Future directions and current challenges of proton radiotherapy.

Tony Lomax
Centre for Proton Radiotherapy, Paul Scherrer Institute, Switzerland
Overview of presentation

• New developments in treatment delivery
 • Current challenges
 • Potential solutions
 • Summary
Industrial suppliers of radiotherapy equipment

Manufacturers currently offering photon therapy equipment

Varian
Elekta
Tomotherapy
Siemens

Manufacturers currently offering particle therapy equipment

IBA*
Hitachi*
Optivus*
Varian/Accell**
Siemens**
Still River systems

* Scanning option available
** Scanning only
Laser based acceleration

- Petawatt laser beam
- Thin film target (~μm)
- Cloud of electrons stripped from target by laser
- Layer of CH or H₂O
- Protons accelerated to MeV energies in a few mm
- Very high resulting electric field

New developments in treatment delivery

Nuclear data for science and technology: Medical applications
Laser based acceleration

Energy spectrum

- **Maximum** proton energy reported so far is $E_p \approx 60$ MeV
- **High intensity** (10^9-10^{11} protons) in very short pulse (~ns)
- **Very poor** (broad) energy spectrum

Laser based acceleration
Achieving mono-energetic spectrums

\[I = 3 \times 10^{19} \text{ W/cm}^2 \]

5μm thick Ti foil

0.5μm thick PMMA dot (20x20μm)

1.2 MeV ‘mono’-energetic protons produced

Dielectric Wall Accelerators

Laser → Optical Coupling

Proton Source → Focusing

Progressively firing Blumlein transmission lines

SiC Optical Switches → Monitor → Stack of Blumleins

Thanks to Rock Mackie, UWisc/Tomotherapy Inc
Dielectric Wall Accelerators

• DWA is a multi-stage inductive accelerator under development at Lawrence Livermore National Lab.

• Acceleration gradient of 100 MV/m possible.

• 200 MeV protons in 2 meters.

• This has been demonstrated in ‘small’ examples, with lengths of 2mm!

• Beam energy, intensity and spot size variable pulse-to-pulse.
Dielectric Wall Accelerators

Proton tomotherapy

- Incorporation of DWA into a CT like treatment gantry for rotational delivery of proton therapy
- Single room facility
- Diameter ~ 5m
- Under investigation by Tomotherapy Inc. and LLNL

G Caporaso, S Hawkins LLNL
Proton Multi-leaf collimators

Particle MLC from Chiba (Japan)

• Saves changing collimators every field
• Can be used to ‘simulate’ scanning
Proton Multi-leaf collimators

Film dosimetry performed at Loma Linda using MLC and passively scattered proton beam

Shape at surface

Shape after 29cm water

Mike Moyers, Loma Linda
Proton Multi-leaf collimators
Simulated scanning using dynamic MLC’s

MLC opening

Energy 1

Energy 2

Energy 3

Energy 4

Energy 5

Energy 6

Proximal conformation
Overview of presentation

- New developments in treatment delivery
 - Current challenges
 - Potential solutions
- Summary
Current challenges

• The neutron problem
• Range uncertainty
• Dealing with organ motion
Neutron dose during proton therapy: Is there a problem?

Neutron equivalent dose a factor 10 higher for passive protons than for IMRT?

Fig. 10. The equivalent dose outside the edge of the treatment field as a fraction of the dose at the isocenter for protons with passive modulation, for a scanning proton beam, and for 6-MV X-rays, either 4-field conformal radiation therapy (CRT), or intensity-modulated radiation therapy (IMRT). The doses are rough estimates and are likely to be highly facility dependent. The passivemodulation: proton data are from Yan et al. (19), renormalized to a 10-cm × 10-cm field and to a neutron relative biologic effectiveness (RBE) or quality factor of 10. The pencil-beam scanning proton data are from Schneider et al. (18), renormalized to a 10-cm × 10-cm field and an RBE or quality factor of 10. Both proton curves were produced by Dr. Harald Paganetti, Massachusetts General Hospital and Harvard Medical School. X-ray data are 4-field CRT and IMRT. Unpublished data for a 6-MV linear accelerator were provided by Dr. C. W. Wu, Columbia University Medical Center, New York.
Neutron dose during proton therapy: Is there a problem?

