Medical Radionuclides and Related Nuclear Data Part III. Therapeutic Radionuclides

> Syed M. Qaim Institut für Nuklearchemie Forschungszentrum Jülich GmbH D-52425 Jülich, Germany

Lecture delivered during the Workshop on Nuclear Data for Medical Applications, Abdus Salam ICTP, Trieste, Italy, 12 to 23 November 2007

Topics

- General considerations
- Decay data of therapeutic radionuclides
- Commonly used production methods of important therapeutic radionuclides
- Development of new production routes
- Conclusions and perspectives

Radioisotopes for Therapy

- Differentation between radiation therapy and internal radionuclide therapy is essential
 - Radiation therapy consists of treatment with external radiation sources
 - Internal radionuclide therapy involves the use of a radioisotope within the body either as a sealed source (brachytherapy) or via a biological pathway (endoradiotherapy).
- Of great significance in internal therapy are
 - Linear energy transfer (LET), similar to that in external radiation therapy
 - Range of ionising radiation in tissue

Internal Radionuclide Therapy

Brachytherapy

(insertion of sealed sources near the tumour) **Examples**: ¹⁹²Ir as wire ¹⁰³Pd and ¹²⁵I as seeds

Administration in cavities

(for pain palliation) **Examples**: ³²P colloid for arthritis ⁹⁰Y, ¹⁸⁶Re and ¹⁸⁸Re complexes for joint inflammation

Metabolic therapy

(incorporation of radionuclide via a biochemical path) *Examples*: ¹³¹I for thyroid cancer ⁸⁹Sr, ¹⁸⁶Re and ¹⁵³Sm are bone seekers

Radioimmunotherapy

(administration of a radionuclide chemically conjugated to antibodies) *Examples*: low-energy high-LET value radionuclides

Internal radionuclide therapy is a fast developing field.

Radioisotopes for Therapy

 Uptake of a radiopharmaceutical in tumour via physiological processes

Range of ionising radiation

1.7 MeV β^-

100 cells

10-2

0.15 MeV β⁻

5.3 MeV α AUGERelectrons

range [mm]

1 cell dimension cell nucleus

10 -1

10⁰

10¹

10²

Uptake of a Radiopharmaceutical in the Tissue

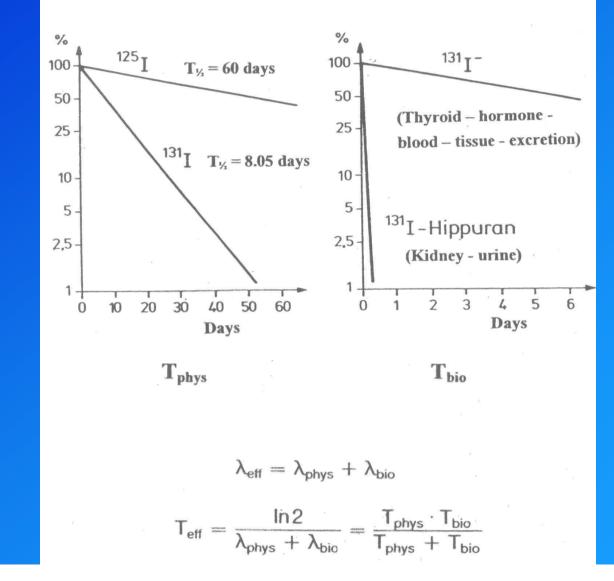
Concepts

- Radioimmuno reactions
- DNA-precursors
- Receptor ligands
- Tumour seeking agents

(monoclonal antibodies) (attachment to cell nucleus) (attachment to cell membrane) (cell environment)

Problems

- Range of ionising radiation
- Tracer kinetics
- In-vivo stability of radiopharmaceutical
- Immuno chemical changes


Endoradiotherapy is a developing field of study

Effective Half-life (T_{eff})

