Future directions and current challenges of proton radiotherapy.

Tony Lomax

Centre for Proton Radiotherapy, Paul Scherrer Institute, Switzerland

Nuclear data for science and technology: Medical applications

Overview of presentation New developments in treatment delivery Current challenges Potential solutions Summary

Nuclear data for science and technology: Medical applications

Industrial suppliers of radiotherapy equipment

Manufacturers currently offering photon therapy equipment

Varian

Elekta

Tomotherapy

Siemens

Manufacturers currently offering particle therapy equipment **IBA*** Hitachi* Optivus* Varian/Accell** Siemens** **Still River systems**

* Scanning option available

Nuclear data for science and technology: Medical applications

* Scanning only

PAUL SCHERRER INSTITUT

New developments in treatment delivery

Laser based acceleration

Nuclear data for science and technology: Medical applications

PAUL SCHERRER INSTITUT

New developments in treatment delivery

Laser based acceleration

Energy spectrum

- <u>Maximum</u> proton energy reported so far is $E_p \approx 60 \text{ MeV}$
- High intensity (10⁹-10¹¹ protons) in very short pulse (~ns)
- Very poor (broad) energy spectrum

R. A. Snavely, et al., Phys. Rev. Lett. Vol. 85, 2945, (2000)

Laser based acceleration Achieving mono-energetic spectrums

I = 3 x 10¹⁹ W/cm² 5µm thick Ti foil 0.5µm thick PMMA dot (20x20µm) 1.2 MeV 'mono'energetic protons produced

Schwoerer et al, Nature 439, 445 (2006)

Dielectric Wall Accelerators

Thanks to Rock Mackie, UWisc/Tomotherapy Inc

Nuclear data for science and technology: Medical applications

Dielectric Wall Accelerators

• DWA is a multi-stage inductive accelerator under development at Lawrence Livermore National Lab.

- Acceleration gradient of 100 MV/m possible.
- 200 MeV protons in 2 meters.

PAUL SCHERRER INSTITUT

• This has been demonstrated in 'small' examples, with lengths of 2mm!

• Beam energy, intensity and spot size variable pulse-to-pulse.

Dielectric Wall Accelerators

Proton tomotherapy

 Incorporation of DWA into a CT like treatment gantry for rotational delivery of proton therapy

- Single room facility
- Diameter ~ 5m
- Under investigation by Tomotherapy Inc. and LLNL

PAUL SCHERRER INSTITUT

New developments in treatment delivery

Proton Multi-leaf collimators

Particle MLC from Chiba (Japan)

- Saves changing collimators every field
- Can be used to
 'simulate'
 scanning

Nuclear data for science and technology: Medical applications

Proton Multi-leaf collimators

Film dosimetry performed at Loma Linda using MLC and passively scattered proton beam

Shape at surface

Shape after 29cm water

Mike Moyers, Loma Linda

Nuclear data for science and technology: Medical applications

PAUL SCHERRER INSTITUT

New developments in treatment delivery

Proton Multi-leaf collimators

Simulated scanning using dynamic MLC's

Future directions and current challenges for proton therapy. Tony Lomax

Nuclear data for science and technology: Medical applications

Overview of presentation New developments in treatment delivery Current challenges Potential solutions Summary

Nuclear data for science and technology: Medical applications

Current challenges
The neutron problem
Range uncertainty
Dealing with organ motion

Nuclear data for science and technology: Medical applications

Neutron dose during proton therapy: Is there a problem?

Hall, E. Intensity-modulated radiation therapy, protons, and the risk of second cancers. *Int J Radiat Oncol Biol Phys 2006 ; 65 : 1–7*

PAUL SCHERRER INSTITUT

Neutron equivalent dose a factor 10 higher for passive protons than for IMRT?

Fig. 10. The equivalent dose outside the edge of the treatment field as a fraction of the dose at the isocenter for protons with passive modulation, for a scanning proton beam, and for 6-MV X-rays, either 4-field conformal radiation therapy (CRT), or intensitymodulated radiation therapy (IMRT). The doses are rough estimates and are likely to be highly facility dependent. The passivemodulation: proton data are from Yan et al. (19), renormalized to a 10-cm × 10-cm field and to a neutron relative biologic effectiveness (RBE) or quality factor of 10. The pencil-beam scanning proton data are from Schneider et al. (18), renormalized to a 10-cm × 10-cm field and an RBE or quality factor of 10. Both proton curves were produced by Dr. Harald Paganetti, Massachusetts General Hospital and Harvard Medical School. X-ray data are 4-field CRT and IMRT. Unpublished data for a 6-MV linear accelerator were provided by Dr. C. W. Wuu, Columbia University Medical Center, New York.

