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FermionFermion Path IntegralsPath Integrals

1. Direct Fermion Path Integrals: “the sign 
problem”

2. Restricted Path Integrals
A. Restricted Path Identity
B. Para/ortho hydrogen example 
C. The reference point
D. Free particle nodes
E. Nodal Action
F. Momentum distribution
G. Superfluidity

3. Hot Dense Hydrogen
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“Direct” Fermion Path Integrals

• Path integrals map quantum mechanics into a system of cross-
linking closed “polymers.”

R0=PRM,  P permutation,
S(Ri, Ri+1) is “boltzmannon action”

• Bosons are easy: simply sample P.
• Fermions: sample the “action” and carry (-1)P as a weight.
• Observable is even P - odd P.  scales exponentially in N and T-1!
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Importance Sampling
Given the integral

How should we sample x to maximize the efficiency? 
Estimator

Transform the integral to:

The variance is:

Optimal sampling:
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Parameterize as:

Solution: 

Estimator: 

If f(x) is entirely positive or negative, estimator is 
constant. “zero variance principle.”

We can’t sample p*(x), but its form can guide us.
Importance sampling is a general technique: it works in 

many dimensions.
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Fermion variance
• Compute a fermion observable by sampling the boson 

probability and taking the sign as a weight

• The variance of O  for this choice can be separated into 
a bosonic and fermionic contribution.

• The fermion efficiency is

• Big problem once N becomes large OR temperature 
becomes low-precisely when fermi statistics matter.
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The Sign Problem

The expression for Fermi particles, such as He3, is also easily written down. 
However, in the case of liquid He3, the effect of the potential is very hard to 
evaluate quantitatively in an accurate manner.  The reason for this is that the 
contribution of a cycle to the sum over permutations is either positive or negative 
depending on whether the cycle has an odd or even number of atoms in its length L. 
At very low temperature, the contributions of cycles such as L=51 and L=52 are 
very nearly equal but opposite in sign, and therefore they very nearly cancel.  It is 
necessary to compute the difference between such terms, and this requires very 
careful calculation of each term separately.  It is very difficult to sum an alternating 
series of large terms which are decreasing slowly in magnitude when a precise 
analytic formula for each term is not available. Progress could be made in this 
problem if it were possible to arrange the mathematics describing a Fermi system in 
a way that corresponds to a sum of positive terms.  Some such schemes have been 
tried, but the resulting terms appear to be much too hard to evaluate even 
qualitatively.
The (explanation) of the superconducting state was first answered in a convincing 
way by Bardeen, Cooper, and Schrieffer. The path integral approach played no part 
in their analysis, and in fact has never proved useful for degenerate Fermi systems.

Feynman and Hibbs,1965.
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“Solved” Quantum Problems

• 1-D problems. (simply forbid exchanges)
• Bosons and Boltzmanons at any temperature
• Some lattice models: Heisenberg model, 1/2 filled Hubbard 

model on bipartite lattice (Hirsch) with high symmetry.
• Spin symmetric systems with purely attractive interactions: 

u<0 Hubbard model, some nuclear models.
• Harmonic oscillators or systems with many symmetries.
• <i|H|j> non-positive in some representation.
• Fermions in special boxes (Kalos)

UNSOLVED:
• Quantum dynamics
• Fermions
• Bosons in special ensembles or with magnetic fields.
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To get around the sign problem, why not just use the 
fixed-node method?

What nodes?  The ground state nodes are not necessarily 
the correct ones at T>>0.

The nodes of the density matrix have an imaginary time 
dependence.

High temperature                        Low temperature

( )0 0, ; 0   with   ,    fixed.F R R t R tρ =
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Fixed-Node method with PIMC
• Get rid of negative walks by canceling them with positive 

walks. We can do this if we know where the density matrix 
changes sign. Restrict walks to those that stay on the 
same side of the node.  

