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Bosonic Path Integrals

1. Overview of effect of bose statistics 
2. Permutation sampling considerations
3. Calculation of superfluid density and momentum 

distribution.
4. Applications of PIMC to liquid helium and helium 

droplets.
5. Momentum distribution calculations
6. MAXENT calculation of real time information from 

imaginary time correlation functions.
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Quantum statistics

• For quantum many-body problems, not all states are allowed: allowed 
are totally symmetric or antisymmetric. Statistics are the origin of 
BEC, superfluidity, lambda transition.

• Use permutation operator to project out the correct states:

• Means the path closes on itself with a permutation. R1=PRM+1

• Too many permutations to sum over; we must sample them.
• PIMC task: sample path { R1,R2,…RM and P} with Metropolis Monte 

Carlo (MCMC) using “action”, S,  to accept/reject.
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Exchange picture
• Average by 

sampling over all 
paths and over 
connections.

• Trial moves involve 
reconnecting paths 
differently.

• At the superfluid
transition a 
“macroscopic”
permutation 
appears.

• This is reflection of 
bose condensation 
within PIMC.
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3 boson example
• Suppose the 2 particle action is exact.
• Make Jastrow approximation for spatial dependance

(Feynman form)

• Spatial distribution gives an effective attraction (bose
condensation).

• For 3 particles we can calculate the “permanent” but 
larger system require us to sample it.

• Anyway permutations are more physical.
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Permutation Sampling
For bosons we also have to move through permutation 

space. A “local” move is to take an existing permutation 
and multiply by a k-cycle

• Sometimes need more than 2-particle exchanges-for 
fermions 3 particle exchanges are needed

• Need more than 1 time slice because of hard core.
Two alternative ways:
1. Make a table of possible exchanges and update the 

table.  Good for up to 4 particle exchanges  “SELECT”
2. Have a virtual table and sample permutation from that 

table. Good for longer exchanges (up to 10 body 
exchanges).  “PERMUTE”

1 2ˆ ( , ,..., )trial kP p i i i P=
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Heat Bath Method

Sample a neighborhood of a given point so that it is in 
local equilibrium.

Then the acceptance probability will be:

Can only be used if it is possible to quickly compute the 
normalization.

Acceptance ratio=1 if C(s) is independent of s.
For a given neighborhood, convergence is as fast as 

possible (it equilibrates in one step).
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How to select permutation

• Heat bath probability of move being accepted is:

– Set up “h” matrix
– Loop over all pairs and find all T(i,j)’s
– Loop over triplets and find T(I,j,k)’s …
– In acceptance probability we need the normalized 

probability:

– This gives an addition rejection rate.
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Any discrete distribution pk can be sampled by  
constructing the cumulant.

0 u 1

p a pb pc pd

• Sample 0<u<1.
• Find which region it is in.  i.e. find k:  ck-1<u<ck

• Return label “k”.

• The search operation can be done by bisection in 
log2(N)   steps.
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Bisection method
1. Select time slices

0

ß

3. Sample midpoints

4. Bisect again, until 
lowest level

5. Accept or reject entire 
move

2. Select permutation 
from possible pairs, 
triplets, from:

( , ';4 )R PRρ τ

R’

R
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Liquid helium
the prototypic quantum fluid

• A helium atom is an elementary 
particle. A weakly interacting 
hard sphere. First electronic 
excitation is 230,000 K.

• Interatomic potential is known 
more accurately than any other 
atom because electronic 
excitations are so high. 

•Two isotopes: 
• 3He (fermion: antisymmetric trial function, spin 1/2) 
• 4He (boson: symmetric trial function, spin zero)
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Helium phase diagram

•Because interaction is so weak 
helium does not crystallize at low 
temperatures. Quantum exchange 
effects are important
•Both isotopes are quantum fluids 
and become superfluids below a 
critical temperature.
•One of the goals of computer 
simulation is to understand these 
states, and see how they differ from 
classical liquids starting from non-
relativistic Hamiltonian:
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Path Integral explanation of Boson 
superfluidity

• Exchange can occur when thermal wavelength is greater 
than interparticle spacing

• Localization in a solid or glass can prevent exchange.
• Macroscopic exchange (long permutation cycles) is the 

underlying phenomena leading to:
– Phase transition: bump in specific heat:  entropy of 

long cycles
– Superfluidity winding paths
– Offdiagonal long range order--momentum 

condensation separation of cut ends
– Absence of excitations (gaps)

• Some systems exhibit some but not all of these 
features.

