Advanced School on Quantum Monte Carlo Methods in Physics and Chemistry

21 January - 1 February, 2008

VMC and trial wave functions.

C. Filippi

Leiden University

Introduction to quantum Monte Carlo methods: VMC and trial wave functions

Claudia Filippi
Instituut-Lorentz, Universiteit Leiden, The Netherlands

Advanced School on QMC Methods in Physics and Chemistry Jan 21-Feb 2, 2008, ICTP, Trieste

A quick reminder: What is electronic structure theory?

A quantum mechanical and first-principle approach

\longrightarrow Collection of ions + electrons

Only input: Z_{α}, N_{α}

Work in the Born-Oppenheimer approximation
Solve the Schrödinger equation for the electrons in the ionic field

$$
\mathcal{H}=-\frac{1}{2} \sum_{i} \nabla_{i}^{2}+\sum_{i} v_{\mathrm{ext}}\left(\mathbf{r}_{i}\right)+\frac{1}{2} \sum_{i \neq j} \frac{1}{\left|\mathbf{r}_{i}-\mathbf{r}_{j}\right|}
$$

Solving the many-electron Schrödinger equation

$$
\mathcal{H}=-\frac{1}{2} \sum_{i} \nabla_{i}^{2}+\sum_{i} v_{\mathrm{ext}}\left(\mathbf{r}_{i}\right)+\frac{1}{2} \sum_{i \neq j} \frac{1}{\left|\mathbf{r}_{i}-\mathbf{r}_{j}\right|}
$$

What do we want to compute?
Fermionic ground state and low-lying excited states
Evaluate expectation values $\frac{\left\langle\Psi_{n}\right| \mathcal{O}\left|\Psi_{n}\right\rangle}{\left\langle\Psi_{n} \mid \Psi_{n}\right\rangle}$

Where is the difficulty?
Electron-electron interaction \rightarrow Non-separable

Is there an optimal theoretical approach?

- Density functional theory methods

Large systems but approximate exchange/correlation

- Quantum chemistry post-Hartree-Fock methods

Cl

Very accurate on small systems

- Quantum Monte Carlo techniques

Fully-correlated calculations
Stochastic solution of Schrödinger equation
Most accurate benchmarks for medium-large systems

If you can, use density functional theory!

All is relative . . .

We think of density functional theory as cheap and painless!
... but density functional theory does not always work
A "classical" example: Adsorption/desorption of H_{2} on $\mathrm{Si}(001)$

For a small model cluster		$\mathrm{E}_{a}^{\text {ads }}$	$\mathrm{E}_{a}^{\text {des }}$	$\mathrm{E}_{\mathrm{rxn}}$
DFT	0.69	2.86	2.17	
QMC	$1.01(6)$	$3.65(6)$	$2.64(6)$	

DFT error persists for larger models!

Favorable scaling of QMC with system size

QMC possible for realistic clusters with 2, 3, $4 \ldots$ surface dimers

Accurate QMC calculations doable from small to large scales
Error of DFT is large $\rightarrow 0.8 \mathrm{eV}$ on desorption barrier !

Healy, Filippi et al. PRL (2001); Filippi et al. PRL (2002)

What about DFT and excited states?

- Restricted open-shell Kohn-Sham method (DFT-ROKS)
- Time-dependent density functional theory (TDDFT)

Minimal model of rhodopsin

Comparison with QMC \rightarrow Neither approach is reliable

When DFT has problems \rightarrow Wave function based methods

Wave function $\Psi\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{N}\right)$ where $\mathbf{x}=(\mathbf{r}, \sigma)$ and $\sigma= \pm 1$
How do we compute expectation values?
Many-body wave functions in traditional quantum chemistry

Interacting $\Psi\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{N}\right) \leftrightarrow$ Non-interacting one-particle basis Ψ expanded in determinants of single-particle orbitals $\psi(\mathbf{x})$

Single-particle orbitals expanded on Gaussian basis
\Rightarrow All integrals can be computed analytically

Many-body wave functions in traditional quantum chemistry
Starting point \rightarrow Non-interacting Hartree-Fock wave function

$$
D_{\mathrm{HF}}\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{N}\right)=\left|\begin{array}{ccc}
\psi_{1}\left(\mathbf{x}_{1}\right) & \ldots & \psi_{1}\left(\mathbf{x}_{N}\right) \\
\vdots & & \vdots \\
\psi_{N}\left(\mathbf{x}_{1}\right) & \ldots & \psi_{N}\left(\mathbf{x}_{N}\right)
\end{array}\right|
$$

Optimal spin-orbitals $\psi_{i}(\mathbf{x})=\phi_{i}(\mathbf{r}) \chi_{s_{i}}(\sigma)$ satisfy HF equations

$$
\begin{aligned}
& {\left[-\frac{1}{2} \nabla^{2}+v_{\mathrm{ext}}(\mathbf{r})+\sum_{j=1}^{N} \int \mathrm{~d} \mathbf{r}^{\prime} \frac{\left|\phi_{j}\left(\mathbf{r}^{\prime}\right)\right|^{2}}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|}\right] \phi_{i}(\mathbf{r})+\left[\hat{v}_{\mathrm{HF}} \phi_{i}\right](\mathbf{r})=\epsilon_{i} \phi_{i}(\mathbf{r})} \\
& \Rightarrow \text { occupied orbitals }\left(\psi_{1} \ldots \psi_{N}\right)+\text { virtual orbitals }\left(\psi_{\mathrm{N}+1} \ldots\right)
\end{aligned}
$$

A jungle of acronyms: CI, CASSCF, MRCI, CASPT2 ...
Expansion in linear combination of determinants

$$
\begin{array}{ccc}
\Psi\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{N}\right) & \longrightarrow & D_{\mathrm{HF}}=\left|\begin{array}{ccc}
\psi_{1}\left(\mathbf{x}_{1}\right) & \ldots & \psi_{1}\left(\mathbf{x}_{N}\right) \\
\vdots & & \vdots \\
\psi_{N}\left(\mathbf{x}_{1}\right) & \ldots & \psi_{N}\left(\mathbf{x}_{N}\right)
\end{array}\right| \\
\downarrow \\
c_{0} D_{\mathrm{HF}}+c_{1} D_{1}+c_{2} D_{2}+\ldots & \text { millions } & \text { of determinants } \\
\searrow & \left.\begin{array}{ccc}
\psi_{1}\left(\mathbf{x}_{1}\right) & \ldots & \psi_{1}\left(\mathbf{x}_{N}\right) \\
\vdots & & \vdots \\
\psi_{N+1}\left(\mathbf{x}_{1}\right) & \ldots & \psi_{N+1}\left(\mathbf{x}_{N}\right)
\end{array} \right\rvert\,
\end{array}
$$

by constructing single, double, ... up to N -body excitations

Many-body wave functions in traditional quantum chemistry

Pros and cons of Cl expansion in Slater determinants

$$
\Psi_{\mathrm{CI}}=c_{0} D_{\mathrm{HF}}+\sum_{a b} c_{a \rightarrow b} D^{a \rightarrow b}+\sum_{a b c d} c_{a b \rightarrow c d} D^{a b \rightarrow c d}+\ldots
$$

Optimal Cl coefficients by solving generalized eigenvalue equation

$$
\Psi_{\mathrm{CI}}=\sum_{i=1}^{K} c_{i} C_{i} \Rightarrow \sum_{j=1}^{K}\left\langle C_{i}\right| \mathcal{H}\left|C_{j}\right\rangle C_{j}^{(k)}=E_{\mathrm{CI}}^{(k)} \sum_{j=1}^{K}\left\langle C_{i} \mid C_{j}\right\rangle c_{j}^{(k)}
$$

Orbitals on a Gaussian basis \rightarrow Integrals computed analytically
... but slowly converging expansion

Can we use a more compact $\Psi ?$

We want to construct an accurate and more compact ψ
Explicit dependence on the inter-electronic distances $r_{i j}$
How do we compute expectation values if no single-electron basis?

