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Outline

• Diffusion Monte Carlo (DMC) methods: the algorithm on a lattice 

– Non local pseudopotentials and locality approximation

– Lattice regularized Hamiltonians

• Variational theorem for Lattice regularized Hamiltonians

• Lattice regularized Diffusion Monte Carlo

• Application to some realistic systems

– Iron dimer

– Benzene dimer

– From Silicon atom to bulk Silicon
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The algorithm on a lattice
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Pure energy estimate
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1D J1-J2 (toy) model12 sites
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All this approach can be generalized and extended 
to Hamiltonian defined  in the  continuous space 

finite is i.e.evaluated, becan               

 :elementsmatrix  ofnumber         the

  for  that is used have  weAll

xHx′

 x x x xg i v e ng i v e ng i v e ng i v e n    aaaa

space continuous  the tobelongcan  But x

We call this type of Hamiltonian:
Lattice Regularized Hamiltonian (LRH)

Important remark, for LRH   the algorithm is ergodic �

The simulation is not restricted to the nodal pocket

  special.  is approach) usual (the  0 0, =≠∀ γγ
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Can we ‘’lattice regularize’’ the physical Hamiltonian?

V
m

H +∆−=
2

2
ℏ

Namely to find a parameter ‘’a’’ such that:  

0a   LRH a is     0for   >∀→→ aa HaHH

Motivations:
• The exact Green function can be sampled for LRH hamiltonians:
no approximations, no particular care to have finite variance algorithms.

• For             everything is rigorous 100%.
• For             the simulation may be restricted to one nodal pocket and we 
need the tilling theorem,  when it applies.
• No restriction to non local operators appearing in H, LRH are always
non local by definition.

0>γ
0=γ
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Pseudopotentials
� For heavy atoms pseudopotentials are necessary to re

duce the computational time

� Usually they are non local ( ) ( )P i l i
l m

V x v x lm lm=∑ ∑

In QMC angular momentum projection is calculated 

by using a quadrature rule for the integration

S. Fahy, X. W. Wang and Steven G. Louie, PRB 42, 3503 (1990)
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The pseudo potential acts on single particle wavefunctions
with a reference centered on the pseudoatom we have: 
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Locality approximation

Locality approximation in DMC 
Mitas et al. J. Chem. Phys. 95, 3467 (1991)

Effective Hamiltonian HLA containing the localized potential:

• the mixed estimate  is not variational since

• in general it will depend on the shape of        

(locality is exact only if        is exact)
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Locality approximation drawbacks

•non variational results:

The energy may be good but we do not 
really know if it corresponds to a good 
wavefunction close to the ground state.

•dependence
on the guiding  wave function

•simulations less stable
when pseudo are included divergencies
appear in the localized potential 
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But what about the Laplacian?

Within Lattice Regularized Hamiltonians 
we can avoid the locality approximation!
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Lattice regularization

Kinetic term: discretization of the laplacian
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Laplacian with finite differences in the 1D case:

General d dimensional case:

where                                           are translation operators.
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Lattice discretization with two meshes

Separation of core and valence dynamics for heavy nuclei 

by means of two hopping terms in the kinetic part

),()( )1()( )( 22 aaOxpxpx aa ′+Ψ∆−+Ψ∆≈∆Ψ ′

a finest mesh, a’ largest

p is a function which sets the relative weight of the two meshes.

It can depend on the distance from the nucleus:

0)(    and    1)0(    , if =∞=′< ppaa

Moreover, if a’ is not a multiple of a, the random walk can 
sample the space more densely! 