• Helium is not the only superfluid. (2001 Nobel Prize for 
BEC)

2 2 /dk T h /mB ρ≤
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Permutation Distribution

• As paths get longer 
probability of permutation 
gets significant.

• Shown is the probability of a 
given atom attaching itself to 
a permutation of length n.

• Superfluid transition occurs 
when there is a non-zero 
probability of cycle length 
N=size of system

• Permutations are favored in 
the polymer system because 
of entropy. In the quantum 
system because of kinetic 
energy.

• Impurities can be used to 
“measure” the permutations.
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ENERGY
Bose statistics have a small 

effect  on the energy
Below 1.5K  4He is in the 

ground state.

SPECIFIC HEAT
• Characteristic λ shape 

when permutations 
become macroscopic

• Finite size effects cause 
rounding above transition

Kinetic term becomes smaller because  Ncycke<N.     Springs stretched more. 
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• Transition is not in the static distribution functions like 
S(k) or g(r).  They do not change much at the transition.  
NON-CLASSICAL TRANSITION

• Effect of turning off bose statistics at the transition:

• Transition is in the imaginary-time connections of the 
paths-the formation of the macroscopic exchange.
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Superfluidity and PIMC

• We define superfluidity as a linear response to a velocity perturbation 
(the energy to rotate the system) Landau definition.

• To evaluate with Path Integrals, we use the Hamiltonian in rotating 
frame:
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• Distort annulus

• The area  becomes the winding
(average center of mass velocity)

• The superfluid density is now estimated as:

• Exact linear response formula. (analogous to relation between 
χ ~<M2> for Ising model.

• Relates topological property of paths to dynamical response. 
Explains why superfluid is “protected.”

• Imaginary time dynamics is related to real time response.
• How the paths are connected is more important than static 

correlations.

Winding numbers in 
periodic boundary conditions
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Ergodicity of Winding Number
• Because winding number is topological, it can only be 

changed by a move stretching all the way across the 
box.

• For cubic boundary conditions we need
• Problem to study finite size scaling: we get stuck in a 

given winding number sector.
• Advanced algorithms needed such as worm or directed 

loops (developed on the lattice).

1/3m N≥
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Superfluidity in pure Droplets

• 64 atom droplet goes 
into the superfluid
state in temperature 
range 1K <T <2K.  
NOT A PHASE 

TRANSITION!
• But almost completely 

superfluid at 0.4K 
(according to response 
criteria.)

• Superfluidity of small 
droplets recently 
verified.

Sindzingre et al 1990

Bulk 
experiment

Droplet
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Determination of Tc
Runge and Pollock PRB.

At long wavelength, the free energy 
is given by the functional:

The energy to go from PBC to ABC 
is given by:

We determine Tc by where F is 
constant with respect to number 
of atoms N. 

For N~100 , Tc correct to ~1%.
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Phase Diagram of 
Hard Sphere Bosons

• Atomic traps are 
at low density

• With PIMC we 
mapped out 
range of 
densities

• There is an 
enhancement of 
Tc by 6% 
because of 
density 
homogenization.

Gruter et al PRL 99.

Tc

Tc/ Tc0 ~1+n1/3 a Density of 
atom traps

Liquid 4He
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Pair correlations at low density

Structure Factor  S(K)
(FT of density)
Large compressiblity near 

Tc (clustering)

Free boson pair 
correlation.

Peak caused by 
attraction of bosonic
exchange.

Zero is hard core 
interaction.
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Determination of Tc using superfluid
density. Finite size scaling.

• Near Tc a single length enters 
into the order parameter.

• Write superfluid density in 
terms of the available length.

• Determine when the curves 
cross to get Tc and exponent.