A different way of writing the expectation values

Consider the expectation value of the Hamiltonian on Ψ

$$
\begin{aligned}
E_{V} & =\frac{\langle\Psi| \mathcal{H}|\Psi\rangle}{\langle\Psi \mid \Psi\rangle}=\frac{\int \mathrm{d} \mathbf{R} \Psi^{*}(\mathbf{R}) \mathcal{H} \Psi(\mathbf{R})}{\int \mathrm{d} \mathbf{R} \Psi^{*}(\mathbf{R}) \Psi(\mathbf{R})} \geq E_{0} \\
& =\int \mathrm{d} \mathbf{R} \frac{\mathcal{H} \Psi(\mathbf{R})}{\Psi(\mathbf{R})} \frac{|\Psi(\mathbf{R})|^{2}}{\int \mathrm{~d} \mathbf{R}|\Psi(\mathbf{R})|^{2}} \\
& =\int \mathrm{d} \mathbf{R} E_{\mathrm{L}}(\mathbf{R}) \rho(\mathbf{R})=\left\langle E_{\mathrm{L}}(\mathbf{R})\right\rangle_{\rho}
\end{aligned}
$$

ρ is a distribution function and $E_{\mathrm{L}}(\mathbf{R})=\frac{\mathcal{H} \Psi(\mathbf{R})}{\Psi(\mathbf{R})}$ the local energy

Variational Monte Carlo: a random walk of the electrons

Use Monte Carlo integration to compute expectation values
\triangleright Sample \mathbf{R} from $\rho(\mathbf{R})$ using Metropolis algorithm
\triangleright Average local energy $E_{\mathrm{L}}(\mathbf{R})=\frac{\mathcal{H} \Psi(\mathbf{R})}{\Psi(\mathbf{R})}$ to obtain E_{V} as

$$
E_{V}=\left\langle E_{\mathrm{L}}(\mathbf{R})\right\rangle_{\rho} \approx \frac{1}{M} \sum_{i=1}^{M} E_{\mathrm{L}}\left(\mathbf{R}_{i}\right)
$$

-. Random walk in 3 N dimensions, $\mathbf{R}=\left(\mathbf{r}_{1}, \ldots, \mathbf{r}_{N}\right)$
Just a trick to evaluate integrals in many dimensions

> Is it really "just" a trick?
$\mathrm{Si}_{21} \mathrm{H}_{22}$

Number of electrons

$$
4 \times 21+22=106
$$

Number of dimensions $3 \times 106=318$
Integral on a grid with 10 points/dimension $\rightarrow 10^{318}$ points!
$M C$ is a powerful trick \Rightarrow Freedom in form of the wave function Ψ

Are there any conditions on many-body ψ to be used in VMC?

Within VMC, we can use any "computable" wave function if
\triangleright Continuous, normalizable, proper symmetry
\triangleright Finite variance

$$
\sigma^{2}=\frac{\langle\Psi|\left(\mathcal{H}-E_{V}\right)^{2}|\Psi\rangle}{\langle\Psi \mid \Psi\rangle}=\left\langle\left(E_{\mathrm{L}}(\mathbf{R})-E_{V}\right)^{2}\right\rangle_{\rho}
$$

since the Monte Carlo error goes as $\operatorname{err}\left(E_{V}\right) \sim \frac{\sigma}{\sqrt{M}}$
Zero variance principle: if $\Psi \rightarrow \Psi_{0}, E_{\mathrm{L}}(\mathbf{R})$ does not fluctuate

Variational Monte Carlo and the generalized Metropolis algorithm

How do we sample distribution function $\rho(\mathbf{R})=\frac{|\Psi(\mathbf{R})|^{2}}{\int \mathrm{~d} \mathbf{R}|\Psi(\mathbf{R})|^{2}}$?
Aim \rightarrow Obtain a set of $\left\{\mathbf{R}_{1}, \mathbf{R}_{2}, \ldots, \mathbf{R}_{M}\right\}$ distributed as $\rho(\mathbf{R})$
Generate a Markov chain
\triangleright Start from arbitrary initial state \mathbf{R}_{i}
\triangleright Use stochastic transition matrix $P\left(\mathbf{R}_{\mathrm{f}} \mid \mathbf{R}_{\mathrm{i}}\right)$

$$
P\left(\mathbf{R}_{\mathrm{f}} \mid \mathbf{R}_{\mathrm{i}}\right) \geq 0 \quad \sum_{\mathbf{R}_{\mathrm{f}}} P\left(\mathbf{R}_{\mathrm{f}} \mid \mathbf{R}_{\mathrm{i}}\right)=1
$$

as probability of making transition $\mathbf{R}_{\mathrm{i}} \rightarrow \mathbf{R}_{\mathrm{f}}$
\triangleright Evolve the system by repeated application of P

Stationarity condition

To sample ρ, use P which satisfies stationarity condition

$$
\sum_{i} P\left(\mathbf{R}_{\mathrm{f}} \mid \mathbf{R}_{\mathrm{i}}\right) \rho\left(\mathbf{R}_{\mathrm{i}}\right)=\rho\left(\mathbf{R}_{\mathrm{f}}\right) \quad \forall \mathbf{R}_{\mathrm{f}}
$$

Stationarity condition + stochastic property of $P+$ ergodicity
\Rightarrow Any initial distribution will evolve to ρ
More stringent (sufficient but not necessary) condition

In practice, we impose detailed balance condition

$$
P\left(\mathbf{R}_{\mathrm{f}} \mid \mathbf{R}_{\mathrm{i}}\right) \rho\left(\mathbf{R}_{\mathrm{i}}\right)=P\left(\mathbf{R}_{\mathrm{i}} \mid \mathbf{R}_{\mathrm{f}}\right) \rho\left(\mathbf{R}_{\mathrm{f}}\right)
$$

How do we construct the transition matrix P in practice?

Write transition matrix P as proposal $T \times$ acceptance A

$$
P\left(\mathbf{R}_{\mathrm{f}} \mid \mathbf{R}_{\mathrm{i}}\right)=A\left(\mathbf{R}_{\mathrm{f}} \mid \mathbf{R}_{\mathrm{i}}\right) T\left(\mathbf{R}_{\mathrm{f}} \mid \mathbf{R}_{\mathrm{i}}\right)
$$

P and T are stochastic matrices but A is not

Rewriting detailed balance condition

$$
\begin{aligned}
P\left(\mathbf{R}_{\mathrm{f}} \mid \mathbf{R}_{\mathrm{i}}\right) \rho\left(\mathbf{R}_{\mathrm{i}}\right) & =P\left(\mathbf{R}_{\mathrm{i}} \mid \mathbf{R}_{\mathrm{f}}\right) \rho\left(\mathbf{R}_{\mathrm{f}}\right) \\
A\left(\mathbf{R}_{\mathrm{f}} \mid \mathbf{R}_{\mathrm{i}}\right) T\left(\mathbf{R}_{\mathrm{f}} \mid \mathbf{R}_{\mathrm{i}}\right) \rho\left(\mathbf{R}_{\mathrm{i}}\right) & =A\left(\mathbf{R}_{\mathrm{i}} \mid \mathbf{R}_{\mathrm{f}}\right) T\left(\mathbf{R}_{\mathrm{i}} \mid \mathbf{R}_{\mathrm{f}}\right) \rho\left(\mathbf{R}_{\mathrm{f}}\right) \\
\text { or } \frac{A\left(\mathbf{R}_{\mathrm{f}} \mid \mathbf{R}_{\mathrm{i}}\right)}{A\left(\mathbf{R}_{\mathrm{i}} \mid \mathbf{R}_{\mathrm{f}}\right)} & =\frac{T\left(\mathbf{R}_{\mathrm{i}} \mid \mathbf{R}_{\mathrm{f}}\right) \rho\left(\mathbf{R}_{\mathrm{f}}\right)}{T\left(\mathbf{R}_{\mathrm{f}} \mid \mathbf{R}_{\mathrm{i}}\right) \rho\left(\mathbf{R}_{\mathrm{i}}\right)}
\end{aligned}
$$