- Neutron dose equivalent from spot scanning and 15MV photons:

- Irradiation of 10 cm x 10 cm (x10cm) target to 50Gy

- Higher neutron dose in direction of beam
- Comparable neutron dose laterally
- Neutron dose very small compared to primary dose (~1000x smaller)
Current challenges: the neutron problem

Neutron dose during proton therapy: Is there a problem?

- Passive Modulation_1: Yan et al.
- Passive Modulation_2: Mesoloras et al.
- IMRT: Stovall et al. (3DCRT up-scaled by a factor of 3)
- Scanning: Schneider et al.
Neutron dose during proton therapy: Is there a problem?

Don’t forget primary dose – in this case reduced by a factor 6 for proton vs photons!
Current challenges

- The neutron problem
- Range uncertainty
- Dealing with organ motion
The advantage of protons is that they stop.

The disadvantage of protons is that we don’t always know where…

10% range error
Sources of range uncertainties

- Limitations of CT data (beam hardening, noise, resolution etc) \([\Sigma \sim 1\%]\)
- Calibration of CT to stopping power \([\Sigma \sim 1-2\%]\)
- CT artifacts \([\Sigma]\)
- Variations in proton beam energy \([\sigma (\sim 0.1\%)]\)
- Variations in patient positioning \([\sigma (\sim 1-3\text{mm})]\)
- Variations in patient anatomy \([\Sigma,\sigma]\)
The problem of CT artifacts

Rutz et al (PSI), To be submitted to IJROBP

Current challenges: range uncertainty

Future directions and current challenges for proton therapy. Tony Lomax
The problem of CT artifacts

- More advanced initial tumour at diagnosis?
- Problems in defining CTV?
- Problems in dose calculation?
- Problems in range calculations?

Rutz et al (PSI), To be submitted to IJROBP
Variations in patient anatomy

Patient set-up inaccuracies

Image courtesy of Thomas Bortfeld, MGH, Boston
Variations in patient anatomy

Patient set-up inaccuracies

Image courtesy of Thomas Bortfeld, MGH, Boston
Variations in patient anatomy

3 field IMPT plan to an 8 year old boy

During treatment, 1.5kg weight gain was observed

Note, sparing of spinal cord in middle of PTV

Max range differences:
- SC 0.8cm
- CTV 1.5cm

Francesca Albertini and Alessandra Bolsi (PSI)
Current challenges: range uncertainty

Variations in patient anatomy

Dose differences

Differences between nominal and ‘weight gain’ CT’s

Francesca Albertini and Alessandra Bolsi (PSI)
Current challenges

• The neutron problem
• Range uncertainty
• Dealing with organ motion
Current challenges: organ motion

Organ motion and range uncertainty

Exhale

Inhale

4D-CT

Engelsman et al., IJROBP 64(5):1589-1595, 2006

Images courtesy of Thomas Bortfeld, MGH, Boston

Future directions and current challenges for proton therapy.
Tony Lomax
Organ motion and the ‘interplay’ effect

A scanned beam in a static patient...

4D-CT derived from 4D-MRI

Martin von Siebenthal, Phillipe Cattin, Gabor Szekely, Tony Lomax, ETH, Zurich and PSI, Villigen

Current challenges: organ motion

Future directions and current challenges for proton therapy. Tony Lomax
Organ motion and the ‘interplay’ effect

…but real patients move.