• Fixed-node identity. Gives exact solution if we know the 
places where the density matrix changes sign: the nodes.

• Classical correspondence exists!! 
• Problem: fermion density matrix appears on both sides of 

the equation.  We need nodes to find the density matrix. 
• But still useful approach. (In classical world we don’t know 

V(R).)
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Proof of the fixed node method
1. The density matrix satisfies the Bloch 

equation with initial conditions.

2. One can use more general boundary 
conditions, not only initial conditions, 
because solution at the interior is uniquely 
determined by the exterior-just like the 
equivalent electrostatic problem. 

3. Suppose someone told us the surfaces where 
the density matrix vanishes (the nodes). Use 
them as boundary conditions.

4. Putting an infinite repulsive potential at the 
barrier will enforce the boundary condition.

5. Returning to PI’s, any walk trying to cross 
the nodes will be killed.

6. This means that we just restrict path 
integrals to stay in one region. 
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Ortho-para H2 example
In many-body systems it is hard to visualize statistics.
• The simplest example of the effect of statistics is the H2

molecule in electronic ground state.
• Protons are fermions-must be antisymmetric.
1. Spins symmetric ( ). spatial wf antisymmetric (ortho)   “fermions”
2. Spins antisymmetric ( - ). spatial wf symmetic (para) “bosons”
3. Non symmetrical case (HD)       “boltzmannons”

All 3 cases appear in nature!
• Go to relative coordinates:   r= r1-r2

• Assume the bond length is fixed |r|=a. Paths are on surface of 
sphere of radius a.

PIMC task is to integrate over such paths with given symmetries.
For a single molecule there is no potential term, a “ring polymer”

trapped on the surface of a sphere.
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Paths on a sphere
1. “boltzmannons”Ring

polymers on sphere
O(r →r)

2. “bosons” 2 types of 
paths allowed.  

O(r → r)  + O(r → -r)

3. ”fermions” 2 types of 
paths allowed 

O(r → r)  - O(r → -r)    
Low efficiency as β→∞

1 0( )E Ee βζ − −=
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Restricted paths for ortho H2

• Fix origin of path: the reference point.
• Only allow points on path with a positive 

density matrix. paths staying in the 
northern hemisphere:   r(t).r(0)>0

• Clearly negative paths are thrown out.
• They have cancelled against positive 

paths which went south and then came 
back north to close.

• The symmetrical rule in “t”: r(t).r(t’)>0  is 
incorrect.

• Spherical symmetry is restored by 
averaging over the reference point: the 
north pole can be anywhere.

• Can do many H2 the same way. 
• Ortho H2 is much more orientable than 

either HD or para H2.
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Nodal Properties
If we know the sign of the exact density matrix(the nodes), we 

can solve the fermion problem with the fixed-node method.
• If φ(R) is real, nodes are φ(R)=0 where R is the 3N

dimensional vector. 
• Nodes are a 3N-1 dimensional surface. (Do not confuse with  

single particle orbital nodes!)
• Coincidence points ri = rj are  3N-3 dimensional hyper-planes
• In 1 spatial dimension these “points” exhaust the nodes.

fermion problem is easy to solve in 1D   with the “no crossing 
rule.”

• Coincidence points (and other symmetries) only constrain 
nodes in higher dimensions, they do not determine them.

• The nodal surfaces define nodal volumes. How many nodal 
volumes are there? Conjecture: there are typically only 2 
different volumes (+ and -) except in 1D. (but only 
demonstrated for free particles.)
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Reference Point
• Scalar averages can only be taken at the 

reference point. New feature compared with 
boson path integrals.

• Except partition function and all derivatives 
(energy) use information from the whole path.

• We lose time slice symmetry if nodes are time 
dependent.  But this is probably necessary to 
fix phase of density matrix.

• Reference point moves are expensive and 
ultimately cause RPIMC to get “stuck” for 
T<EF/10. 

