence 0.1-0.8 ± 2-5 0.5-1 ± 1-4 

 

Error [% Dmax] Tumour Lung

Systematic + 8 ± 3 + 6 ± 5

Convergence 7-10 ± 3-5 7-8 ± 6-7

Jeraj et al, Phys Med Biol 47, 2002, 391
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When is Monte Carlo
dose calculation of advantage?

Monte Carlo dose calculation can be of advantage 
in IMRT only if the statistical error is <2%

If the statistical error is >2% than the statistical 
errors and noise convergence errors are 
higher/comparable to systematic errors and 
convergence errors of the plans calculated with 
C/S dose calculation

Note that Monte Carlo dose calculation includes 
some fraction of the systematic error due to 
inaccurate commissioning

Hybrid optimization

Siebers et al, Med Phys 34(7), 2007, 2853

Fast convergence –
no compromise in accuracy

Siebers et al, Med Phys 34(7), 2007, 2853
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Summary: MC-based IMRT

Clinically significant in 
heterogeneous regions 
(e.g., head and neck, lung)
Not clinically significant 
in homogeneous regions 
(e.g., prostate)
If you have it, why not 
use it
Underlying uncertainties 
due to inaccurately 
known source
Noise

Monte Carlo-based 
Image-guided Radiation Therapy 

Intra-fractional 
time scale

Inter-fractional 
time scale

1 second 1 minute 1 hour 1 day 1 week

time ->

respiratory
cardiac 
motion

digestive
system
motion

bowel/
bladder 
filling

random/
systematic

setup 
errors

tumor 
growth and
shrinkage

weight 
gain and 

loss

Adaptive
Setup VerificationMotion 

Management

Radiotherapy time-scales
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Residual errors for image-guidance
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Every day

Every second day

Weekly

Never

Image-guided radiation therapy

Image-guidance can clearly improve the 
accuracy of therapy, the question is whether 
Monte Carlo has anything to add there
Questions:
– Can Monte Carlo simulations be used for 

optimization of imaging systems
– Can Monte Carlo simulations be useful for 

characterization of kV and MV imaging 
sources

– Can Monte Carlo simulations help with the 
imaging scatter

Simulations of a kV CBCT source

Ding et al, Phys Med Biol 52, 2007, 1595
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Spectral effects

Ding et al, Phys Med Biol 52, 2007, 1595

Monte Carlo planar imaging

Jarry et al, Med Phys 33(11), 2006, 4320

Experiment

Monte Carlo

Monte Carlo CBCT
No correction MC scatter corr.

Jarry et al, Med Phys 33(11), 2006, 4320
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MV imaging on helical tomotherapy
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No object in the beam - only 10% of scattered photons
– very clean beam

Helical tomotherapy
head and neck patient
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Patient in the beam – scatter does not increase 
significantly – excellent for imaging
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Summary: MC-based IGRT

Monte Carlo simulations of imaging systems 
can reveal many useful details that can be 
used in their characterization and 
optimization

Particular important application is estimation 
of the scatter, which can be used to improve 
the imaging quality

Continuous Monte Carlo Simulations 

Continuous therapy –
continuous simulations

Radiotherapy treatment is a dynamic process:
– Source motion
– Collimator motion (MLC)
– Patient motion

Time and position are continuous variables - Monte 
Carlo sampling is a natural choice
Questions:
– Can Monte Carlo transport help in continuous 

environment?
– How much improvement can we expect if we include 

Monte Carlo dose calculation?
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Continuous vs. discrete simulations

Phase space of discrete vs. continuous time-dependent 
helical tomotherapy simulations

Tomotherapy delivery errors
Discrete Continuous Difference

Arc therapy

Chow et al, Med Phys 30(10), 2003, 2686
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Motion effects

Rosu et al, Med Phys 34(4), 2007, 1462

Homogenous vs heterogenous
dose calculation

AP/PA, 6MV CRT, 6MV CRT, 15MV

heterogenous > homogeneous
heterogenous < homogeneous

Rosu et al, Med Phys 34(4), 2007, 1462

Motion effects
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Heterogeneity Motion Combined

Rosu et al, Med Phys 34(4), 2007, 1462
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Summary: Continuous MC simulations

Monte Carlo simulations are ideal for 
continues simulations, both spatial and 
temporal
Monte Carlo simulations not only account for 
continuous motion, but also properly for 
heterogeneities (need 4D-CT)
Not much yet, but it will become very 
important in the future

Monte Carlo-based 
Adaptive Radiotherapy 

Adaptive Radiotherapy3-D Imaging

Optimized
Planning

CT
+ Image Fusion
or Registration

Treatment
With Delivery
Verification

Dose
Reconstruction

Delivery
Modification

Deformable
Dose

Registration
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Adaptive radiotherapy

IGRT enables treatment adaptation
Treatment adaptation is yet to happen
Questions:
– Can Monte Carlo transport help in adaptive 

process?
– Can Monte Carlo transport help in re-

optimization convergence? 