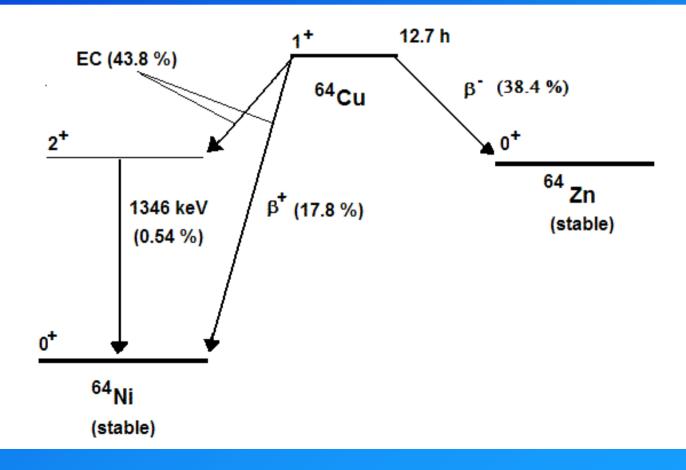
Of considerable significance in the dosimetry of target organ

- T_{phys} (physical half-life)

- T_{bio} (biological half-life)

Decay Data of Therapeutic Radionuclides

Distinctive Features


- T_{1/2} relatively long
- I_{β} and I_{α} quite high
- I_{y} rather low
- Énergies of Auger and conversion electrons generally low

Status of Data

- Decay data generally well known
- Occasionally some uncertainty in $I_{\ensuremath{\beta}}$ due to
 - use of impure samples
 - lack of high-precision β-ray spectroscopy
- Occasional uncertainty in low-energy electron spectra

Decay Scheme of Copper-64

- Preparation of thin, high-purity sample via the nuclear reaction ⁶⁶Zn(d,α)⁶⁴Cu
- Use of several counting methods (γ-and X-ray spectrometry; β-counting; γγ-coincidence, etc.)

Production Methods of Important Therapeutic Radionuclides

 10^{-} **C** - **c** + 11 - **c** + 12 - **c**

(B Emitters)					
Nuclide	T _½	Production route	Nuclide	Τ _½	Production route
³² P	14.3 d	³² S(n,p)	¹⁵³ Sm	1.9 d	¹⁵² Sm(n,γ)
⁶⁴ Cu	12.7 h	⁶⁴ Ni(p,n)	¹⁶⁹ Yb	32.0 d	¹⁶⁸ Υb(n,γ)
⁶⁷ Cu	2.6 d	⁶⁸ Zn(p,2p)	¹⁷⁷ Lu	6.7 d	¹⁷⁶ Lu(n,γ)
⁸⁹ Sr	50.5 d	⁸⁹ Y(n,p)	¹⁸⁶ Re	3.8 d	¹⁸⁶ W(p,n)
90 Y	2.7 d	⁹⁰ Sr/ ⁹⁰ Y (Generator)	¹⁸⁸ Re	17.0 h	¹⁸⁸ WI ¹⁸⁸ Re (Generator)
131	8.0 d	¹³⁰ Te(n,γ) ^{131m,g} Te ^{β-} → ²³⁵ U(n,f)	¹⁹² lr	73.8 d	¹⁹¹ lr(n,γ)

Production is done using both nuclear reactors and cyclotrons

Production Methods of Important Therapeutic Radionuclides (Cont´d)

Nuclide	Т _½	Production route	Nuclide	T _½	Production route
β+ <i>Emitters</i>			X-Ray/Auger Electron Emitters		
⁶⁴ Cu	12.7 h	⁶⁴ Ni(p,n)	⁷⁷ Br	2.4 d	⁷⁵ As(α,2n)
⁷⁶ Br	16.0 h	⁷⁶ Se(p,n)	¹⁰³ Pd	17.0 d	¹⁰³ Rh(p,n)
124	4.2 d	¹²⁴ Te(p,n)	¹¹¹ In	2.8 d	¹¹² Cd(p,2n)
α Emitters		125	60.0 d	¹²⁴ Xe(n,γ) ¹²⁵ Xe ^{EC}	
²¹¹ At	7.2 h	²⁰⁹ Bi(α,2n)			
²¹³ Bi	46 min	²²⁵ Acl ²¹³ Bi (Generator)			
²²⁵ Ac	10.0 d	from nuclear waste ²²⁶ Ra(p,2n)			

Increasing use of cyclotrons in production of therapeutic radionuclides

Examples of Endoradiotherapy

Thyroid therapy

¹³¹I-iodide; 0.6 – 1.5 GBq; in case of benign tumour

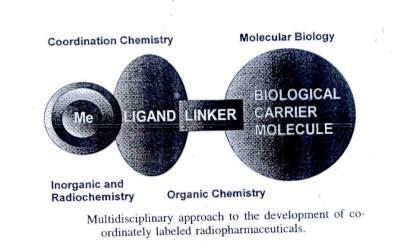
- Biochemical concept (I-metabolism)
- Enrichment factor and uptake kinetics determined via γscintigraphy
- Radiation dose calculated using pharmacokinetics

Palliative therapy

(bones, joints, etc.)