• One can use a 2 reference points.  This 
restores time-reversal symmetry and means 
we only need nodes for t<β/2.

• More than 2 reference points brings back the 
“sign” problem. 
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RPIMC with approximate nodes
• In almost all cases, we do not know the “nodal”

surfaces.
• We must make an an ansatz.
• This means we get a fermion density matrix (function 

with the right symmetry) which satisfies the Bloch 
equation at all points except at the node.

• That is, it has all the exact “bosonic” correlation
• There will be a derivative mismatch across the nodal 

surface unless nodes are correct.
• In many cases, there is a free energy bound.  (proved 

at high temperature and at zero temperature and when 
energy is always lower.) 

• Maybe one can find the best nodes using the variational
principle.  (variational density matrix approach) 
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Free particle nodes
• For non-interacting (NI) particles the nodes are the finite 

temperature version of a Slater determinant:

At high T, nodes are hyperplanes.
At low T, nodes minimize the kinetic energy.

⇒Nodes have “time dependence”.
• Problems: no spin-coupling in nodes, no formation of 

electronic bound states.
• Militzer-Pollock chose g(r,r’;t) with Hartree eqs.         

(VDM or variational density matrix)
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Nodal action
• “Primitive Rule:” simply reject paths if they cross a node.
• Will lead to an error proportional to 
• Improved nodal action:solve for  a particle next to a 

planar node.  Use method familiar from electrostatics, the 
method of images:

• Determine nodal distance using “Newton estimate.”
• As paths approach within a thermal wavelength of the 

node, we get a repulsion, to account for the probability 
that a path could have crossed and recrossed within τ.
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Practical fermion issues
• Bosonic methods are applicable! Fermion code is built 

on top of bosonic code.
• Add a “gate” in multilevel Metropolis where:

– Sign of density matrix is checked
– Nodal action is computed and used

• Reference point moves are expensive: all slices must be 
checked for nodal violations.

• Permutations are still needed! However, 2 particle 
exchanges will always be rejected.  Only odd particle 
cyclic exchanges (3,5,…) allowed as updates.

• Determinantal updates
– Full determinant evaluation takes N3 operations
– However row/column updates take only N2.

• Use inverse of Slater matrix to compute derivative 
needed for the gradient in the nodal action.
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Momentum distribution
• For bosons the momentum distribution shows evidence 

of BEC.  
– Long exchange cycles⇒n(r) long range ⇒ n0 >0

• What is effect for fermions? Run logic in reverse.
– For NI fermions, n(k) has discontinuity at kF.
– Hence
– We must have cancellation of long-range positive 

and negative exchanges!
– Negative permutations allowed/required off-

diagonal.
• Algorithm recently tested by Militzer: cond-mat/0310401

• Exchanges are needed to get a Fermi-liquid.
• Long exchanges do not lead to a phase transition or 

superfluidity. 

( )2( ) cos( ) /F Fn r k r k r∝
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Electron Gas n(k)
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Fermion superfluidity
• Liquid 3He becomes superfluid at very low temperatures 

(Tc ~ 1mK).
• With the exact nodal restriction this must also happen 

within RPIMC, because we can calculate the free energy.
• What happens to the paths at this phase transition?
• SPECULATION: there is a “Cooper” pairing of up and 

down spin exchanges, similar to a polymer blend

• Not tried in 3He  because of formidable practical 
difficulties (length, temperature scale) and lack of 
knowledge of nodal topology required.
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Exciton superfluidity

• What system is the most appropriate to 
observe superfluidity of fermions? 
(strongest pairing)

• Consider the simplest 1-band model of 
particles and holes in a semiconductor.

• Assume masses are isotropic and the 
same; only the charge is different.

• At low temperature a particle and hole 
can bind together to form an exciton
(like a hydrogen atom) which is a boson.

• If the exciton density is high enough, 
they can bose condense.: Tρ3/2<2.7

• Shumway-Ceperley (1999) observed 
this transition for excitons.