• Exponent is known or can be 
computed.
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Why is H2 not a superfluid?
• H2 is a spherically symmetric 

boson like He.
• However its intermolecular 

attraction is three times larger
• Hence its equilibrium density is 

25%  higher ⇒ solid at T<13K.
• To be superfluid we need to keep 

the density lower or frustrate the 
solid structure.
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At low T and density, 
orientational energies are 
high⇒H2is spherical.
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H2 droplets

• In droplet or at surfaces, 
many bonds are broken.

• We found that small droplets 
are superfluid.

• Recently verified in 
experiments of 4He-H2-OCS 
clusters: When a complete 
ring of H2 surrounds OCS 
impurity, it no longer acts as 
a rigid body, but decouples 
from the motion of the OCS.

Sindzingre et al. PRL 67, 1871 
(1991).
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H2 on Ag-K surfaces
Gordillo, DMC PRL 79, 3010, 1997.

• Formation of solid H2 is frustrated by alkali metal 
atoms.

• Lowers the wetting density-result is liquid (superfluid) 
ground state with up to 1/2 layer participating.

• Has not yet been seen experimentally.

K atoms

Winding 
H2 path.

Liquid  solid

clean
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Experimental Setup
for He droplets

• Adiabatic expansion cools helium to below the critical point, 
forming droplets.

• Droplets then cool by evaporation to:
T=0.38 K,                         (4He)
T=0.15 K,                         (3He)

• The droplets are sent through a scattering chamber to pick up 
impurities, and are detected either with a mass spectrometer 
with electron-impact ionizer or a bolometer. 

• Spectroscopy yields the rotational-vibrational spectrum for the 
impurity to accuracy of 0.01/cm. Almost free rotation in 
superfluid helium but increase of MOI of rotating impurities.

Toennies and Vilesov, 
Ann. Rev. Phys. Chem. 49, 1 (1998)

3N 1 0≈
410N ≈
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Droplets and PIMC
E. Draeger (LLNL)  D. Ceperley(UIUC)

• Provide precise microscopic probes for phenomenon such as 
superfluidity and vortices.

• Provide a nearly ideal “spectroscopic matrix” for studying 
molecular species which may be unstable or weakly interacting 
in the gas phase.

• PIMC can be used to simulate 4He droplets of up to 1000 
atoms, at finite temperatures containing impurities, calculating
the density distributions, shape deformations and superfluid
density. 

• Droplets are well-suited to take advantage of the strengths of 
PIMC:

– Finite temperature (T=0.38 K)

– Bose statistics (no sign problem)

– Finite size effects are interesting.
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Demonstration of droplet superfluidity

Grebenev, Toennies, Vilesov: Science 279, 2083 (1998)
• An OCS molecule in a 4He droplet shows rotational 

bands corresponding to free rotation, with an increased 
moment of inertia (2.7 times higher)

• They replaced boson 4He with fermion 3He.  If Bose 
statistics are important, then rotational bands should 
disappear.

• However, commercial 3He has 4He impurities, which 
would be more strongly attracted to an impurity.

• They found that it takes around 60 4He atoms. 

they didn’t!

How much 4He does it take to “coat”
the impurity and get free rotation?

4He are “coat” the impurity
allowing it to freely rotate in the superfluid
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4He

3He

Small impurities 
of 4He in 3He

4He is more strongly attracted to impurity because of zero 
point effects, so it coats the impurity, insulating it from 
the 3He.



31

Density distribution within a droplet

• Helium forms 
shells around 
impurity (SF6)

• During addition of 
molecule, it travels 
from the surface to 
the interior boiling 
off 10-20 atoms.

•How localized is it at the 
center?
•We get good agreement with 
experiment using the energy vs. 
separation from center of mass.
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Local Superfluid Density Estimator

Although superfluid response is a non-local property, we can 
calculate the local contribution to the total response.
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(HCN)x:  Self-Assembled Linear 
Isomers

• They measured the rotational constants 
for (HCN)1, (HCN)2, and (HCN)3.  

• Adiabatic following holds for (HCN)3, 
allowing us to compare both models to 
experiment.