Choice of acceptance matrix A

Detailed balance condition is

$$
\frac{A\left(\mathbf{R}_{\mathrm{f}} \mid \mathbf{R}_{\mathrm{i}}\right)}{A\left(\mathbf{R}_{\mathrm{i}} \mid \mathbf{R}_{\mathrm{f}}\right)}=\frac{T\left(\mathbf{R}_{\mathrm{i}} \mid \mathbf{R}_{\mathrm{f}}\right) \rho\left(\mathbf{R}_{\mathrm{f}}\right)}{T\left(\mathbf{R}_{\mathrm{f}} \mid \mathbf{R}_{\mathrm{i}}\right) \rho\left(\mathbf{R}_{\mathrm{i}}\right)}
$$

For a given choice of T, infinite choices of A satisfy this equation
Any function $\quad A\left(\mathbf{R}_{\mathrm{f}} \mid \mathbf{R}_{\mathrm{i}}\right)=F\left(\frac{T\left(\mathbf{R}_{\mathrm{i}} \mid \mathbf{R}_{\mathrm{f}}\right) \rho\left(\mathbf{R}_{\mathrm{f}}\right)}{T\left(\mathbf{R}_{\mathrm{f}} \mid \mathbf{R}_{\mathrm{i}}\right) \rho\left(\mathbf{R}_{\mathrm{i}}\right)}\right)$ with

$$
\frac{F(x)}{F(1 / x)}=x
$$

will do the job!

Choice of acceptance matrix A

Original choice by Metropolis et al. maximizes the acceptance

$$
A\left(\mathbf{R}_{\mathrm{f}} \mid \mathbf{R}_{\mathrm{i}}\right)=\min \left\{1, \frac{T\left(\mathbf{R}_{\mathrm{i}} \mid \mathbf{R}_{\mathrm{f}}\right) \rho\left(\mathbf{R}_{\mathrm{f}}\right)}{T\left(\mathbf{R}_{\mathrm{f}} \mid \mathbf{R}_{\mathrm{i}}\right) \rho\left(\mathbf{R}_{\mathrm{i}}\right)}\right\}
$$

Note: $\rho(\mathbf{R})$ does not have to be normalized

Original Metropolis method
Symmetric $T\left(\mathbf{R}_{\mathrm{f}} \mid \mathbf{R}_{\mathrm{i}}\right)=1 / \Delta^{3 N} \Rightarrow A\left(\mathbf{R}_{\mathrm{f}} \mid \mathbf{R}_{\mathrm{i}}\right)=\min \left\{1, \frac{\rho\left(\mathbf{R}_{\mathrm{f}}\right)}{\rho\left(\mathbf{R}_{\mathrm{i}}\right)}\right\}$

$$
\begin{equation*}
\text { Choice of proposal matrix } T \tag{1}
\end{equation*}
$$

Is the original choice of T by Metropolis the best possible choice ?
The configurations M of the walk are sequentially correlated
\Rightarrow Smaller number $M_{\text {eff }}<M$ of independent observations

$$
M_{\mathrm{eff}}=\frac{M}{T_{\mathrm{corr}}}
$$

with $T_{\text {corr }}$ is the autocorrelation time of desired observable

Choice of proposal matrix T

Aim is to achieve fast evolution of the system and reduce $T_{\text {corr }}$
Use freedom in choice of T to have high acceptance

$$
\frac{T\left(\mathbf{R}_{\mathrm{i}} \mid \mathbf{R}_{\mathrm{f}}\right) \rho\left(\mathbf{R}_{\mathrm{f}}\right)}{T\left(\mathbf{R}_{\mathrm{f}} \mid \mathbf{R}_{\mathrm{i}}\right) \rho\left(\mathbf{R}_{\mathrm{i}}\right)} \approx 1 \Rightarrow A\left(\mathbf{R}_{\mathrm{f}} \mid \mathbf{R}_{\mathrm{i}}\right) \approx 1
$$

and small $T_{\text {corr }}$ of desired observable
Limitation: we need to be able to sample T directly!

Choice of proposal matrix T

If Δ is the linear dimension of domain around \mathbf{R}_{i}

$$
\frac{A\left(\mathbf{R}_{\mathrm{f}} \mid \mathbf{R}_{\mathrm{i}}\right)}{A\left(\mathbf{R}_{\mathrm{i}} \mid \mathbf{R}_{\mathrm{f}}\right)}=\frac{T\left(\mathbf{R}_{\mathrm{i}} \mid \mathbf{R}_{\mathrm{f}}\right)}{T\left(\mathbf{R}_{\mathrm{f}} \mid \mathbf{R}_{\mathrm{i}}\right)} \frac{\rho\left(\mathbf{R}_{\mathrm{f}}\right)}{\rho\left(\mathbf{R}_{\mathrm{i}}\right)} \approx 1-\mathcal{O}\left(\Delta^{m}\right)
$$

$\triangleright T$ symmetric as in original Metropolis algorithm gives $m=1$
\triangleright A choice motivated by diffusion Monte Carlo with $m=2$ is
$T\left(\mathbf{R}_{\mathrm{f}} \mid \mathbf{R}_{\mathrm{i}}\right)=\mathcal{N} \exp \left[-\frac{\left(\mathbf{R}_{\mathrm{f}}-\mathbf{R}_{\mathrm{i}}-\mathbf{V}\left(\mathbf{R}_{\mathrm{i}}\right) \tau\right)^{2}}{2 \tau}\right]$ with $\mathbf{V}\left(\mathbf{R}_{\mathrm{i}}\right)=\frac{\nabla \Psi\left(\mathbf{R}_{\mathrm{i}}\right)}{\Psi\left(\mathbf{R}_{\mathrm{i}}\right)}$
\triangleright Other (better) choices of T are possible

Acceptance and $T_{\text {corr }}$ for the total energy E_{V}
Example: All-electron Be atom with simple wave function
Simple Metropolis

Δ	$T_{\text {corr }}$	\bar{A}
1.00	41	0.17
0.75	21	0.28
0.50	17	0.46
0.20	45	0.75

Drift-diffusion transition

τ	$T_{\text {corr }}$	\bar{A}
0.100	13	0.42
0.050	7	0.66
0.020	8	0.87
0.010	14	0.94

Generalized Metropolis algorithm

1. Choose distribution $\rho(\mathbf{R})$ and proposal matrix $T\left(\mathbf{R}_{\mathrm{f}} \mid \mathbf{R}_{\mathbf{i}}\right)$
2. Initialize the configuration \mathbf{R}_{i}
3. Advance the configuration from \mathbf{R}_{i} to \mathbf{R}^{\prime}
a) Sample \mathbf{R}^{\prime} from $T\left(\mathbf{R}^{\prime} \mid \mathbf{R}_{\mathbf{i}}\right)$.
b) Calculate the ratio $p=\frac{T\left(\mathbf{R}_{\mathbf{i}} \mid \mathbf{R}^{\prime}\right)}{T\left(\mathbf{R}^{\prime} \mid \mathbf{R}_{\mathbf{i}}\right)} \frac{\rho\left(\mathbf{R}^{\prime}\right)}{\rho\left(\mathbf{R}_{\mathbf{i}}\right)}$
c) Accept or reject with probability p

Pick a uniformly distributed random number $\chi \in[0,1]$
if $\chi<p$, move accepted \rightarrow set $\mathbf{R}_{\mathrm{f}}=\mathbf{R}^{\prime}$
if $\chi>p$, move rejected \rightarrow set $\mathbf{R}_{\mathrm{f}}=\mathbf{R}$
4. Throw away first κ configurations of equilibration time
5. Collect the averages and block them to obtain the error bars

Improvements on simple and drift-diffusion algorithms

\triangleright For all-electron and pseudopotential systems:
Move one electron at the time \rightarrow Decorrelate faster
Does total matrix $P=\prod_{i=1}^{N} P_{i}$ satisfy stationarity condition?
Yes if matrices $P_{1}, P_{2}, \ldots, P_{n}$ satisfy stationarity condition
\triangleright For all-electron systems (Umrigar PRL 1993)

