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Basics of the Monte Carlo Method

• General properties of  simulations and Monte Carlo

• Markov Chains

• Error analysis

Lab today will use do some variational Monte Carlo and error 

analysis.
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Simulation is advantageous for high dimensional integrals

-the best general method

By conventional deterministic 
methods:

• Lay out grid with L points in each 
direction: h=1/L

• Number of points is N =LD =h–D

CPU time.

How does error scale with CPU time?

• Error in trapezoidal rule goes as 
=f’’(x) h2 since

• Hence CPU time -D/2 since ~h2

and CPU~h–D

• But by MC: -2 since ~M-1/2 and
CPU~M

MC is advantageous for D>4!

Consider an integral in the unit D-dimensional hypercube:
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Quantum Monte Carlo Integrals
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Simulations

• What is a simulation?  

– It has an internal state    “S”
• In classical mechanics, the state = positions {qi} and velocities {pi} of the particles. 

• In Ising model, they are the spins (up or down { i}) of the particles.

– A rule for changing the state  Sn+1 =  T  (Sn)
• In a random case, the new state is sampled from a distribution T(Sn+1|Sn).

– From initial state S0, we repeat the iteration many times:  n

S0 S1 S2 S3 S4 S5 ….. Sn Sn+1

– The iteration index “n” is called “time.” It could be either “real time” or an 
iteration count, a pseudo-time, sometimes called Monte Carlo time.

• Simulations can be:

– Deterministic  (e.g. Newton’s equations via Molecular Dynamics)

– Stochastic  (Monte Carlo, Brownian motion,…)

Nonetheless, you analyze in a similar  way.

• Why do a simulation? It is the only exact method for general 
many-body problems! As with experiment: the rules of the 
simulation can be simple but output can be unpredictable.
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Ergodicity

• Typically simulations are assumed to be ergodic:

– after a certain time the system loses memory of its initial state, S0,

except possibly for certain conserved quantities such as the energy, 

momentum.

– The  correlation time (which we will define soon) is the number of 

iterations it takes to forget. 

– If you look at (non-conserved) properties for times much longer ,

they are unpredictable as if randomly sampled from some 

distribution.

–Ergodicity is often easy to prove for the random transition but usually 

difficult for the deterministic simulation. 

The assumption of egodicity is  used for:

• Warm up period at the beginning (or equilibration)

• To get independent samples for computing errors.
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Equilibrium distribution

• Let Ft(S|S0) be the distribution of state after time t.

• If the system is ergodic, no matter what the initial state, one 

can characterize the state of the system for t >> by a unique 

probability distribution: the equilibrium state F*(S).

– In classical statistical systems, this is the canonical Boltzmann 

distribution: F*(S)=exp(-V(S)/kT)/Z

– In VMC it is the square of the wavefunction

– In PIMC, it is the path distribution.

• One goal is to compute averages to get static properties in 

equilibrium. e.g., the energy:
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Markov chain MC or Random Walk

• Markov chain is a random walk through phase space: 

s1 s2 s3 s4 …

Here “s” is the state of the system.

• ALL QMC is some type of Markov process. VMC is the simplest.

• The transition probability is P(sn sn+1) a stochastic matrix

• In a Markov chain, the distribution of sn+1 depends only on sn (by
definition). A drunkard has no memory!

• Let fn(s) be the probability after “n” steps. It evolves according to a 
“master equation.”

fn+1(s’)  = s fn(s) P(s s’)

OR: fn+1 =P fn

• The stationary states are eigenfunctions of P: P =

s'

( ') 0        ( ') 1P s s P s s
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• Because P is positive, the eigenvalues have 1.

An equilibrium state must have =1.

• How many equilibrium states are there?

– If it is ergodic, then it will converge to a unique stationary distribution 

(only one eigenfunction with eigenvalue whose eigenvalue =1)

• ergodicity can be proven if:

– One can move everywhere in a finite number of steps with non-zero 

probability. No barriers!

– Non-periodic transition rules. (e.g. not hopping on a bi-partite lattice)

– Average return time is finite. (No expanding universe.) Not a problem 

in a finite system.

• If ergodic, convergence is geometrical and monotonic to a 

unique state: (s)

fn(s) = (s)  + n c (s)
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Metropolis algorithm

Three key concepts:

1. Sample by using an ergodic random walk.

2. Determine equilibrium state by using detailed balance.

3. Achieve detailed balance by using rejections.

Detailed balance: (s) P(s s’) = (s’)P (s’ s ).