4D-CT derived from 4D-MRI

Martin von Siebenthal, Phillipe Cattin, Gabor Szekely, Tony Lomax, ETH, Zurich and PSI, Villigen
Assume $\sigma = 0.5$ cm

For this example, dose errors of $\sim 20\%$ can result from motion (positioning) errors of 2.5 mm

Phillips et al., PMB, 37:223-234, 1992
Organ motion and the ‘interplay’ effect

Nominal (static) dose

Calculated with ‘real’ motion from 4D-MRI of volunteer

Current challenges: organ motion
Organ motion and the ‘interplay’ effect

Motion patient 1
Amplitude ~ 11mm

Motion patient 2
Amplitude ~ 8mm
Overview of presentation

• New developments in treatment delivery
 • Current challenges
 • Potential solutions
• Summary
Potential solutions to …

• …range uncertainty

• …the organ motion problem
Mega-Voltage CT for artifact free imaging

kV-CT

Accuracy of range calculation due to reconstruction artifacts?

MV-CT (tomotherapy)

No artifacts and linear relationship CT units to proton stopping power

Francesca Albertini (PSI)
Mega-Voltage CT for artifact free imaging

Stopping power profiles

- kV-CT
- MV-CT

Prostheses

Francesca Albertini (PSI)

Potential solutions to range uncertainty

Nuclear data for science and technology: Medical applications

Future directions and current challenges for proton therapy.
Tony Lomax
Range adapted proton therapy
Automatic adaptation of Bragg peak ranges on a spot by spot basis depending on local change in range
Range adapted proton therapy

Automatic adaptation of Bragg peak ranges on a spot by spot basis depending on local change in range
Range adapted proton therapy

Automatic adaptation of Bragg peak ranges on a spot by spot basis depending on local change in range
Range adapted proton therapy

Potential solutions to range uncertainty

DVH

- nominal CTV
- not adapted CTV
- range adapted CTV
- nominal CE
- not adapted CE
- range adapted CE

Future directions and current challenges for proton therapy.
Tony Lomax
Robust planning techniques

Example paraspinal case

Tumour

Spinal cord

Nominal plan
10% overshoot

Robust planning techniques

3 patched, intensity modulated fields....

...give a homogenous dose without the use of fields that abut distally against the spinal cord

Robust planning techniques

Nominal plans 10% overshoot plans

IMPT

Single field

DVH analysis

Spinal cord

Potential solutions to range uncertainty

Future directions and current challenges for proton therapy.
Tony Lomax
Robust planning techniques

Incorporate range uncertainty into optimisation function using gaussian probability functions for range uncertainty

E.g.

\[
\min_w \quad \mathbb{E}(w) := \int \sum_{i \in PAT} \alpha_i \left[D_i(w, \bar{\rho} + \sigma \delta) - D_i^{\text{pres}} \right]^2 P(\delta) d\delta
\]

subject to

\[w_j \geq 0 \quad (\forall j \in PB) \]

Where \(\bar{\rho} + \sigma \delta \) assigns an uncertainty to the range of each pencil beam in the optimisation

Unkelbach et al, PMB, 52;2755-2773, 2007
Robust planning techniques

Field 1
Field 2
Field 3

Total dose

Optimised fields using ‘robust’ optimisation

Unkelbach et al, PMB, 52;2755-2773, 2007

Potential solutions to range uncertainty

Future directions and current challenges for proton therapy. Tony Lomax
Robust planning techniques

Effect of 5mm range uncertainty on robustly optimised plan

nominal range 5 mm undershoot 5 mm overshoot

Unkelbach et al, PMB, 52;2755-2773, 2007
Potential solutions to ...

• ...range uncertainty
• ...the organ motion problem
Tumour tracking

Track motion of tumour using scanning system based on some anatomical/physiological signal

+ Most conformal
+ Most efficient
- Very complex!
- Difficult QA
- Reliability of tracking signal?
Tumour tracking

Dose heterogeneity as function of tracking delay

- Nominal
- With motion

Steven van de Water, PSI
Rescanning

Repaint scanned beam many times such that statistics dictate coverage and homogeneity of dose in target (c.f. fractionation)

+ Simple method
+ Robust
- Fast scanning required
- Not very conformal
Applying the total prescribed dose in n steps (each spot is applied n times rather than once) provides a better homogeneity. The error is statistically decreased by \sqrt{n}.