- Core electrons set the length scales
$\rightarrow T$ must distinguish between core and valance electrons
- Do not use cartesian coordinates
\rightarrow Derivative discontinuity of Ψ at nuclei

Better algorithms can achieve $T_{\text {corr }}=1-2$

We compute the expectation value of the Hamiltonian \mathcal{H} as

$$
\begin{aligned}
E_{V} & =\frac{\langle\Psi| \mathcal{H}|\Psi\rangle}{\langle\Psi \mid \Psi\rangle} \\
& =\int \mathrm{d} \mathbf{R} \frac{\mathcal{H} \Psi(\mathbf{R})}{\Psi(\mathbf{R})} \frac{|\Psi(\mathbf{R})|^{2}}{\int \mathrm{~d} \mathbf{R}|\Psi(\mathbf{R})|^{2}} \\
& =\int \mathrm{d} \mathbf{R} E_{\mathrm{L}}(\mathbf{R}) \rho(\mathbf{R}) \\
& =\left\langle E_{\mathrm{L}}(\mathbf{R})\right\rangle_{\rho} \approx \frac{1}{M} \sum_{i=1}^{M} E_{\mathrm{L}}\left(\mathbf{R}_{i}\right)
\end{aligned}
$$

Note: a) Metropolis method: ρ does not have to be normalized \rightarrow For complex Ψ we do not know the normalization!
b) If $\psi \rightarrow$ eigenfunction, $E_{L}(\mathbf{R})$ does not fluctuate

Expectation values in variational Monte Carlo

The energy is computed by averaging the local energy

$$
E_{V}=\frac{\langle\Psi| \mathcal{H}|\Psi\rangle}{\langle\Psi \mid \Psi\rangle}=\left\langle E_{\mathrm{L}}(\mathbf{R})\right\rangle_{\rho}
$$

The variance of the local energy is given by

$$
\sigma^{2}=\frac{\langle\Psi|\left(\mathcal{H}-E_{V}\right)^{2}|\Psi\rangle}{\langle\Psi \mid \Psi\rangle}=\left\langle\left(E_{L}(\mathbf{R})-E_{V}\right)^{2}\right\rangle_{\rho}
$$

The statistical Monte Carlo error goes as $\operatorname{err}\left(E_{V}\right) \sim \frac{\sigma}{\sqrt{M}}$
Note: For other operators, substitute \mathcal{H} with \mathcal{X}

Typical VMC run

Example: Local energy and average energy of acetone $\left(\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}\right)$

$$
\begin{aligned}
& E_{\mathrm{VMC}}=\left\langle E_{\mathrm{L}}(\mathbf{R})\right\rangle_{\rho}=-36.542 \pm 0.001 \text { Hartree }(40 \times 20000 \text { steps }) \\
& \sigma_{\mathrm{VMC}}=\left\langle\left(E_{\mathrm{L}}(\mathbf{R})-E_{\mathrm{VMC}}\right)^{2}\right\rangle_{\rho}=0.90 \text { Hartree }
\end{aligned}
$$

Variational Monte Carlo \rightarrow Freedom in choice of Ψ

Monte Carlo integration allows the use of complex and accurate Ψ
\Rightarrow More compact representation of Ψ than in quantum chemistry
\Rightarrow Beyond $c_{0} D_{\mathrm{HF}}+c_{1} D_{1}+c_{2} D_{2}+\ldots$ millions of determinants

Jastrow-Slater wave function
$\Psi\left(\mathbf{r}_{1}, \ldots, \mathbf{r}_{N}\right)=\mathcal{J}\left(\mathbf{r}_{1}, \ldots, \mathbf{r}_{N}\right) \sum_{k} d_{k} D_{k}^{\uparrow}\left(\mathbf{r}_{1}, \ldots, \mathbf{r}_{N_{\uparrow}}\right) D_{k}^{\downarrow}\left(\mathbf{r}_{N_{\uparrow}+1}, \ldots, \mathbf{r}_{N}\right)$
$\bar{J} \longrightarrow$ Jastrow correlation factor

- Positive function of inter-particle distances
- Explicit dependence on electron-electron distances $r_{i j}$
- Takes care of divergences in potential
$\psi\left(\mathbf{r}_{1}, \ldots, \mathbf{r}_{N}\right)=\mathcal{J}\left(\mathbf{r}_{1}, \ldots, \mathbf{r}_{N}\right) \sum_{k} d_{k} D_{k}^{\uparrow}\left(\mathbf{r}_{1}, \ldots, \mathbf{r}_{N_{\uparrow}}\right) D_{k}^{\downarrow}\left(\mathbf{r}_{N_{\uparrow}+1}, \ldots, \mathbf{r}_{N}\right)$
$\sum d_{k} D_{k}^{\uparrow} D_{k}^{\downarrow} \longrightarrow$ Determinants of single-particle orbitals
- Few and not millions of determinants as in quantum chemistry
- Slater basis to expand orbitals in all-electron calculations

$$
\phi(\mathbf{r})=\sum_{\alpha}^{\text {Nuclei }} \sum_{k_{\alpha}} c_{k_{\alpha}} r_{\alpha}^{n_{k_{\alpha}}-1} \exp \left(-\zeta_{k_{\alpha}} r_{\alpha}\right) \mathrm{Y}_{I_{k_{\alpha}} m_{k_{\alpha}}}\left(\widehat{\mathrm{r}}_{\alpha}\right)
$$

Gaussian atomic basis used in pseudopotential calculations

- Slater component determines the nodal surface

What is strange with the Jastrow-Slater wave function?
$\Psi\left(\mathbf{r}_{1}, \ldots, \mathbf{r}_{N}\right)=\mathcal{J}\left(\mathbf{r}_{1}, \ldots, \mathbf{r}_{N}\right) \sum_{k} d_{k} D_{k}^{\uparrow}\left(\mathbf{r}_{1}, \ldots, \mathbf{r}_{N_{\uparrow}}\right) D_{k}^{\downarrow}\left(\mathbf{r}_{N_{\uparrow}+1}, \ldots, \mathbf{r}_{N}\right)$
\triangleright Why is Ψ not depending on the spin variables σ ?

$$
\Psi\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{N}\right)=\Psi\left(\mathbf{r}_{1}, \sigma_{1}, \ldots, \mathbf{r}_{N}, \sigma_{N}\right) \quad \text { with } \quad \sigma_{i}= \pm 1
$$

\triangleright Why is Ψ not totally antisymmetric?

Why can we factorize $D_{k}^{\uparrow} D_{k}^{\downarrow}$?

Consider N electrons with $N=N_{\uparrow}+N_{\downarrow}$ and $S_{z}=\left(N_{\uparrow}-N_{\downarrow}\right) / 2$

$$
\Psi\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{N}\right)=\Psi\left(\mathbf{r}_{1}, \sigma_{1}, \ldots, \mathbf{r}_{N}, \sigma_{N}\right) \quad \text { with } \quad \sigma_{i}= \pm 1
$$

Define a spin function ζ_{1}

$$
\zeta_{1}\left(\sigma_{1}, \ldots, \sigma_{N}\right)=\chi_{\uparrow}\left(\sigma_{1}\right) \ldots \chi_{\uparrow}\left(\sigma_{N_{\uparrow}}\right) \chi_{\downarrow}\left(\sigma_{N_{\uparrow}+1}\right) \ldots \chi_{\downarrow}\left(\sigma_{N}\right)
$$

Generate $K=N!/ N_{\uparrow}!N_{\downarrow}$! functions ζ_{i} by permuting indices in ζ_{1}
The functions ζ_{i} form a complete, orthonormal set in spin space

$$
\sum_{\sigma_{1} \ldots \sigma_{N}} \zeta_{i}\left(\sigma_{1}, \ldots, \sigma_{N}\right) \zeta_{j}\left(\sigma_{1}, \ldots, \sigma_{N}\right)=\delta_{i j}
$$

Wave function with space and spin variables

Expand the wave function Ψ in terms of its spin components

$$
\Psi\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{N}\right)=\sum_{i=1}^{K} F_{i}\left(\mathbf{r}_{1}, \ldots, \mathbf{r}_{N}\right) \zeta_{i}\left(\sigma_{1}, \ldots, \sigma_{N}\right)
$$