• Line vortices are unstable in pure helium 
droplets.  Linear impurity chains may 
stablize and pin them.

Nauta and Miller: HCN molecules in 4He droplets self-assemble into linear chains

Atkins and Hutson: Calculated the 
anisotropic 4He-HCN pair potential 
from experimental scattering data.  
This fit can be reproduced within error 
bars by a sum of three spherical 
Lennard-Jones potentials and a small 
anisotropic term.

K. Nauta, R. E. Miller, Science 238, 1895 (1999).
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Density Distribution of 4He+(HCN)x
Droplets

pure 1 HCN 3 HCN

40 Å

T=0.38 K, N=500

z

r
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Superfluidity around 
a linear molecule

Draeger + DMC

• K. Nauta and R.E. Miller (Science 283, 
1895 (1999)) found that HCN molecules 
will line up in a linear chain in a helium 
droplet, and measured the HCN-HCN 
spacing.

• In vacuum they form rings!
• Systems with up to 10 molecules 

observed.
• Use area formula to find superfluid

response.
• We find almost complete superfluid

system, even near the impurity.

(HCN)10    (4He)1000
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Local Superfluid Reduction

ρ
ρsThe local superfluid estimator 

shows a decrease in the 
superfluid response 
throughout the first solvation 
layer. 
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Local Superfluid Reduction

Hydrodynamic model prediction: 
rotating the molecule about its 
symmetry axis will produce no 
change in the free energy.

Our local superfluid calculations 
show a clearly defined decrease 
in the superfluid density in the 
first layer!
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Local Superfluid Density vs. Temperature

We calculated the superfluid density 
distribution of N=128 4He droplets with 
an (HCN)3 isomer at several 
temperatures

The superfluid density in the first 
layer is temperature dependent!

Bulk 4He is 100% superfluid below 1.0 
K.  Both experimental measurements on 
helium films and PIMC studies of 2D 
helium show transition temperatures Tc
which are significantly lower than bulk 
helium.

The first layer is a two-dimensional
system with important thermal 
excitations at 0.4K: “vortex-
antivortex excitations”.
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First Layer Superfluid Density vs. T

• Very broad transition, due to the small number of atoms in first layer 
(around 30)

• How will this affect the moment of inertia?

ρ
ρs
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PIMC, 2D film
PIMC, (HCN)3 (z−axis)
PIMC, (HCN)3 (r−axis)

M. C. Gordillo and D. M. Ceperley, 
Phys. Rev. B 58, 6447 (1998)

ρ
ρs

T (K)
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Moment of Inertia

The moment of inertia 
due to the normal helium 
does not depend on 
temperature below 1.0 K.

This is in agreement with 
experimental results, 
which found that the 
moment of inertia of an 
OCS molecule was the 
same at T=0.15 K and 
T=0.38 K.

We only looked at the 
superfluid density in the 
cylindrically-symmetric 
region of the first layer, 
not the entire first layer.
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• We have calculated the condensate fraction and density-density 
correlation functions throughout the free surface.  We find that
the surface is well-represented as a dilute Bose gas, with a 
small ripplon contribution.

• We have derived a local superfluid estimator, and directly 
calculated the normal response of helium droplets doped with 
HCN molecules.

• We find that the helium in the first solvation layer is a two-
dimensional system, with a thermal excitations at T=0.38 K. 
Explains observation of Q-branch.

• The moment of inertia due to the normal fluid is dominated by 
the contribution from helium at the ends of the linear molecule,
which is independent of temperature below T=1.0 K.  
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Bose condensation

• BEC is the macroscopic occupation of a single quantum state 
(e.g. momentum distribution in the bulk liquid).

• The one particle density matrix is defined in terms of open 
paths:

• We cannot calculate n(r,s) on the diagonal. We need one 
open path, which can then exchange with others.  

• Condensate fraction is probability of the ends being widely 
separated versus localized. ODLRO (off-diagonal long range 
order) (The FT of a constant is a delta function.)