Rate balance from s to s’ implies (s) equilibrium state.

PROOF:Put (s) into the master equation. 

s (s) P(s s’)  = (s’) s P (s’ s ) = (s’)

• Hence, (s) is an eigenfunction of P.

• If P(s s’) is ergodic, (s) is unique steady state solution.
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Rejection Method
Metropolis achieves detailed balance by rejecting moves.

General Approach:

1. Choose distribution to sample, e.g., (s) = exp[– H(s)]/Z

2. Impose detailed balance on transition: K(s s’) = K(s’ s)

where K(s s’) = (s) P(s s’)     

(probability of being at s) * (probability of going to s’).

3. Break up transition probability into sampling and acceptance:

P(s s’) = T(s s’) A(s s’)

(probability of generating s’ from s) * (probability of accepting move)

The optimal acceptance probability that gives detailed balance is:

Normalization of (s) is not needed or used!

A(s s') min[1,
T (s' s) (s')

T (s s') (s)
] min[1,

(s')

(s)
]

If T is constant!
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The Metropolis method for classical systems

Metropolis-Rosenbluth2 -Teller2 (1953) method is:

• Move from s to s’ with  probability T(s s’)= constant

• Accept with move with probability:

A(s s’)= min [ 1 , exp ( - (E(s’)-E(s))/kBT ) ]

• Repeat many times

• Given ergodicity, the distribution of s will be the canonical 

distribution: (s) = exp(-E(s)/kBT)/Z

• Convergence is guaranteed but the rate is not!
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Metropolis Acceptance Probability

1

e– E

E

Always

Accept

Accept

Reject

• If  E < 0, it lowers the system energy accept.

Otherwise

• Generate UDRN un on (0,1)

• Compare un to e– E: If un < e– E, accept. 

If un > e– E, reject.
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How to sample

S_new = S_old + . (sprng - 0.5)

Note: It is more efficient to move one particle at a time because only the energy 

of that particle comes in and the acceptance ratio will be larger.

Uniform distribution in a cube  of side “ ”.

A(s s') exp[ (V (s') V (s))]

exp[ (v(ri ' rj ) v(ri rj ))
j i

]

For V with cut-off range, difference is local.
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MONTE CARLO CODE

call initstate(s_old)

E_old = action(s_old)

LOOP{

call sample(s_old,s_new,T_new,1)

E_new = action(s_new)

call sample(s_new,s_old,T_old,0)

A=exp(-E_new+E_old) T_old/T_new 

if(A.gt.sprng()) {

s_old=s_new

E_old=E_new

naccept=naccept+1}

call averages(s_old)           }

Initialize the state

Sample snew

Trial action

Find prob. of going 

backward

Acceptance prob.

Accept the move

Collect statistics
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Overview of MCMC

• Decide how to move from state to state.

• Initialize the state

• Throw away first k states as being out of equilibrium.

• Then collect statistics but be careful about correlations.

Common errors:

1. If you can move from s to s’, the reverse move must also be 

possible.

2. Accepted and rejected states count the same!
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• Always measure acceptance ratio. Adjust ratio to roughly

0.5 by varying the “step size”.       RULE: 0.1<a.r.<0.9

• A 20% acceptance ratio actually achieves better diffusion 
than a 50% acceptance ratio in this example.
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Acceptable range of efficiency.

Variance of energy (local quantity) is not as sensitive to step size.

MC is a robust method!  You don’t need to fine tune things!
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Optimizing the moves

• Any transition rule is allowed as long as you can go anywhere

in phase space with a finite number of steps. (Ergodicity)

• Try to find a  T(s s’) (s’)/C.

– If you can, the acceptance ratio will be 1.

• Can use the forces to push the walk in the right direction. 

– Taylor expand about current point: V(r)=V(r0)-F(r)(r-ro)

– Then set T(s s’) exp[ - (V(r0)- F(r0)(r-ro))]

– Leads to Force-Bias Monte Carlo.

– Related to Brownian motion (Smoluchowski Eq.) and to diffusion Monte Carlo
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Estimated Errors
• In what sense do we calculate exact properties? Answer: if we average long 

enough the error goes to zero, the errors of the simulation are controlled.

• Next: how accurate is the estimate of the exact value?

– Simulation results without error bars are only suggestive.