[³²P]-Phosphate; [⁹⁰Y]-Citrate, etc.

- Tumour seeking agents
- Enrichment factors and uptake kinetics generally unknown (purely β⁻ emitters)
- Dosimetry is empirical


Other forms of therapy are in development.

Preparation of Radiotherapeutical

Limited use of therapeutic radionuclides in simple ionic forms

Examples: [¹³¹I]I for thyroid cancer [⁸⁹Sr]Sr²⁺ for bone metastases

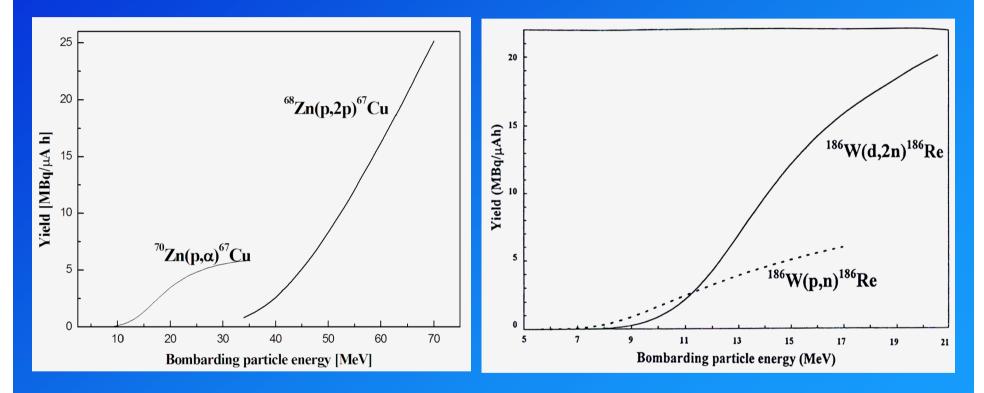
- Most applications demand one of the following forms
 - metal-ligand complex
 - particles or colloids
 - labelled biomolecules
 - radiohalogenation (in case of ^{80m}Br, ¹²⁵I, ¹³¹I or ²¹¹At)
 - coordinate bonding of metal cations via bifunctional chelators

Available Radiopharmaceuticals for Targeted Therapy

RADIOPHARMACEUTICAL	INDICATION	AVAILABILITY	
[¹³¹ I] iodide	thyrotoxicosis, goiter thyroid carcinoma	+	
Sodium [³² P] phosphate	polycythemia vera essential thrombocythemia	• +	
[¹³¹ I] MIBG	pheochromocytoma neuroblastoma paraganglioma, carcinoid medullary thyroid carcinoma	+	
[⁸⁹ Sr] chloride	bone metastases (palliation)	+	
[⁹⁰ Y] citrate	bone metastases (palliation)	+	
[⁹⁰ Y] colloid	synoviorthesis (knee) malignant pleural/peritoneal effusions	+	
[¹⁸⁶ Re] sulphide	synoviorthesis (medium size joints)	+	
[¹⁶⁹ Er] citrate	synoviorthesis (small joints)	+	
[³² P] phosphate colloid	malignant effusion	k ¥ .jo	
[¹⁸⁶ Re] HEDP	bone metastases (palliation)	clin.trial	
[¹⁵³ Sm] EDTMP	bone metastases (palliation)	clin.trial	
[¹³¹ I]-,[⁹⁰ Y]-,[⁶⁷ Cu]- labelled antibodies	variety of tumours	clin.trial	
[⁹⁰ Y] particles	hepatoma	clin.trial	
[¹³¹ I] lipiodol	liver malignancy	clin.trial	

(+ = available for routine use, clin. trial = under investigation)