Neutron dose during proton therapy: Is there a problem?

- Neutron dose equivalent from spot scanning and 15MV photons:
- Irradiation of 10 cm x 10 cm (x10cm) target to 50Gy

[Schneider U, Fiechtner A, Besserer J. Lomax A.J. Neutron dose from prosthesese materials during radiotherapy with protons and photons. Phys Med Biol 2004; 49:N119-124]

PAUL SCHERRER INSTITUT

• Higher neutron dose in direction of beam

 Comparable neutron dose laterally

• Neutron dose very small compared to primary dose (~1000x smaller)

Nuclear data for science and technology: Medical applications

Neutron dose during proton therapy: Is there a problem?

Passive Modulation_1: Yan et al. Passive Modulation_2: Mesoloras et al. IMRT: Stovall et al. (3DCRT up-scaled by a factor of 3) Scanning: Schneider et al.

PAUL SCHERRER INSTITUT

Current challenges: the neutron problem

Neutron dose during proton therapy: Is there a problem?

Don't forget primary dose – in this case reduced by a factor 6 for proton vs photons!

Nuclear data for science and technology: Medical applications

Current challenges
The neutron problem
Range uncertainty
Dealing with organ motion

Nuclear data for science and technology: Medical applications

Range uncertainty

The advantage of protons is that they stop.

The disadvantage of protons is that we don't always know where...

Sources of range uncertainties

• Limitations of CT data (beam hardening, noise, resolution etc) [$\Sigma \sim 1\%$]

- Calibration of CT to stopping power [$\Sigma \sim 1-2\%$]
- CT artifacts [Σ]

PAUL SCHERRER INSTITUT

- Variations in proton beam energy [σ (~ 0.1%)]
- Variations in patient positioning [σ (~ 1-3mm)]
- Variations in patient anatomy [Σ,σ]

The problem of CT artifacts

Rutz et al (PSI), To be submitted to IJROBP

Nuclear data for science and technology: Medical applications

The problem of CT artifacts

PAUL SCHERRER INSTITUT

- More advanced initial tumour at diagnosis?
- Problems in defining CTV?
- Problems in dose calculation?
- Problems in range calculations?

Rutz et al (PSI), To be submitted to IJROBP

Nuclear data for science and technology: Medical applications

Variations in patient anatomy Patient set-up inaccuracies

Chen, Rosenthal, et al., IJROBP 48(3):339, 2000

Image courtesy of Thomas Bortfeld, MGH, Boston

Nuclear data for science and technology: Medical applications

Variations in patient anatomy Patient set-up inaccuracies

Chen, Rosenthal, et al., IJROBP 48(3):339, 2000

Image courtesy of Thomas Bortfeld, MGH, Boston

Nuclear data for science and technology: Medical applications

Variations in patient anatomy

3 field IMPT plan to an 8 year old boy

PAUL SCHERRER INSTITUT

Note, sparing of spinal cord in middle of PTV

Francesca Albertini and Alessandra Bolsi (PSI)

Nuclear data for science and technology: Medical applications

During treatment, 1.5kg weight gain was observed

Dose differences

Variations in patient anatomy

Differences between nominal and 'weight gain' CT's

Francesca Albertini and Alessandra Bolsi (PSI)

Current challenges
The neutron problem
Range uncertainty
Dealing with organ motion

Nuclear data for science and technology: Medical applications

Current challenges: organ motion

Organ motion and range uncertainty exhale inhale

Engelsman et al., IJROBP 64(5):1589-1595, 2006

PAUL SCHERRER INSTITUT

Images courtesy of Thomas Bortfeld, MGH, Boston

Nuclear data for science and technology: Medical applications

Current challenges: organ motion

Organ motion and the 'interplay' effect

A scanned beam in a static patient...