• Without error bars one has no idea of its significance.

• You should understand formulas and be able to make an “eye-
ball” estimate.

• Error bar:  the estimated error in the estimated mean.

– Error estimates based on Gauss’ Central Limit Theorem.

– Average of statistical processes has normal (Gaussian) distribution. 

– Error bars: square root of the variance of the distribution divided by 
the number of uncorrelated steps.

Histogram of  E
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Central Limit Theorem (Gauss)

Sample N independent values from F*(x)dx, i.e. (x1, x2, x3,… ,xN).

Calculate mean as y = (1/N) xi.

What is the pdf of mean? Solve by fourier transforms

Characteristic function:
*( ) ( )ikx ikx

xc k e dx F x e ( ) ( / )N

y xc k c k N

Cumulants: Mean = 1 Variance= 2 Skewness = 3 Kurtosis= 4

The n=1 moment remains invariant but the rest get reduced by higher powers of N.

CLT: Given enough averaging almost anything becomes a 
Gaussian distribution.

2 3 2
1 2 3/ 2 / 6 ...

lim ( )
ik k N ik N

N yc k e

2
1/ 2 1 2

2

2

( )
( ) ( / 2 ) exp    standard error(y)= =

2

N y
P y N

N
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Approach to normality
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Conditions on Central Limit Theorem

• We need the first three moments to exist.
– If I0 is not defined not a pdf

– If I1 does not exist not mathematically well-posed.

– If I2 does not exist infinite variance. Important to know if variance is 
finite for simulations.

• Divergence could happen because of tails of distribution

We need:

• OR Divergence because of singular behavior of F* at finite x:

We need: 

*( )n n

nI x dx F x x

2 * 2

2 ( )I x dx F x x

3 *lim ( ) 0x x F x

*

0lim ( ) 0x xF x
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DataSpork

Interactive code to 

perform  statistical 

analysis of data
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Correlated data Uncorrelated data
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Statistical vs. Systematic Errors

• What are statistical errors?
– Statistical error measures the distribution of the averages about their avg.

– Statistical error can be reduced by extending or repeating runs, increase N.

• The efficiency is how we measure the rate of convergence of the 
statistical errors.

– It depends on the computer, the algorithm, the property etc.  But not on the 
length of the run.

• What are systematic errors ?
– Systematic error measures the others errors. Even if you sample forever you 

do not get rid of systematic errors.

– Systematic error is caused by round-off error, non-linearities, bugs, non-
equilibrium, etc.

2

1

T

2  standard error(y)= =
N
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Estimating Errors

• Uncorrelated data

• Correlated data

• Problem: how to cut off the summation for .

• Blocking method: average together data in blocks longer than the
correlation time until it is uncorrelated.
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Statistical Vocabulary

Trace of A(t):

Equilibration time.

Histogram of values of A ( P(A) ). 

Mean of A (a). 

Variance of A ( v ). 

estimate of the mean: A(t)/N

estimate of the variance

Autocorrelation of A (C(t)).

Correlation time .

The (estimated) error of the (estimated) mean ( ).

Efficiency [= 1/(CPU time * error 2)]
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Statistical thinking is slippery: be careful

• “Shouldn’t the energy settle down to a constant”

– NO. It fluctuates forever.  It is the overall mean which converges.

• Because data is correlated, the central limit theorem is invalid

• “The cumulative energy has converged”.

– BEWARE. Even pathological cases have smooth cumulative energy 

curves.

• “Data set A differs from B by 2 error bars. Therefore it must be 

different”.

– This is normal in 1 out of 10 cases. If things agree too well, something is 

wrong!

• “My procedure is too complicated to compute errors”

– NO! Run your whole code 10 times and compute the mean and variance

from the different runs. If a quantity is important, you MUST estimate its 

errors.
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Recap: problems with estimating errors

• Any good simulation quotes systematic and statistical errors for 

anything important. 

• The error and mean are simultaneously determined from the  same 

data.  HOW?

• Central limit theorem: the distribution of an average approaches a 

normal distribution (if the variance is finite).

– One standard deviation means ~2/3 of the time the correct answer is 

within of the sample average. 

• Problem in simulations is that data is correlated in time.

– It takes a “correlation” time to be “ergodic”

– Correction errors for autocorrelation.

– throw away the initial transient.

• We need about 25 independent data points to estimate errors. (so that 

the error of the error is only  1/sqrt(N)= 20%)