Φ+
(r,Ω,E)

Φ(r,Ω,E)

R

RDose   ,Φ= SDose   ,+Φ=

Forward vs. adjoint method

S

Forward vs. adjoint method

• Forward transport of the 
“source” function

• Φ (r,Ω,E)

• Q = 

• 1 source → many voxels
(source view)

• Prior knowledge of the 
response function is 
unnecessary

R,Φ

Forward Method

• Backward transport of 
the “response” function

• Φ+
(r,Ω,E)

• Q = 

• 1 voxel → many sources 
(voxel view)

• Prior knowledge of the 
source function is 
unnecessary

S,+Φ

Adjoint Method
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Forward vs. adjoint problem

ψ +

Typically:
• few source positions
• many voxel scoring positions
Solution:
• variance reduction techniques

Use of adjoint information for 
initial guess and (re)optimization

51 source positions

39 directions/position

left parotid

right parotid

Tumor Regional field

Spinal cord Parotids

ROI adjoint functions
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• Determine relative 
importance of nonzero 
beams:  

• Assign initial weights 
according to beam 
importance

• Reset zero-valued 
beams to value of least 
important beam

∑ ∗∗
j jj TGTTGT DD

Initial guess: beam weights

Adjoint Analysis:
TU* and SS*

Constraints met?

Use of adjoint information in 
re-optimization

Initial Weights:
Wj = TUj* - SSj*

Forward Analysis:
Compute dose with Wj >  0

Identify ROIs:
TU_under   TU_over
SS_over      NT_over

Adjoint Analysis:
TU_under*    TU_over*
SS_over*       NT over*

Amplify ROI Adjoints
ROI* = ROI* • f(Δ dose)

Update Weights:
Wj = Wj +/- ROI*

X

Iterative (re)optimization

Initial guess Optimized
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Convergence

(dosePre - doseDel)2

Adaptive radiotherapy

Adaptive radiotherapy has yet to become 
clinical reality – many issues to overcome
Adjoint Monte Carlo transport can:
– Provide extremely valuable sensitivity 

information for adaptation             
– Help constructing initial guess
– Improve optimization convergence
– Can speed-up re-optimization

Monte Carlo-based
non-Transport Applications 
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Do Monte Carlo simulations stop here

Monte Carlo transport simulations are only a 
small part of Monte Carlo simulations
Questions:
– Is there a way to combine Monte Carlo 

transport with biological information 
available from functional/molecular 
imaging?

– Is there a room for Monte Carlo non-
transport applications?

Tumor biological heterogeneity
FDG FLT CuATSM

Treatment assessment - radiotherapy
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Treatment assessment - radiotherapy
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Final geometry

Simulations on 
microscopic scale:

Use biological data 
to complement the 
given anatomical 
voxel information. 

Assume an average  
of 106 cells/voxel   

and run simulations 
for each voxel based 

on first biological 
principles.

Pass on changes of 
each voxel as input 

values for tissue 
level calculations.

CT

PET

PET

Initial anatomy

Biological activity

Hypoxia

Proliferation

Hypoxia map

Proliferation map

Δ cells/voxel

Altered density,    
same geometry

Imaging level Cellular level Tissue level (voxel space)

Hypoxia

Proliferation

Calculate new tumor 
morphology by using 
COMSOLTM based on
results of stochastic 

simulations performed 
on the cellular level.

Extract vector field
from geometric change 
and apply to transform 
simulation results into 
new biol. distributions.
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MC simulation of tumor growth and 
response to therapy

MC simulations of tumor growth
Tumor growth

Tumor response to radiation therapy
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MC simulations of vasculature growth

t=1              t=2               t=3            

t=4              t=5               t=6            

Conclusions

Monte Carlo simulations will continue to play 
important role in the future
Many new challenges and opportunities:
– Characterization and optimization of (new) delivery 

systems – lots of opportunities, limitations
– Imaging systems for IGRT – detectors, improved 

image quality (scatter)
– Continuous treatments – underutilized right now 
– Adaptation – fast corrections/re-optimization
– Non-transport/hybrid Monte Carlo applications –

how far can we push the limit?

Thank you for your attention