Development of New Routes for Production of Novel Therapeutic Radionuclides


Aims

- Enhance the yield, purity and specific activity of presently used radionuclides
- Establish novel or future-oriented technology
- Development of novel therapeutic radionuclides
- Improve internal radiation dose dosimetry

New Trends

 Low-range high-intensity radiation emitters (α-particles, low-energy electrons, X-rays)

Copper-67 and Rhenium-186

- Different production yields using different reactions
- Choice of production method depends on the available projectile and its energy

Routes for Production of ⁶⁴Cu

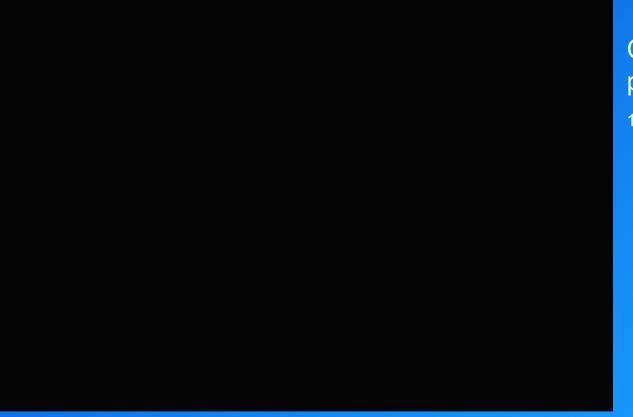
Production route	Suitable energy range [MeV]	Integral yield [MBq/µA·h]
⁶⁴ Zn(n,p) ⁶⁴ Cu	Fission spectrum	14.5*
⁶⁴ Ni(d,2n) ⁶⁴ Cu	19 → 15	389
⁶⁴ Ni(p,n) ⁶⁴ Cu	12 → 9	241
^{nat} Zn(d,x) ⁶⁴ Cu	25 → 10	50
⁶⁶ Zn(d,α) ⁶⁴ Cu	13 → 7	6.6
⁶⁸ Zn(p,αn) ⁶⁴ Cu	35 → 20	~100

•Activity/mg Zn at $\Phi_n = 8.7 \times 10^{13} \text{ n cm}^{-2} \text{ s}^{-1}$ for 150 h

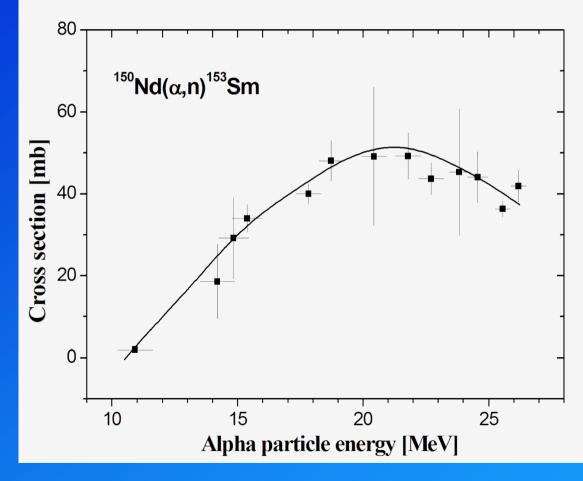
⁶⁴Ni(p,n)⁶⁴Cu reaction is method of choice

Specific Activity of Reactor Produced Radionuclides

often depends on


- isotopic abundance of target isotope
- (n,γ) cross section
- neutron flux density
- Demand on specific activity depends upon the mode of accumulation of the labelled therapeutical at the tumour surface
- If receptor-based interactions are involved, a high dilution with the stable isotope cannot be tolerated

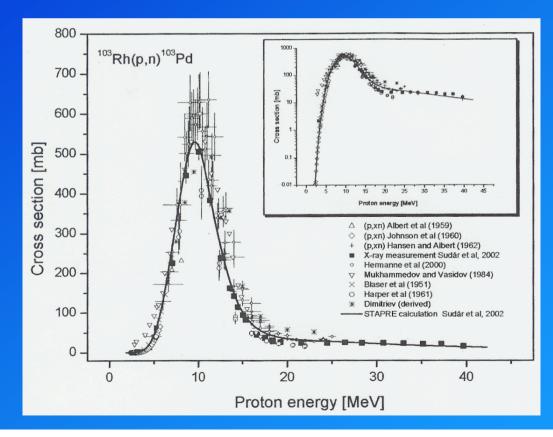
Rare earth isotopes (lanthanoids) can be advantageously produced since the (n,γ) cross section is high.