Christian Hilbes, PSI
Potential solutions to organ motion

Rescanning

Analysis of Cos^4 motion with 1cm peak-to-peak amplitude

- Cylindrical target volume
- Re-scanned different times to same total dose
- Scan times calculated for realistic beam intensities and dead times between spots
- Analysis carried out for different periods of motion

Not always improving homogeneity with number of re-scans!

Marco Schwarz, Trento
The ‘synchronicity’ effect

- Very preliminary results
- A ‘real’ effect for perfectly regular breathing?
- Could well be less of an issue when breathing is more irregular
- For regular breathing, could be avoided by selecting the re-scanning period to avoid effect or varying period scan-to-scan
- Probably not a big issue in reality?

Marco Schwarz, Trento
Gating

Reduce magnitude of motion by gating delivery to small window of motion cycle

+ Simple method
- Reliability of gating signal?
- Inter/intra fraction variability of motion?
- Residual motion?
Gating

- 4D dose calculation applied to cylindrical target in presence of ‘real’ motion (4D-MRI of volunteers) in liver
- Calculations performed for static, 100, 50 and 30% duty cycles
- Gating signal taken from diaphragm wall motion (‘ideal’ gating)
- Irregularities in breathing and amplitude over duration of treatment taken into account

- Results for two volunteers
 1. $T_{av} = 4.7s, A_{av} = 10.9mm$
 2. $T_{av} = 7.1s, A_{av} = 8.3mm$
Summary.

• Proton therapy is fast moving from the research institute to the hospital

• Due to the adoption of proton therapy in a number of ‘flag-ship’ institutes in the USA, they will certainly have a higher profile in the next few years.

• Scanning and IMPT will play an ever increasing role in proton therapy, with most manufacturers offering or developing such systems

• However, proton therapy brings challenges in dosimetry, delivery accuracy and organ motion management

• There’s lot’s of interesting science still to be done….!
Acknowledgements

Eugen Hug - Head of department and medical chief

Eros Pedroni - Head of R&D and ‘brains’ of the spot scanning project at PSI

<table>
<thead>
<tr>
<th>Medical group</th>
<th>R&D group</th>
<th>Medical Physics group</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carmen Ares</td>
<td>Ralph Bearpark</td>
<td>Tony Lomax</td>
</tr>
<tr>
<td>Gudrun Goitein</td>
<td>Terence Boehringer</td>
<td>Lydia Lederer</td>
</tr>
<tr>
<td>Hans Peter Rutz</td>
<td>Christian Bula</td>
<td>Alessandra Bolsi</td>
</tr>
<tr>
<td>Beate Timmermann</td>
<td>Martin Grossmann</td>
<td>Frank Emert</td>
</tr>
<tr>
<td>Damien Weber</td>
<td>Christian Hilbes</td>
<td>Jens Heufelder</td>
</tr>
<tr>
<td></td>
<td>Shixiong Lin</td>
<td>Cezarina Negreanu</td>
</tr>
<tr>
<td></td>
<td>David Meer</td>
<td>Juergen Salk</td>
</tr>
<tr>
<td></td>
<td>Sairos Safai</td>
<td>Otto Stadelmann</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Jorn Verwey</td>
</tr>
<tr>
<td>Gantry</td>
<td>Secretaries</td>
<td>Secretaries</td>
</tr>
<tr>
<td>Doelf Coray</td>
<td>Ruth Eggspuhler</td>
<td>April Siegwolf</td>
</tr>
<tr>
<td>Dani Lempen</td>
<td>Frieda Obrist</td>
<td>Sandra Hersperger</td>
</tr>
<tr>
<td>Benno Rohrer</td>
<td></td>
<td>Alexander Tourovsky</td>
</tr>
<tr>
<td>Hansueli Stauble</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Thanks for your attention…