• What do the paths look like?
• Observed in Oct 2003 in atom traps!

BCS region
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Pairing Nodes

• Free fermion nodes does not allow 
pairing because nodes of two species 
are independent.
– Consider two pairs of fermions.  
– Possible exchanges are {I, PaPb}

and {Pa , Pb}.
– The permutation PaPb represents 

an exciton exchange but it is 
forbidden if nodes are independent 
since the path will cross 
“a” nodes or “b” nodes first.

• Instead we used paired nodes: A{A{
g(a1-b1)g(a2-b2)…..} where  g(r) is a 
pairing function (we used a Gaussian).

• Nodes are time-independent ⇒ winding 
number formula for superfluid
response.

• We can define 2 different responses. 
Let Wx be winding number of species x.
– movement of walls: <(Wa+Wb)2> 
– magnetic field: <(Wa-Wb)2>
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BEC of excitons [rs=6  T<Tc]

Winding exchange (3,6) Pair exchange (2,2)

Blue=electron   lavendar=hole

Superconductivity is (cooper pairing) of paths.
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Path Integral Applications

• Superfluid 4He
• Solid 4He
• BEC in traps 
• Superfluidity on surfaces 

(H2 on silver)
• Helium droplets

• …….

• Homogenous 
electrons/plasma

• High Temperature 
hydrogen/helium (interior of 
planets)

• Liquid/solid 3He
• Electron-hole liquid
• BEC of fermions

• …….

Bosons Fermions
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Hydrogen at high pressure::
a quantum soup made with path integralsa quantum soup made with path integrals

B. Militzer (LLNL)
D. Ceperley (UIUC)
W. Magro (Intel)
C. Pierleoni (Roma)
B. Bernu (Paris)
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Hydrogen
• Hydrogen is the most abundant (important) element.
• What are properties of N e- and N p+?

• This should be the simplest problem for many body theory. 
Right?

• Many different physical regimes.
– Molecular phase at low density
– Metallic phase at high density or temperature

• At intermediate temperatures and densities everything comes in:
– Protonic zero point effects
– Bonding and bond breaking, ionization,
– Various species (the soup) 
– Electron correlation

How can we treat this?
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Hot Dense HydrogenHot Dense Hydrogen

• How does 
hydrogen evolve 
from molecular to 
plasma state? 
Important for 
planetary 
interiors.

• Static 
experiments are 
limited to low P 
and T.

• Traditional EOS 
methods maybe 
unreliable in the 
intermediate 
regime.

PIMC

DMC
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Variational Density Matrix

• Approximate density 
matrix by a determinant 
of single  particle 
Gaussians.

• Follow evolution of center 
and width in imaginary 
time using a variational
ansatz.

• Introduces electron-proton 
coupling in density matrix.

• Exact at high 
temperature.

• Goes to SCF at zero 
temperature.

• Only used for restriction 
not for the action.

H atom example

Militzer and Pollock, PRE 61, 3470 (2000).
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Properties of hot dense hydrogen

• How does hydrogen evolve from molecular to plasma state?
• Traditional EOS methods are unreliable in the intermediate 

transition regime.
• Large effort experimentally (shock experiments) and 

theoretically (EOS tables). 

With PIMC
• No assumption of atoms or molecules, just Coulomb potential, 

and correct masses (no Born Oppenheimer approximation). 
• Periodic boundary conditions, Ewald images for charges.
• Path integral calculations possible for systems of 100 atoms-

but at edge of current feasibility for temperatures lower than 
1 eV (10,000K).