Trivalent lanthanoids show affinity for tumours

Improving the Specific Activity Example: Samarium-153 $(T_{\frac{1}{2}} = 46.3 \text{ h}, E_{\beta^{-}} = 0.8 \text{ MeV}, I_{\beta^{-}} = 100 \%)$

• An important therapeutic radionuclide of increasing significance

Sm-153 *New Route*: ¹⁵⁰Nd(α,n)¹⁵³Sm

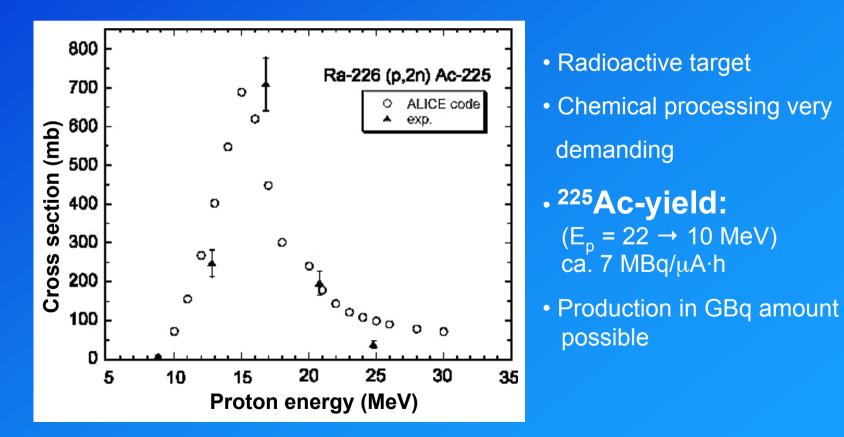

¹⁵³Sm-yield:
(E_α = 25 → 15 MeV)
2.2 MBq/μA·h

 Production in GBq amounts possible

Product: "no-carrier-added"

Palladium-103 (T_{1/2} = 17.0 d; EC = 100 %; X-rays)

Extremely important radionuclide for prostate cancer treatment
Measurement: Stacked-foil technique; X-ray-spectrometry
Theory: Hauser-Feshbach calculation (code: STAPRE)
Excitation Function



¹⁰³Pd-yield:
(E_p = 14 → 7 MeV)
6.6 MBq/µA·h

Establishing Novel Technology *Example*: Actinium-225 $(T_{\frac{1}{2}} = 10.0 \text{ d}, E_{\alpha} = 5.8 \text{ MeV}, I_{\alpha} = 100 \%)$

Presently used Route: Separation from nuclear waste (Th-229)

New Route: ²²⁶Ra(p,2n)²²⁵Ac

Studies Related to Future Technologies

Example: Measurement of $\sigma(n,p)$ with 14 MeV "d(Be)-breakup"-neutrons (Simulation study for production at a spallation neutron source)

Therapeutic	Nuclear - reaction	Reaction cross section (mb)		
radionuclide		Fission neutrons	14 MeV d(Be) neutrons	
³² P	³² S(n,p) ³² P	69	152	
⁶⁷ Cu	⁶⁷ Zn(n,p) ⁶⁷ Cu	1.07	5.13	
⁸⁹ Sr	⁸⁹ Y(n,p) ⁸⁹ Sr	0.31	0.91	
¹⁵³ Sm	¹⁵³ Eu(n,p) ¹⁵³ Sm	0.015	0.26	

 Spallation neutron source would be more suitable than a fission reactor for production of therapeutic radionuclides via (n,p) process

Development of Novel Therapeutic Radionuclides

Example: ¹⁴⁹Tb ($T_{\frac{1}{2}}$ = 4.1 h, E_{α} = 3.97 MeV, I_{α} = 16.7 %) • Potentially interesting radionuclide due to low α -particle energy