Martin von Siebenthal, Phillipe Cattin, Gabor Szekely, Tony Lomax, ETH, Zurich and PSI, Villigen

Nuclear data for science and technology: Medical applications

Current challenges: organ motion

Organ motion and the 'interplay' effect

...but real patients move.

Martin von Siebenthal, Phillipe Cattin, Gabor Szekely, Tony Lomax, ETH, Zurich and PSI, Villigen

4D-CT derived from 4D-MRI

Nuclear data for science and technology: Medical applications

Organ motion and the 'interplay' effect

Assume σ = 0.5cm For this example, dose errors of ~20% can result from motion (positioning) errors of 2.5mm

Phillips et al., PMB, 37:223-234,1992

Nuclear data for science and technology: Medical applications

Organ motion and the 'interplay' effect

Nominal (static) dose

PAUL SCHERRER INSTITUT

Calculated with 'real' motion from 4D-MRI of volunteer

Nuclear data for science and technology: Medical applications

Organ motion and the 'interplay' effect

Motion patient 1 Amplitude ~ 11mm Motion patient 2 Amplitude ~ 8mm

Nuclear data for science and technology: Medical applications

Overview of presentation New developments in treatment delivery Current challenges

Potential solutions

Summary

Nuclear data for science and technology: Medical applications

Potential solutions torange uncertainty ...the organ motion problem

Nuclear data for science and technology: Medical applications
Mega-Voltage CT for artifact free imaging

Ospedale San Rafaele, Milan

Accuracy of range calculation due to reconstruction artifacts?

Francesca Albertini (PSI)

Nuclear data for science and technology: Medical applications

Ospedale San Rafaele, Milan

No artifacts and linear relationship CT units to proton stopping power

Potential solutions to range uncertainty

Mega-Voltage CT for artifact free imaging

Stopping power profiles

Future directions and current challenges for proton therapy. Tony Lomax

Nuclear data for science and technology: Medical applications

Range adapted proton therapy

Automatic adaptation of Bragg peak ranges on a spot by spot basis depending on local change in range

Nuclear data for science and technology: Medical applications

PAUL SCHERRER INSTITUT

Range adapted proton therapy

Automatic adaptation of Bragg peak ranges on a spot by spot basis depending on local change in range

Nuclear data for science and technology: Medical applications

PAUL SCHERRER INSTITUT

Range adapted proton therapy

Automatic adaptation of Bragg peak ranges on a spot by spot basis depending on local change in range

Nuclear data for science and technology: Medical applications

PAUL SCHERRER INSTITUT

Potential solutions to range uncertainty

Range adapted proton therapy

Future directions and current challenges for proton therapy. Tony Lomax

Nuclear data for science and technology: Medical applications

Nuclear data for science and technology: Medical applications

Potential solutions to range uncertainty

Robust planning techniques

...give a homogenous dose without the use of fields that abut distally against the spinal cord

0.000

Potential solutions to range uncertainty

Robust planning techniques

Nominal plans 10% overshoot plans

IMPT

Single field

IMPT

Single field

DVH analysis

Nuclear data for science and technology: Medical applications

Robust planning techniques

Incorporate range uncertainty into optimisation function using gaussian probability functions for range uncertainty

E.g.

$$\underset{\boldsymbol{w}}{\text{minimize}} \qquad \langle E(\boldsymbol{w}) \rangle := \int \sum_{i \in PAT} \alpha_i \left[D_i(\boldsymbol{w}, \bar{\boldsymbol{\rho}} + \boldsymbol{\sigma} \boldsymbol{\delta}) - D_i^{pres} \right]^2 P(\boldsymbol{\delta}) d\boldsymbol{\delta}$$

subject to

$$w_j \ge 0 \quad (\forall j \in PB)$$

PAUL SCHERRER INSTITUT

Where $\rho + \sigma \delta$ assigns an uncertainty to the range of each pencil beam in the optimisation

Unkelbach et al, PMB, 52;2755-2773, 2007

Nuclear data for science and technology: Medical applications

Future directions and current challenges for proton therapy. Tony Lomax

Potential solutions to range uncertainty

Potential solutions to range uncertainty

Robust planning techniques

Effect of 5mm range uncertainty on robustly optimised plan

nominal range

5 mm undershoot

5 mm overshoot

Unkelbach et al, PMB, 52;2755-2773, 2007

Nuclear data for science and technology: Medical applications

Potential solutions torange uncertainty ...the organ motion problem

Nuclear data for science and technology: Medical applications

Tumour tracking

Track motion of tumour using scanning system based on some anatomical/physiological signal

PAUL SCHERRER INSTITUT

- + Most conformal
- + Most efficient
- Very complex!
- Difficult QA
- Reliability of tracking signal?