ψ is totally antisymmetric \Rightarrow
$\triangleright F_{i}=-F_{i}$ for interchange of like-spin
$\triangleright F_{i}= \pm$ permutation of F_{1}

$$
\Psi\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{N}\right)=\mathcal{A}\left\{F_{1}\left(\mathbf{r}_{1}, \ldots, \mathbf{r}_{N}\right) \zeta_{1}\left(\sigma_{1}, \ldots, \sigma_{N}\right)\right\}
$$

Can we get rid of spin variables? Spin-assigned wave functions

Note that if \mathcal{O} is a spin-independent operator

$$
\langle\Psi| \mathcal{O}|\Psi\rangle=\left\langle F_{1}\right| \mathcal{O}\left|F_{1}\right\rangle
$$

since the functions ζ_{i} form an orthonormal set

More convenient to use F_{1} instead of full wave function Ψ
To obtain F_{1}, assign the spin-variables of particles:

$$
\begin{array}{cccccccc}
\text { Particle } & 1 & 2 & \ldots & N_{\uparrow} & N_{\uparrow+1} & \ldots & N \\
\sigma & 1 & 1 & \ldots & 1 & -1 & \ldots & -1 \\
\hline F_{1}\left(\mathbf{r}_{1}, \ldots, \mathbf{r}_{N}\right)= & \Psi\left(\mathbf{r}_{1}, 1, \ldots, \mathbf{r}_{N_{\uparrow}}, 1, \mathbf{r}_{N_{\uparrow}+1},-1, \ldots, \mathbf{r}_{N},-1\right) \\
\hline
\end{array}
$$

Spin assignment: a simple wave function for the Be atom
Be atom, $1 s^{2} 2 s^{2} \Rightarrow N_{\uparrow}=N_{\downarrow}=2, S_{z}=0$
Determinant of spin-orbitals $\phi_{1 s} \chi_{\uparrow}, \phi_{2 s} \chi_{\uparrow}, \phi_{1 s} \chi_{\downarrow}, \phi_{2 s} \chi_{\downarrow}$

$$
D=\frac{1}{\sqrt{4!}}\left|\begin{array}{llll}
\phi_{1 s}\left(\mathbf{r}_{1}\right) \chi_{\uparrow}\left(\sigma_{1}\right) & \ldots & \phi_{1 s}\left(\mathbf{r}_{4}\right) \chi_{\uparrow}\left(\sigma_{4}\right) \\
\phi_{2 s}\left(\mathbf{r}_{1}\right) \chi_{\uparrow}\left(\sigma_{1}\right) & \ldots & \phi_{2 s}\left(\mathbf{r}_{4}\right) \chi_{\uparrow}\left(\sigma_{4}\right) \\
\phi_{1 s}\left(\mathbf{r}_{1}\right) \chi_{\downarrow}\left(\sigma_{1}\right) & \ldots & \phi_{1 s}\left(\mathbf{r}_{4}\right) \chi_{\downarrow}\left(\sigma_{4}\right) \\
\phi_{2 s}\left(\mathbf{r}_{1}\right) \chi_{\downarrow}\left(\sigma_{1}\right) & \ldots & \phi_{2 s}\left(\mathbf{r}_{4}\right) \chi_{\downarrow}\left(\sigma_{4}\right)
\end{array}\right|
$$

Spin-assigned $F_{1}\left(\mathbf{r}_{1}, \mathbf{r}_{2}, \mathbf{r}_{3}, \mathbf{r}_{4}\right)=D\left(\mathbf{r}_{1},+1, \mathbf{r}_{2},+1, \mathbf{r}_{3},-1, \mathbf{r}_{4},-1\right)$

$$
F_{1}=\frac{1}{\sqrt{4!}}\left|\begin{array}{cccc}
\phi_{1 s}\left(\mathbf{r}_{1}\right) & \phi_{1 s}\left(\mathbf{r}_{2}\right) & 0 & 0 \\
\phi_{2 s}\left(\mathbf{r}_{1}\right) & \phi_{2 s}\left(\mathbf{r}_{2}\right) & 0 & 0 \\
0 & 0 & \phi_{1 s}\left(\mathbf{r}_{3}\right) & \phi_{1 s}\left(\mathbf{r}_{4}\right) \\
0 & 0 & \phi_{2 s}\left(\mathbf{r}_{3}\right) & \phi_{2 s}\left(\mathbf{r}_{4}\right)
\end{array}\right|
$$

Spin assignment: a simple wave function for the Be atom
Be atom, $1 s^{2} 2 s^{2} \Rightarrow N_{\uparrow}=N_{\downarrow}=2, S_{z}=0$

$$
\begin{aligned}
F_{1} & =\frac{1}{\sqrt{4!}}\left|\begin{array}{cccc}
\phi_{1 s}\left(\mathbf{r}_{1}\right) & \phi_{1 s}\left(\mathbf{r}_{2}\right) & 0 & 0 \\
\phi_{2 s}\left(\mathbf{r}_{1}\right) & \phi_{2 s}\left(\mathbf{r}_{2}\right) & 0 & 0 \\
0 & 0 & \phi_{1 s}\left(\mathbf{r}_{3}\right) & \phi_{1 s}\left(\mathbf{r}_{4}\right) \\
0 & 0 & \phi_{2 s}\left(\mathbf{r}_{3}\right) & \phi_{2 s}\left(\mathbf{r}_{4}\right)
\end{array}\right| \\
& =\frac{1}{\sqrt{4!}}\left|\begin{array}{cc}
\phi_{1 s}\left(\mathbf{r}_{1}\right) & \phi_{1 s}\left(\mathbf{r}_{2}\right) \\
\phi_{2 s}\left(\mathbf{r}_{1}\right) & \phi_{2 s}\left(\mathbf{r}_{2}\right)
\end{array}\right| \times\left|\begin{array}{cc}
\phi_{1 s}\left(\mathbf{r}_{3}\right) & \phi_{1 s}\left(\mathbf{r}_{4}\right) \\
\phi_{2 s}\left(\mathbf{r}_{3}\right) & \phi_{2 s}\left(\mathbf{r}_{4}\right)
\end{array}\right| \\
& D\left(\mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{x}_{3}, \mathbf{x}_{4}\right) \rightarrow D^{\uparrow}\left(\mathbf{r}_{1}, \mathbf{r}_{2}\right) \times D^{\downarrow}\left(\mathbf{r}_{3}, \mathbf{r}_{4}\right)
\end{aligned}
$$

$$
\begin{equation*}
\text { Spin assignment: } \Psi=\sum_{k} d_{k} D_{k} \tag{1}
\end{equation*}
$$

Care with order of spin-orbitals in determinants
\Rightarrow First all \uparrow spin-orbitals and then all \downarrow spin-orbitals
Example: He atom, two-determinant singlet excited state $1 s^{1} 2 s^{1}$
$\left(1 s^{\uparrow}, 2 s^{\downarrow}\right)-\left(1 s^{\downarrow}, 2 s^{\uparrow}\right)$ with orbitals $\phi_{1 s} \chi_{\uparrow}, \phi_{1 s} \chi_{\downarrow}, \phi_{2 s} \chi_{\uparrow}, \phi_{2 s} \chi_{\downarrow}$

$$
\begin{aligned}
\Psi & =\left|\begin{array}{ll}
\phi_{1 s}\left(\mathbf{r}_{1}\right) \chi_{\uparrow}\left(\sigma_{1}\right) & \phi_{1 s}\left(\mathbf{r}_{2}\right) \chi_{\uparrow}\left(\sigma_{2}\right) \\
\phi_{2 s}\left(\mathbf{r}_{1}\right) \chi_{\downarrow}\left(\sigma_{1}\right) & \phi_{2 s}\left(\mathbf{r}_{2}\right) \chi_{\downarrow}\left(\sigma_{2}\right)
\end{array}\right| \\
& -\left|\begin{array}{ll}
\phi_{1 s}\left(\mathbf{r}_{1}\right) \chi_{\downarrow}\left(\sigma_{1}\right) & \phi_{1 s}\left(\mathbf{r}_{2}\right) \chi_{\downarrow}\left(\sigma_{2}\right) \\
\phi_{2 s}\left(\mathbf{r}_{1}\right) \chi_{\uparrow}\left(\sigma_{1}\right) & \phi_{2 s}\left(\mathbf{r}_{2}\right) \chi_{\uparrow}\left(\sigma_{2}\right)
\end{array}\right|
\end{aligned}
$$

$$
\begin{equation*}
\text { Spin assignment: } \Psi=\sum_{k} d_{k} D_{k} \tag{2}
\end{equation*}
$$