3
0/     4 a /3 1s er a a π ρ= =
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Visualization of hydrogenic PIMC

Programmed in the CAVE (a (4m)3 projection screen)
by Burkhard Militzer and Rachel Brady.
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Low Density Molecular Fluid

Hydrogen

T=5000K

rs=4.0 
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Molecular Metallic liquid

Deuterium

T=5000K

rs=1.86



DMC                     35

Ionized Fermi Liquid

Deuterium

T=6250K

rs=1.60
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Characterization of state
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Proton-proton correlation
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Electron exchange probability

• Nodes from optimized 
gaussians

• Blue represent 
classical electrons

• Red are metallic 
electrons (large 
exchanges imply 
fermi surface)
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Regimes of Hydrogen
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Comparison of free 
particle and 
gaussian nodes.

Nodes affect the 
transition to the 
molecular phase.

Lower energy means 
better.

rs=2
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Equation of State:
Pressure vs. Temperature

• PIMC with VDM-nodes is in agreement with chemical models in 
the low density molecular phase. 

• The semi-empirical Saumon and Chabrier model assumes H, H2, 
e- and p+ with free energy functional.
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Energy at low density

Militzer, Ceperley, Phys Rev. E63, 66404 (2001).

•Molecules form 
spontaneously

•Includes 
vibrational, 
rotational, 
translational 
degrees of freedom.

•Absolute accuracy 
in energy is 0.1eV.

rs=10
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Analysis of number of bound protons

• By looking at gep(r) we 
can estimate its state.

• Chemical model at 
intermediate 
temperatures ( 5-10eV) 
underestimate degree of 
ionization.
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Shock wave experiments.
• Hit a sample of cold, solid D2 with a bullet.  
• Assume equilibrium after shock.
• Measurement of velocities, gives density pressure 

and energy.
• Varying initial energy, explores the “Hugoniot.”
• Laser shock allow us a way to check the PIMC in the 

metallic regime.

liquid sampleimpactor shock front

plasma
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Internal accuracy of PIMC

Results independent of nodes above 2MBars
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Shock Hugoniot in deuterium
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Reflected versus primary shock



DMC                     50

Theory vs. experiment
NOVA (Livermore 
CA) laser shock 
experiments 
Science 281, 1178, 
1998.

•Liquid is 50% more 
compressible than 
thought.

•Important 
implications for fusion 
(makes fusion much 
easier.)

•PIMC is not very 
accurate. About the 
same EOS as DFT.

Exact limit
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New experiment agrees!

• Recent Z-pinch 
experiments of 
Knudsen et al., PRL 
87, 225501 (2001)

• Much larger 
samples using 
electromagnetic 
compression.

• Older laser shocks 
are incompatible 
with microscopic 
theory.

• Chemical models 
are not predictive 
in this regime.

3eV

1.5eV

1.0eV

0.7eV

T
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Dictionary of the Quantum-Classical Isomorphism

Nonexchanging pathsInsulator

Winding restricted pathsFermi Liquid

Paired Fermion PathsCooper Pairing

Restricted PathsPauli Principle

Polymer lengthTemperature

Macroscopic polymerSuperfluid state

Iso-time potentialPotential energy

Ring polymerParticle

FT of end-end 
distribution

Momentum distribution

Negative spring energyKinetic energy

Bond vectorImaginary velocity

Free energyFree energy

Free energy to link 
polymers

Exchange frequency

Joining of polymersBoson statistics

Delocalization of endsBose condensation

ClassicalQuantum

Attention: some 
words have 
opposite meanings.

“fermion
dictionary”?
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Theoretical Practical

• Restricted paths allow realistic 
calculations of many fermion
systems. No sign problem.

• Generalization of bosonic PIMC. 
• Unifies theory of bose and fermi

systems: ring exchanges 
important for both.

• Makes a nodal assumption 
which is only controlled for T>TF

•No Born-Oppenheimer 
approximation

•Fully quantum protons

•No density functional needed

•No pseudopotential/k-space 
cutoff

•No empirical potentials/chemical 
model 

•Paths get stuck at low 
temperature T<0.1 TF unless you 
make other assumptions  (e.g. 
ground state nodes.)
•CEIMC allows lower temperature 
PI simulations.