Tumour tracking

Dose heterogeneity as function of tracking delay

Steven van de Water, PSI

Nuclear data for science and technology: Medical applications

Rescanning

Repaint scanned beam many times such that statistics dictate coverage and homogeneity of dose in target (c.f. fractionation)

PAUL SCHERRER INSTITUT

- + Simple method
- + Robust
- Fast scanning required
- Not very conformal

Potential solutions to organ motion

Applying the total prescribed dose in *n* steps (each spot is applied n times rather than once) provides a better homogeneity. The error is statistically decreased by \sqrt{n}

Christian Hilbes, PSI

Rescanning

Analysis of Cos⁴ motion with 1cm peak-to-peak amplitude

- Cylindrical target volume
- Re-scanned different times to same total dose
- Scan times calculated for realistic beam intensities and dead times between spots
- Analysis carried out for different periods of motion
 Not always improving homogeneity with number of re-scans!

Future directions and current challenges for proton therapy. Tony Lomax

Marco Schwarz, Trento

Rescanning

The 'synchronicity' effect

- Very preliminary results
- A 'real' effect for perfectly regular breathing?
- Could well be less of an issue when breathing is more irregular
- For regular breathing, could be avoided by selecting the re-scanning period to avoid effect or varying period scanto-scan
- Probably not a big issue in reality?

Marco Schwarz, Trento

Nuclear data for science and technology: Medical applications

Potential solutions to organ motion

Gating

Reduce magnitude of motion by gating delivery to small window of motion cycle

- + Simple method
- Reliability of gating signal?
- Inter/intra fraction variability of motion?
- Residual motion?

Potential solutions to organ motion

PAUL SCHERRER INSTITUT

Gating

- 4D dose calculation applied to cylindrical target in presence of 'real' motion (4D-MRI of volunteers) in liver
- Calculations performed for static, 100, 50 and 30% duty cycles
- Gating signal taken from diaphragm wall motion ('ideal' gating)
- Irregularities in breathing and amplitude over duration of treatment taken into account
- Results for two volunteers

1. $T_{av} = 4.7s$, $A_{av} = 10.9mm$ 2. $T_{av} = 7.1s$, $A_{av} = 8.3mm$

Summary.

- Proton therapy is fast moving from the research institute to the hospital
- Due to the adoption of proton therapy in a number of 'flag-ship' institutes in the USA, they will certainly have a higher profile in the next few years.
- Scanning and IMPT will play an ever increasing role in proton therapy, with most manufactuers offering or developing such systems
- However, proton therapy brings challenges in dosimetry, delivery accuracy and organ motion management
- There's lot's of interesting science still to be done....!

PAUL SCHERRER INSTITUT Acknowledgements Eugen Hug - Head of department and medical chief Eros Pedroni - Head of R&D and 'brains' of the spot scanning project at PSI Medical group R&D group Medical Physics group Carmen Ares **Ralph Bearpark Tony Lomax Gudrun Goitein** Terence Francesca Albertini Lydia Lederer Hans Peter Rutz Boehringer Alessandra Bolsi Petra Rhiner Beate Timmermann **Christian Bula** Frank Emert Heidi Wagner **Damien Weber** Martin Grossmann Jens Heufelder **Beate Schulz** Christian Hilbes Cezarina Negreanu Anita Obrist Shixiong Lin Gantry Juergen Salk **Claire Baumeler David Meer** Otto Stadelmann **April Siegwolf** operation Sairos Safai Sandra Hersperger Jorn Verwey **Doelf Coray** Alexander Tourovsky Dani Lempen **Secretaries Benno Rohrer Ruth Eggspuhler** Hansueli Stauble Frieda Obrist

Thanks for your attention...

Nuclear data for science and technology: Medical applications