First all \uparrow spin-orbitals and then all \downarrow spin-orbitals

$$
\begin{aligned}
\Psi & =\left|\begin{array}{ll}
\phi_{1 s}\left(\mathbf{r}_{1}\right) \chi_{\uparrow}\left(\sigma_{1}\right) & \phi_{1 s}\left(\mathbf{r}_{2}\right) \chi_{\uparrow}\left(\sigma_{2}\right) \\
\phi_{2 s}\left(\mathbf{r}_{1}\right) \chi_{\downarrow}\left(\sigma_{1}\right) & \phi_{2 s}\left(\mathbf{r}_{2}\right) \chi_{\downarrow}\left(\sigma_{2}\right)
\end{array}\right| \\
& +\left|\begin{array}{ll}
\phi_{2 s}\left(\mathbf{r}_{1}\right) \chi_{\uparrow}\left(\sigma_{1}\right) & \phi_{2 s}\left(\mathbf{r}_{2}\right) \chi_{\uparrow}\left(\sigma_{2}\right) \\
\phi_{1 s}\left(\mathbf{r}_{1}\right) \chi_{\downarrow}\left(\sigma_{1}\right) & \phi_{1 s}\left(\mathbf{r}_{2}\right) \chi_{\downarrow}\left(\sigma_{2}\right)
\end{array}\right|
\end{aligned}
$$

Assign spins: Particle $1 \quad 2$

$$
\begin{array}{lll}
\sigma & 1 & -1
\end{array}
$$

$$
F_{1}\left(\mathbf{r}_{1}, \mathbf{r}_{2}\right)=\phi_{1 s}\left(\mathbf{r}_{1}\right) \phi_{2 s}\left(\mathbf{r}_{2}\right)+\phi_{2 s}\left(\mathbf{r}_{1}\right) \phi_{1 s}\left(\mathbf{r}_{2}\right)
$$

See example of excited state of $\mathrm{CH}_{2} \mathrm{NH}$ tomorrow afternoon

Jastrow-Slater spin-assigned wave function

To obtain spin-assigned Jastrow-Slater wave functions, impose

$$
\begin{aligned}
& \text { Particle } \begin{array}{cccccccc}
1 & 2 & \ldots & N_{\uparrow} & N_{\uparrow+1} & \ldots & N \\
\sigma & 1 & 1 & \ldots & 1 & -1 & \ldots & -1
\end{array} \\
& \begin{aligned}
\Psi\left(\mathbf{r}_{1}, \ldots, \mathbf{r}_{N}\right) & =F_{1}\left(\mathbf{r}_{1}, \ldots, \mathbf{r}_{N}\right) \\
& =\mathcal{J}\left(\mathbf{r}_{1}, \ldots, \mathbf{r}_{N}\right) \sum_{k} d_{k} D_{k}^{\uparrow}\left(\mathbf{r}_{1}, \ldots, \mathbf{r}_{N_{\uparrow}}\right) D_{k}^{\downarrow}\left(\mathbf{r}_{N_{\uparrow}+1}, \ldots, \mathbf{r}_{N}\right)
\end{aligned}
\end{aligned}
$$

How do we impose space and spin symmetry on Jastrow-Slater Ψ ?
$\sum_{k} d_{k} D_{k}$ is constructed to have the proper space/spin symmetry
\triangleright Spacial symmetry
Often, $\mathcal{J}=\mathcal{J}\left(\left\{r_{i j}\right\},\left\{r_{i \alpha}\right\}\right)$ with i, j electrons and α nuclei
$\Rightarrow \mathcal{J}$ invariant under rotations, no effect on spacial symmetry of Ψ
\triangleright Spin symmetry
If \mathcal{J} is symmetric
\rightarrow for interchange of like-spin electrons $\Rightarrow \Psi$ eigenstate of S_{z}
\rightarrow for interchange of spacial variables $\Rightarrow \Psi$ eigenstate of S^{2}

Jastrow factor and divergences in the potential

At interparticle coalescence points, the potential diverges as
$-\frac{Z}{r_{i \alpha}} \quad$ for the electron-nucleus potential
$\frac{1}{r_{i j}}$ for the electron-electron potential
Local energy $\frac{\mathcal{H} \psi}{\psi}=-\frac{1}{2} \sum_{i} \frac{\nabla_{i}^{2} \psi}{\psi}+\mathcal{V}$ must be finite
\Rightarrow Kinetic energy must have opposite divergence to the potential \mathcal{V}

Divergence in potential and behavior of the local energy

Consider two particles of masses m_{i}, m_{j} and charges q_{i}, q_{j} Assume $r_{i j} \rightarrow 0$ while all other particles are well separated Keep only diverging terms in $\frac{\mathcal{H} \Psi}{\Psi}$ and go to relative coordinates close to $\mathbf{r}=\mathbf{r}_{i j}=0$

$$
\begin{aligned}
-\frac{1}{2 \mu_{i j}} \frac{\nabla^{2} \psi}{\psi}+\mathcal{V}(r) & \sim-\frac{1}{2 \mu_{i j}} \frac{\Psi^{\prime \prime}}{\Psi}-\frac{1}{\mu_{i j}} \frac{1}{r} \frac{\psi^{\prime}}{\Psi}+\mathcal{V}(r) \\
& \sim-\frac{1}{\mu_{i j}} \frac{1}{r} \frac{\Psi^{\prime}}{\psi}+\mathcal{V}(r)
\end{aligned}
$$

where $\mu_{i j}=m_{i} m_{j} /\left(m_{i}+m_{j}\right)$

Divergence in potential and cusp conditions

Diverging terms in the local energy

$$
-\frac{1}{\mu_{i j}} \frac{1}{r} \frac{\psi^{\prime}}{\psi}+\mathcal{V}(r)=-\frac{1}{\mu_{i j}} \frac{1}{r} \frac{\Psi^{\prime}}{\psi}+\frac{q_{i} q_{j}}{r}=\text { finite }
$$

$\Rightarrow \Psi$ must satisfy Kato's cusp conditions:

$$
\left|\frac{\partial \hat{\Psi}}{\partial r_{i j}}\right|_{r_{i j}=0}=\mu_{i j} q_{i} q_{j} \Psi\left(r_{i j}=0\right)
$$

where $\hat{\psi}$ is a spherical average
Note: We assumed $\Psi\left(r_{i j}=0\right) \neq 0$

Cusp conditions: example

The condition for the local energy to be finite at $r=0$ is

$$
\frac{\psi^{\prime}}{\psi}=\mu_{i j} q_{i} q_{j}
$$

- Electron-nucleus: $\quad \mu=1, q_{i}=1, q_{j}=-\left.Z \quad \Rightarrow \quad \frac{\Psi^{\prime}}{\Psi}\right|_{r=0}=-Z$
- Electron-electron: $\mu=\frac{1}{2}, q_{i}=1, q_{j}=\left.1 \quad \Rightarrow \quad \frac{\Psi^{\prime}}{\Psi}\right|_{r=0}=1 / 2$

Generalized cusp conditions

What about two electrons in a triplet state?
Or more generally two like-spin electrons (D^{\uparrow} or $D^{\downarrow} \rightarrow 0$)?