• The condensate fraction gives the linear response of the 
system to another superfluid.
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Derivation of momentum formula
• Suppose we want the probability nk that a given atom 

has momentum hk.
• Find wavefunction in momentum space by FT wrt all the 

coordinates and integrating out all but one atom

• Expanding out the square and performing the integrals 
we get.

Where:

occupy the states with the Boltzmann distribution.
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How to calculate n(r)
1. Take diagonal paths and find 

probability of displacing one end. 
• advantage: 

– simultaneous with other 
averages, 

– all time slices and particle 
contribute.

• disadvantage: unreliable for r>Λ.
2.   Do simulation off the diagonal and 

measure end-end  distribution. Will 
get condensate when free end hooks 
onto a long exchange.

• advantage: works for any r
• Disadvantage:

– Offdiagonal simulation not good 
for other properties

– Normalization problem.
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Comparison with experiment
Single particle density matrix Condensate fraction

Neutron scattering cross 
section
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Lewart et al., PRB 37,4950 (1988).

Condensate in a 4He droplet 
is enhanced at the 
surface

Shell effects in 3He
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Surface of Liquid Helium
2 possible pictures of the surface

• Dilute Bose gas model: Griffin and Stringari, PRL 76, 259 (1996).

• Ripplon model: Galli and Reatto, J. Phys. CM 12,6009 (2000).

bulk:  n0 = 9%

surface:  n0 = 100% 

4He

Can smeared density profile be caused by ripplons
alone?

4He

surface:  n0 = 50%

Density profile does 
not distinguish
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ODLRO at the Surface of Liquid 4He
Simulation supports the dilute bose gas model.
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Condensate Fraction at the Surface of 4He

•PIMC 
supports 
dilute gas 
model.

•Jastrow
wavefunction

•Shadow 
wavefunction
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Non-condensed distribution
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2D superfluids
Kosterlitz-Thouless transition

• Reduced dimensionality 
implies no bose
condensate (except at 
T=0).

• Exchange responsible
• Specific heat bump only
• But still a good 

superfluid.
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Exchange energy
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• Let’s calculate the chemical potential of a 
3He atom in superfluid 4He.

• First suppose that we neglect the difference 
in mass but only consider effect of statistics. 

• The “tagged particle” is should not permute 
with the other atoms. 

• How does this effect the partition function?
• We do not need to do a new calculation

• Cycle length distribution is measurable, not 
just a theoretical artifact. 
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Quantum Dynamics
• What can we do about “real-time” quantum dynamics?

• Clearly very important!! This is what experiments usually 
probe.

• Feynman argued that full many-body quantum dynamics is 
exponentially difficult on a classical computer.  Amount of 
memory needed to store and time needed to update, the 
wavefunction--which can be completely arbitrary-- grows very 
fast.

• Judge by the progress on quantum scattering calculations:
– 1950-1970 2 particle problems
– 1970-1990 3 particle problems
– 1990-2010 4 particle problems
– ….
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Effective mass
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• Effective mass is gotten from the 
diffusion constant at low 
temperature

• At short time KE dominates and 
m=m*

• At large times, neighboring atoms 
block the diffusion increasing the 
mass by a factor of 2.

• Same formula applies to DMC!
• Lower curve is for Boltzmannons-

they have to return to start 
position so they move less.

• Diffusion in imaginary time has 
something to do with excitations!
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Imaginary time correlations

• With PIMC (and DMC) we can calculate imaginary time 
dynamics:

(DMC corresponds to β→∞)
• If we could determine this analytically we could just 

substitute imaginary values of τ for real values.
• Dynamic structure function is the response to a density 

perturbation is (e.g. density-density response)

• Sk(ω) is measured by neutron scattering. We need to 
invert the “Laplace transform” to get Sk(ω) .
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Little structure or 
information in F(q,t)

shown are different q 
values.
but much in S(q,w). 
Sharp peaks at the 
excitations 
(essentially infinitely 
narrow lines in the 
superfluid)

( ) ( ) ˆˆ1 HH
OF Z Oe Oe β τττ − −− −=
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Bayes’ theorem
• What is the most probable value of Sk(ω) given both:

– the PIMC data,  Fk(t)  and
– prior knowledge of Sk(ω): e.g. Sk(ω) ≥0

• Bayes’ theorem (also used by Laplace)

• Likelihood function follows from central limit theorem:

• But what to choose for the prior Pp(S)?  Typical choice is 
the “entropy.”
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Now two routes to making the inversion:
1. Sample Sk(ω). AvEnt Using MCMC, make moves in 

Sk(ω) space. Take averages and also get idea of the 
allowed fluctuations. Model can be defined self 
consistently

2. Find most probable Sk(ω). MaxEnt Maximize function. 
Ok if the p.d.f. is highly peaked. Estimate errors by the 
curvature at the maximum. Fast to do numerically but 
makes more assumptions.

How do we choose α?  Choose it from its own prior function so 
the strength of the likelihood function and the prior function 
are balanced. Its prior function is: P(α)=1/ α.

Determine MC errors by blocking and rotate to direction of 
independent data. 
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Example: Liquid 4He
Boninsegni and DMC JLTP 104, 339 (1996). 

• Calculate Fk(τ) using PIMC (UPI code).
• AvEnt works beautifully in normal phase.
• Gives peaks too broad in the superfluid phase. Failure of 

the entropic prior.
• It makes the assumption that energy modes are 

uncoupled. This is false! Energy levels repel each other 
so that if there is energy at one level, energy levels are 
pushed away from nearby values.

• Would require incredible precision to get sharp features.
• But good method for determining the excitation energy. 



60

Comparison in normal liquid He phase

• MaxEnt works well 
in normal phase 
(T=4K)

• Modes are 
quantum but 
independent of 
each other so that 
max-ent prior is 
reasonable.



61

Comparison in Superfluid
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Excitation energies

Improvements?

• Better PIMC data, more 
time values, smaller 
errors.

• Work in effective 
hamiltonian space, not 
energy space.

• Get more information, for 
example, 
– multiphonon

correlation functions 
– Incorporate exchange 

values
– Analytic information 

about response 
properties

Reasonable excitation energies 
from  MAXENT

Phonons                  rotons
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Dictionary of the Quantum-Classical Isomorphism
Properties of a quantum system are mapped into 

properties of the fictitious polymer system
Attention: some words have opposite meanings.

Polymer lengthTemperature

Macroscopic polymerSuperfluid state

Iso-time potentialPotential energy

Ring polymerParticle

FT of end-end distributionMomentum distribution

Negative spring energyKinetic energy

Bond vectorImaginary velocity

Free energyFree energy

Free energy to link polymersExchange frequency

Joining of polymersBoson statistics

Delocalization of endsBose condensation

ClassicalQuantum
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Squarer produces *.dm file
Huge file contains several subfiles

– Description of grids
– Potential
– Action in various approximations
– Action at various time slices
– Beta or mass derivatives of the action
– Sampling tables

• Radial grid has several options. Can vary for each type 
of pair interaction to put more grid points in some 
region.
– GRID n LINEAR r1 r2
– GRID n LOG   r1 r2
– …..
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Density matrices used in PUPI

• Pair density matrix: generated by squarer, (see new simpler code on 
WEB) Includes expansion for offdiagonal components. Action is 
evaluated in dmeval (calls dstnce and offd). Energy is evaluated in 
pairact. Calls radial tables for variety of grid types. 

• Single particle propagator in periodic boundary conditions:  fpdmg.f
uses a table set up in setfpdm.f Used  for fermion and boson density 
matrix. Also to determine permutations.

• Free fermion density matrix. Ofill sets up the matrix, calls invert or 
newup to calculate the determinant.

• Particle near a plane (image method). Dleak.f (related computations 
in the nodal action, dnode.f)

• Long range potential: (in k-space) (ewald.f) setup code generates 
the expansions. Uses fourier coefficents (rhok).

Functionality:
• Action at specified temperatures differing by powers of 2 in 

temperature
• beta derivative
• spatial derivative
• has to be flexible with respect to grid type, analytic features …
• update formulas for all cases—how we compute changes with 

respect to a single variable and derivatives.