Our choice: 2 1

1
)(

r
rp

γ+
=

Double mesh for the discretized laplacian

2 / 4Zγ =

14// 2 +=′ Zaa
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Two hopping terms
Example: 1D system with 2 electrons (1 up, 1 down) and PBC

aa 2=′

aa 5=′
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Lattice regularized Hamiltonian

� Continuous limit: for a����0, Ha����H

� Local energy of Ha = local energy of  H 

� rescaling factor of the discretized kinetic energy

Definition of the lattice regularized Hamiltonian 

Faster convergence in the lattice space a!

aaaa VH +∆=η

M. Casula, C. Filippi, S. Sorella, PRL 95, 100201 (2005)

1  if →aη

( ) ( )
( ) ( ) ( )

( ) ( )
a a G G

G G

x x
V x V x V x

x x

 ∆ Ψ ∆Ψ→ = + − Ψ Ψ 

aη
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21 Kaa +=η

S. Sorella, M. Casula, D. Rocca, J. Chem. Phys. 127, 014105 (2007)
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The Silicon metal insulator transition 

But it depends on the pseudo and on the # pseudoatoms
e.g.  K=2 for a single Silicon pseudoatom (Dolg,Filippi) 
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Pure energy estimate even for O non positive

For the ground stateof 
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From LRDMC back to the locality approximation
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Si pseudoatom

LRDMC accesses the pure expectation values!
9.0

5.0

     0

=
=
=

α
α
α
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Silicon N=64 diamond  V/N (A^3)=19

-106.858+/- 0.0150.5

-106.831+/- 0.011    (LOCALITY ) 

-106.894 +/- 0.010 (LRDMC) 

α NEFN /

Quite generally we expect that for systems

with no rotational  symmetry best0=α
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LRDMC: two simulations with             and 

Scandium

1.478(22)1.436(22)1.303(29)3 body

1.441(25)1.381(15)1.099(30)2 body

LRDMCDMCVMCeV

Experimental value: 1.43 eV

4s23dn � 4s13dn+1 excitation energies

0γ = 1γ =
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Estimating the nodal error

Interpolation ����

Best Variational estimate

LRDMC  E=-5.4200(2)

)0()0( =−== γ
γ

γ
d

dE
EE FN

Similar things were done by Koonin PRL’94 g>0 possib le by QMC g ����-1 by extrap.
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C 6s6p contracted 1s1p (HF)
C 6s6p contracted 2s1p
C best 6s6p+Jastrow spin+//cusp

Estrapolation ����

E= -5.423(1)

For large systems we choose the simplest LRDMC with  6s6pc2s1p 0=γ
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What the meaning of        ? 
LRDMC has perfect importance sampling without rejection:
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by  replaced are paths generic continuousbut 

 is 0),( paths over then integratio The

))(exp()]([)(
G

(x)

  :yprobabilit   theSampling      

2

0

≈∆≈∆

<<

−=∝Π ∫∫
−

τ

τ

ψψ
ττ

exactttx

xedttdxexx tLG
H

  ))(
1

exp()]([)(
G

(x)

:paths same the gconsiderin is one   1  choosingBy 

0 tLG
H xedttdxexx ∫∫ −=∝Π

>

− ττη

η
ψψ

η

η



Advanced school  in quantum Monte Carlo in physics and chemistry
January-2007          Diffusion Monte Carlo methods with non-local potentials  (Sorella) 33

This overcomes the smaller diffusion rate 
due to the discretization in time and space
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Diffusion rate in LRDMC
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Stability
Carbon pseudoatom (He core, SBK pseudo)
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Stability

� locality approximation � large and negative attractive potential 

close to the nodal surface 

(it works for good trial functions / small time steps)

� non local move � jumps the divergence and crosses the node

(the nasty negative contributions in the locality approximation are 

good non local matrix elements in the non local DMC scheme)  

+
+

non local move

nodal surface

−
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DMC vs LRDMC

extrapolation properties

same diffusion constantaτ =

Efficiency (CPU time to have the same statistical error) 1 2( )aτ − −∝

a2 ( a4 ) dependenceτ (ττ (ττ (ττ (τ2222 )  )  )  ) dependence

Lattice space a extrapolationTime step τ τ τ τ extrapolation

For each a
well defined Hamiltonian

Trotter approximation

LRDMCDMC
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Non local DMC (Casula ’06)

( , )DMCG x y τ→
( ) exp ( ) ( , )DMC loc

y

w x K V x V y xτ +   = − + + − Λ  
   

∑

( ) exp ( , )T
y

w x V y xτ − 
= − 

 
∑

( ( ) )( ) LE xw x e τ− −Λ=

diffusion + drift (with rejection)

non local move (heat bath)

weight with local energy 
(it includes the contribution from both 

diffusion and non local move)