$$
\Psi\left(r=r_{i j}=0\right)=0 ?!?
$$

Near $\mathbf{r}=\mathbf{r}_{i j}=0, \quad \Psi=\sum_{l=l_{0}}^{\infty} \sum_{m=-l}^{l} f_{l m}(r) r^{\prime} Y_{l m}(\theta, \phi)$
Local energy is finite if

$$
f_{l m}(r)=f_{l m}^{(0)}\left[1+\frac{\gamma}{(I+1)} r+O\left(r^{2}\right)\right]
$$

where $\gamma=q_{i} q_{j} \mu_{i j}$
R. T. Pack and W. Byers Brown, JCP 45, 556 (1966)

Generalized cusp conditions: like-spin electrons

- Electron-electron singlet: $I_{0}=0 \Rightarrow \Psi \sim\left(1+\frac{1}{2} r\right) \Rightarrow \frac{\psi^{\prime}}{\psi}=\frac{1}{2}$
- Electron-electron triplet: $I_{0}=1 \Rightarrow \Psi \sim\left(1+\frac{1}{4} r\right) r$

Cusp conditions and QMC wave functions

$\sigma=+1$ for first N_{\uparrow} electrons, $\sigma=-1$ for the others
$\Psi\left(\mathbf{r}_{1}, \ldots, \mathbf{r}_{N}\right)=\mathcal{J}\left(\mathbf{r}_{1}, \ldots, \mathbf{r}_{N_{\uparrow}}\right) \sum_{k} d_{k} D_{k}^{\uparrow}\left(\mathbf{r}_{1}, \ldots, \mathbf{r}_{N_{\uparrow}}\right) D_{k}^{\downarrow}\left(\mathbf{r}_{N_{\uparrow}+1}, \ldots, \mathbf{r}_{N}\right)$
\triangleright Anti-parallel spins: $r_{i j} \rightarrow 0$ for $i \leq N_{\uparrow}, j \geq N_{\uparrow}+1$
Usually, determinantal part $\neq 0$

$$
\begin{array}{r}
I_{0}=0 \Rightarrow \Psi \sim\left(1+\frac{1}{2} r_{i j}\right) \\
\left.\Rightarrow \mathcal{J}\left(r_{i j}\right) \sim\left(1+\frac{1}{2} r_{i j}\right) \Leftrightarrow \frac{\mathcal{J}^{\prime}}{\mathcal{J}}\right|_{r_{i j}=0}=\frac{1}{2}
\end{array}
$$

Cusp conditions and QMC wave functions

$\sigma=+1$ for first N_{\uparrow} electrons, $\sigma=-1$ for the others
$\Psi\left(\mathbf{r}_{1}, \ldots, \mathbf{r}_{N}\right)=\mathcal{J}\left(\mathbf{r}_{1}, \ldots, \mathbf{r}_{N_{\uparrow}}\right) \sum_{k} d_{k} D_{k}^{\uparrow}\left(\mathbf{r}_{1}, \ldots, \mathbf{r}_{N_{\uparrow}}\right) D_{k}^{\downarrow}\left(\mathbf{r}_{N_{\uparrow}+1}, \ldots, \mathbf{r}_{N}\right)$
\triangleright Parallel spins: $r_{i j} \rightarrow 0$ for $i, j \leq N_{\uparrow}$ or $i, j \geq N_{\uparrow}+1$
Determinantal part $\rightarrow 0$

$$
\begin{array}{r}
I_{0}=1 \Rightarrow \Psi \sim\left(1+\frac{1}{4} r_{i j}\right) r_{i j} \\
\left.\Rightarrow \mathcal{J}\left(r_{i j}\right) \sim\left(1+\frac{1}{4} r_{i j}\right) \Leftrightarrow \frac{\mathcal{J}^{\prime}}{\mathcal{J}}\right|_{r_{i j}=0}=\frac{1}{4}
\end{array}
$$

Cusp conditions and QMC wave functions
\triangleright Electron-electron cusps imposed through the Jastrow factor Example: Simple Jastrow factor

$$
\mathcal{J}\left(r_{i j}\right)=\prod_{i<j} \exp \left\{b_{0} \frac{r_{i j}}{1+b r_{i j}}\right\}
$$

with $\quad b_{0}^{\uparrow \downarrow}=\frac{1}{2} \quad$ or $\quad b_{0}^{\uparrow \uparrow}=b_{0}^{\downarrow \downarrow}=\frac{1}{4}$

Imposes cusp conditions
+
keeps electrons apart

The effect of the Jastrow factor

Pair correlation function for $\uparrow \downarrow$ electrons in the (110) plane of Si $g_{\uparrow \downarrow}\left(\mathbf{r}, \mathbf{r}^{\prime}\right)$ with one electron is at the bond center

Hood et al. Phys. Rev. Lett. 78, 3350 (1997)

> Cusp conditions and QMC wave functions
\triangleright Electron-nucleus cusps imposed through the determinantal part Assume that the nucleus is at the origin and $\Psi\left(r_{i}=0\right) \neq 0$ If each orbital satisfies the cusp conditions

$$
\begin{aligned}
\left.\frac{\partial \hat{\phi}_{j}}{\partial r}\right|_{r=0} & =-Z \hat{\phi}_{j}(r=0) \\
\left.\Rightarrow \frac{\partial \sum_{k} d_{k} \hat{D}_{k}}{\partial r}\right|_{r=0} & =-Z \sum_{k} d_{k} \hat{D}_{k}(r=0)
\end{aligned}
$$

Note: Slater basis best suited for all-electron systems No electron-nucleus cusp with pseudopotential

Core/valence electrons and pseudopotentials

Example: Carbon atom $\rightarrow Z=N_{\text {elec }}=6$ with $\left[1 s^{2}\right] 2 s^{2} 2 p_{x}^{\uparrow} 2 p_{y}^{\uparrow}$

QMC computational cost scales as N^{4} but as $Z^{5.5-6.5}$
Remove the $1 s^{2}$ core electrons with pseudopotential with $Z_{\text {eff }}=4$

Simple wave function for the Be atom

Be atom, $1 s^{2} 2 s^{2} \Rightarrow N_{\uparrow}=N_{\downarrow}=2, S_{z}=0$
Spin-assigned $\Psi\left(\mathbf{r}_{1},+1, \mathbf{r}_{2},+1, \mathbf{r}_{3},-1, \mathbf{r}_{4},-1\right)=\mathcal{J} D$
\triangleright Factorized determinant

$$
D=D^{\uparrow} \times D^{\downarrow}=\left|\begin{array}{ll}
\phi_{1 s}\left(\mathbf{r}_{1}\right) & \phi_{1 s}\left(\mathbf{r}_{2}\right) \\
\phi_{2 s}\left(\mathbf{r}_{1}\right) & \phi_{2 s}\left(\mathbf{r}_{2}\right)
\end{array}\right| \times \left\lvert\, \begin{array}{ll}
\phi_{1 s}\left(\mathbf{r}_{3}\right) & \phi_{1 s}\left(\mathbf{r}_{4}\right) \\
\phi_{2 s}\left(\mathbf{r}_{3}\right) & \phi_{2 s}\left(\mathbf{r}_{4}\right)
\end{array}\right.
$$

\triangleright Simple Jastrow factor

$$
\mathcal{J}=\prod_{i j=13,14,23,24} \exp \left\{\frac{1}{2} \frac{r_{i j}}{1+b r_{i j}}\right\} \times \prod_{i j=12,34} \exp \left\{\frac{1}{4} \frac{r_{i j}}{1+b r_{i j}}\right\}
$$

Jastrow factor for atoms and molecules: Beyond the simple form
Boys and Handy's form

$$
\mathcal{J}\left(r_{i}, r_{j}, r_{i j}\right)=\prod_{\alpha, i<j} \exp \left\{\sum c_{m n k}^{\alpha}\left(\bar{r}_{i \alpha}^{m} \bar{r}_{j \alpha}^{n}+\bar{r}_{i \alpha}^{n} \bar{r}_{j \alpha}^{m}\right) \bar{r}_{i j}^{k}\right\}
$$

with $\quad \bar{r}_{i \alpha}=\frac{a r_{i \alpha}}{1+a r_{i \alpha}} \quad$ and $\quad \bar{r}_{i j}=\frac{d r_{i j}}{1+d r_{i j}}$
Cusp conditions imposed by requiring:
For electron-electron cusps: $m=n=0$ if $k=1$
For electron-nucleus cusps: No $n=1$ or $m=1, D$ satisfies cusps
More general form: Lift constraints and allow all values of n, m, k Impose the cusp conditions via linear dependencies among $c_{m n k}^{\alpha}$ Other scaling functions are possible, e.g. $\left(1-\mathrm{e}^{-a r}\right) / a$