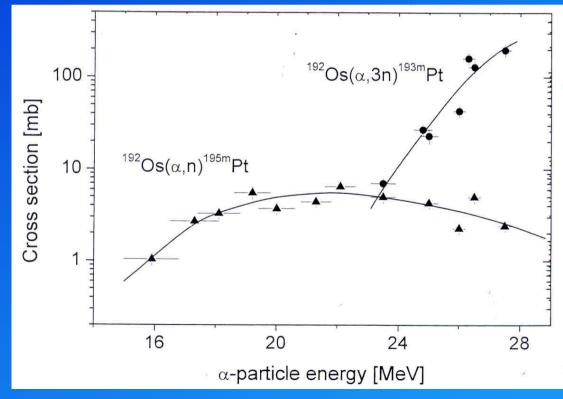
Production Methods

- (a) ^{nat}Gd(p,xn)¹⁴⁹Tb
- (b) ¹⁶⁵Ho(p,spall)¹⁴⁹Tb

 $(E_p > 100 \text{ MeV})$ $(E_p > 200 \text{ MeV})$ Mass separation

(c) ${}^{141}Pr({}^{12}C,4n){}^{149}Tb$ (E > 120 MeV)

Production reactions are rather exotic; the yields are low; intensive chemical processing or mass separation is essential


Development of Novel Therapeutic Radionuclides

Examples:

^{193m}Pt ($T_{\frac{1}{2}}$ = 4.33 d; Auger electrons ~ 33 per decay) ^{195m}Pt ($T_{\frac{1}{2}}$ = 4.03 d; Auger electrons ~ 26 per decay) *High-spin isomers*

Production Method: α-particles on enriched ¹⁹²Os

Excitation Functions

^{195m}Pt-yield: $E_{\alpha} = 24 \rightarrow 18 \text{ MeV}$ 0.013 MBq/µA·h ^{193m}Pt-yield: $E_{\beta} = 28 \rightarrow 24 \text{ MeV}$ 0.25 MBq/µA·h

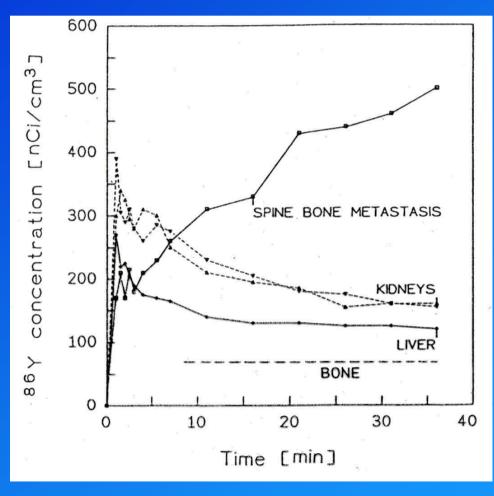
Production of high-specific activity ^{193m}Pt in sufficient quantity feasible

Combination of PET and Endoradiotherapy

 Internal radiotherapy using a pure β⁻ emitter (⁸⁹Sr, ⁹⁰Y, etc.) entails rather uncertain radiation dosimetry

 Mixing an isotopic β⁺ emitter with the therapeutic radionuclide allows a better therapy planning through PET measurement of the β⁺ emitter.

Examples : ${}^{86}Y({}^{90}Y)$ **Production** : ${}^{86}Sr(p,n){}^{86}Y$


⁸³Sr(⁸⁹Sr)
⁸⁵Rb(p,3n)⁸³Sr

Production of the positron emitter is done using a cyclotron

Combination of PET and Endoradiotherapy

(Determination of Uptake Kinetics and Enrichment Factor)

- Addition of β^+ emitting ⁸⁶Y analogue to the therapy nuclide ⁹⁰Y
- Pharmacokinetic data obtained using PET

 Exponential uptake of [⁸⁶Y]-citrate in bone metastasis
Enrichment factor (bone metastasis/normal bone): 8 (at 5h)

Accurate dosimetry and therapy planning possible

Conclusions and Perspectives

- Decay data of prime importance in choosing a therapeutic radionuclide; status of data generally good; more precise information on low-energy electrons may be needed.
- Production of commonly used therapeutic radionuclides mainly done using a nuclear reactor; strong need to enhance the specific activity. Some therapeutic radionuclides produced at accelerators.
- New demands related to low-energy high intensity radiation emitters. Considerable research and development work needed to produce them in required quality and quantity.
- Endoradiotherapy (ERT) is a fast developing field and has great potential. New chemical and biochemical concepts and ideas on tumour targeting are needed. A combination of PET and ERT leads to better therapy planning.