Three steps in the evolution of the walkers: the non local move is
the new one introduced in the non local DMC scheme

p(x → y) = T FN (y,x) /wT (x)
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Error in the discretization

Discretized Laplacian

Discretized non local pseudopotential

e

e

Z

discretization error reduced
by the randomization of the quadrature mesh

discretization error reduced
by the introduction of a double mesh
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Silicon
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The metal insulator transition within LRDMC
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Relative efficiency for carbon atom
with SBK pseudopotentials

0.162.03.40.0256

0.111.31.50.0120

0.0830.81.00.0068

Lattice 
space

LRDMC
Non 
local
DMC

Time 
step

T  

1
2σ

η ∝
Variance σ2

CPU time T

Z effective = 4

LRDMC is slightly less efficient than the non local DMC
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Relative efficiency for iron dimer
with Dolg pseudopotentials

0.062515.05.20.0039

0.03907.01.80.0015

0.02845.21.00.0008

Lattice 
space

LRDMC
Non 
local
DMC

Time 
step

LRDMC is 3-5 times faster than the non local DMC

When stable, the standard DMC is 1.25 faster than the non local DMC

Z effective = 16
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LRDMC: summary

• same properties of the non local DMC in terms of stability 

and variational upper bound 

(also the LRDMC effective Hamiltonian includes 

the sign flip term)

• more difficult to implement in the available codes 

(LRDMC is based more upon the lattice Green function 

Monte Carlo, than the standard Diffusion Monte Carlo)

but it is easier if you have to begin by scratch…

• double mesh in the laplacian can help to decorrelate faster 

the electrons (core-valence separation).  

• freedom in the kinetic part of the effective Hamiltonian allows 

to reduce a lot the lattice space error, and improve the efficiency  

(by “fitting” the lattice space dependence for the heaviest 

element in the compound).
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Iron dimer

PHOTOELECTRON SPECTROSCOPY

GS anion: 

GS neutral:

Leopold and Lineberger, J. Chem. Phys. 85, 51(1986)

13 2 * 2 8(3 ) (4 ) (4 ) ud s s −≡ Σ
13 2 * 1 9(3 ) (4 ) (4 ) gd s s −≡ Σ

previous NUMERICAL STUDIES on the neutral iron dimer

� DFT methods:

� more correlated methods (CC, MRCI, DFT+U):

� electron affinity very hard to compute

7
u∆

9
g
−Σ
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Calculation details

Dolg pseudopotentialsDolg pseudopotentials
neon core

spd non local components
scalar relativistic corrections included 

Gaussian basis set for JAGP wave function Gaussian basis set for JAGP wave function 
(8s5p6d)/[2s1p1d]  contracted for AGP

Total independent parameters: 227
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Dispersion curves
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Neutral ground state

LRDMC gives for neutral dimer
9

g
−Σ

7 9( ) ( ) 0.52 (10) eVu gE E −∆ − Σ =
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Neutral ground state

LRDMC DFT-PP86
Physical Review B, 66 (2002) 155425

The lack of correlation leads to underestimate the “on-site”

repulsion in the d orbitals, and overestimate the 4σ splitting.
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Iron dimer: structural properties

9
g
−Σ

LRDMC equilibrium distance: 3.818(11)
Experimental value: ~ 4.093(19)
Harmonic frequency: 301 (15) cm-1

Experimental value: ~ 300 (15) cm-1
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Iron dimer: photoelectron spectrum

Experiment

LRDMC
Incoming photon: 2.540 eV
Temperature 300K
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Benzene dimer

Binding energy (kcal/mol)

0.5(3) parallel

2.2(3) slipped parallel

0.37   ZPE

1.6(2) experiment

S. Sorella, M. Casula, D. Rocca, J. Chem. Phys. 127, 014105 (2007)

Van der Waals +
SSinteractions

Important for DNA

and protein structures
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Conclusions

• The pseudopotentials can be “safely” included in the DMC, 

with the possibility to perform accurate simulations for large or 

extended systems, in solid state physics or quantum chemistry.

• The fixed node approximation is still the major problem for

this zero temperature technique.
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The LRDMC upper bound theorem