Some comments on Jastrow factor

More general Jastrow form with e-n, e-e and e-e-n terms

$$
\prod_{\alpha, i} \exp \left\{A\left(r_{i \alpha}\right)\right\} \prod_{i<j} \exp \left\{B\left(r_{i j}\right)\right\} \prod_{\alpha, i<j} \exp \left\{C\left(r_{i \alpha}, r_{j \alpha}, r_{i j}\right)\right\}
$$

\triangleright Polynomials of scaled variables, e.g. $\bar{r}=r /(1+a r)$
$\triangleright \mathcal{J}>0$ and becomes constant for large r_{i}, r_{j} and $r_{i j}$
\triangleright Electron-electron terms B

- Imposes the cusp conditions and keeps electrons apart
- More general than simple $\mathcal{J}\left(r_{i j}\right)$ gives small improvements
\triangleright Electron-nucleus terms A
Should be included if determinantal part (DFT or HF) is not reoptimized: e-e terms alter the single-particle density

Role of the electron-nucleus terms

Example: Density of all-electron Carbon atom

$$
+ \text { e-n } \mathcal{J}
$$

Foulkes et al. Rev. Mod. Phys. 73, 33 (2001)
\triangleright Electron-electron-nucleus terms C
If the order of the polynomial in the e-e-n terms is infinite, Ψ can exactly describe a two-electron atom or ion in an S state For these systems, a $5^{\text {th }}$-order polynomial recovers more than 99.99% of the correlation energy, $E_{\text {corr }}=E_{\text {exact }}-E_{\mathrm{HF}}$
\triangleright Is this Jastrow factor adequate for multi-electron systems?
The e-e-n terms are the most important: due to the exclusion principle, it is rare for 3 or more electrons to be close, since at least 2 electrons must necessarily have the same spin

Jastrow factor with e-e, e-e-n and e-e-e-n terms

Huang, Umrigar, Nightingale, J. Chem. Phys. 107, 3007 (1997)

Dynamic and static correlation
$\Psi=$ Jastrow \times Determinants \rightarrow Two types of correlation
\triangleright Dynamic correlation
Described by Jastrow factor
Due to inter-electron repulsion
Always present
\triangleright Static correlation
Described by a linear combination of determinants
Due to near-degeneracy of occupied and unoccupied orbitals Not always present

Static correlation

Example: Be atom and $2 s-2 p$ near-degeneracy
HF ground state configuration

$$
1 s^{2} 2 s^{2}
$$

Additional important configuration

$$
1 s^{2} 2 p^{2}
$$

Ground state has ${ }^{1} S$ symmetry $\Rightarrow 4$ determinants

$$
\begin{aligned}
& D=\left(1 s^{\uparrow}, 2 s^{\uparrow}, 1 s^{\downarrow}, 2 s^{\downarrow}\right)+c\left[\left(1 s^{\uparrow}, 2 p_{x}^{\uparrow}, 1 s^{\downarrow}, 2 p_{x}^{\downarrow}\right)\right. \\
& +\left(1 s^{\uparrow}, 2 p_{y}^{\uparrow}, 1 s^{\downarrow}, 2 p_{y}^{\downarrow}\right) \\
& \left.+\left(1 s^{\uparrow}, 2 p_{z}^{\uparrow}, 1 s^{\downarrow}, 2 p_{z}^{\downarrow}\right)\right] \\
& \begin{array}{cll|}
\hline 1 s^{2} 2 s^{2} & \times \mathcal{J}\left(r_{i j}\right) & \rightarrow E_{\mathrm{VMC}}^{\text {corr }}=61 \% \\
1 s^{2} 2 s^{2} \oplus 1 s^{2} 2 p^{2} & \times \mathcal{J}\left(r_{i j}\right) & \rightarrow E_{\mathrm{VMC}}^{\text {corr }}=93 \% \\
\hline
\end{array}
\end{aligned}
$$

Static correlation

Example: $E_{\mathrm{VMC}}^{\mathrm{corr}}$ and $E_{\mathrm{DMC}}^{\text {corr }}$ for $1^{\text {st }}$-row dimers
MO orbitals with atomic $s-p$ Slater basis (all-electron)
Active MO orbitals are $2 \sigma_{g}, 2 \sigma_{u}, 3 \sigma_{g}, 3 \sigma_{u}, 1 \pi_{u}, 1 \pi_{g}$
$5^{\text {th }}$-order polynomial \mathcal{J} (e-n, e-e, e-e-n)

Filippi and Umrigar, J. Chem. Phys. 105, 213 (1996)

Determinant versus Jastrow factor

Determinantal part yields the nodes (zeros) of wave function
\Rightarrow Quality of the fixed-node DMC solution
Why bother with the Jastrow factor?
Implications of using a good Jastrow factor for DMC:
\triangleright Efficiency: Smaller σ and time-step error \Rightarrow Gain in CPU time
\triangleright Expectation values other than energy \Rightarrow Mixed estimator
\triangleright Non-local pseudopotentials and localization error \Rightarrow Jastrow factor does affect fixed-node energy

Why should $\Psi_{\mathrm{QMC}}=\mathcal{J} D$ work?

Full wave-function ψ	\longrightarrow	Factorized wave-function $\mathcal{J} \Phi$
\downarrow		\downarrow
Full Hamiltonian H	\longrightarrow	Effective Hamiltonian $\mathcal{H}_{\text {eff }}$
$\mathcal{H} \Psi=\mathrm{E} \Psi$	\longrightarrow	$\mathcal{H} \mathcal{J} \Phi=\mathrm{E} \mathcal{J} \Phi \rightarrow \frac{\mathcal{H} \mathcal{J}}{\mathcal{J}} \Phi=\mathrm{E} \Phi$
		$\mathcal{H}_{\mathrm{eff}} \Phi=\mathrm{E} \Phi$

$\mathcal{H}_{\text {eff }}$ weaker Hamiltonian than \mathcal{H}
$\Rightarrow \Phi \approx$ non-interacting wave function D
\Rightarrow Quantum Monte Carlo wave function $\Psi=\mathcal{J} D$

Construction of the wave function

How do we obtain the parameters in the wave function?

$$
\Psi\left(\mathbf{r}_{1}, \ldots, \mathbf{r}_{N}\right)=\mathcal{J} \sum_{k} d_{k} D_{k}^{\uparrow} D_{k}^{\downarrow}
$$

70 electrons and 21 atoms

VTZ s-p basis +1 polarization
$3 s+3 p+1 d$ functions for $\mathrm{C}, \mathrm{N}, \mathrm{O}$
$2 s+1 p$ for H
\triangleright Parameters in the Jastrow factor $\mathcal{J}(\approx 100)$
$\triangleright \mathrm{Cl}$ coefficients $d_{k}(<10)$
\triangleright Linear coefficients in expansion of the orbitals (5540 !)

Customary practice for optimizing wave function
Jastrow-Slater wave function

$$
\Psi\left(\mathbf{r}_{1}, \ldots, \mathbf{r}_{N}\right)=\mathcal{J} \sum_{k} d_{k} D_{k}^{\uparrow} D_{k}^{\downarrow}
$$

\triangleright Jastrow factor optimized in variance/energy minimization
\triangleright Orbitals and d_{k} coefficients in determinantal part are from

- Hartree-Fock or DFT (LDA, GGA, B3LYP ...)
- Cl or multi-configuration self-consistent-field calculation
- Optimized in energy minimization (very simple for d_{k})

See lecture by Umrigar tomorrow

Beyond VMC?

Removing or reducing wave function bias?
\Rightarrow Projection Monte Carlo methods

See lecture on DMC by Filippi/Foulkes tomorrow

