Advanced School on Quantum Monte Carlo Methods in Physics and Chemistry

21 January - 1 February, 2008

Introduction to the phaseless auxiliary field quantum Monte Carlo method

S. Zhang

College of William \& Mary, USA

Advanced School on Quantum Monte Carlo Methods in

 Physics and Chemistry--- ICTP, DEMOCRITOS, SISSA Jan. 2008

Introduction to the phaseless auxiliary field quantum Monte Carlo method

Shiwei Zhang

College of William \& Mary, USA
[shiwei@physics.wm.edu]

Outline

- Why auxiliary-field QMC?
> A new approach: stochastic mean-field theory
> Motivation: reduce QMC error \& increase predictive power; more "black-box" like LDA or HF?
- Random walks in Slater determinant space
$>$ Understanding the sign (phase!) problem in this framework
$>$ How to control it? (approximate)
- What applications are possible?
> Molecules and solids: $T=0 \mathrm{~K}$
plane-wave+Psps or Gaussians
> Models for strongly correlated systems: $T=0$ and $T>0 \mathrm{~K}$

Introduction: why auxiliary-field methods?

Recall sign problem:

1 particle, first excited state:

In real-space QMC, we need $\boldsymbol{+}$ and - walkers to cancel

Why auxiliary-field methods?

Recall sign problem:

1 particle, first excited state:

Solid state or quantum chemistry?
\rightarrow basis
$e^{-\tau H}\left(\begin{array}{c}\psi_{1} \\ \psi_{2} \\ \cdot \\ \cdot \\ \psi_{\mathrm{N}}\end{array}\right)$

Explicit --- matrix x vec
No sign problem

Why auxiliary-field methods?

Many particles?

A toy problem - trapped fermion atoms:

- 3 fermions in a box, two with \uparrow spin and one with \downarrow spin; contact interaction $V(R)=a_{s} \delta\left(r_{\mathrm{a}}-r_{\mathrm{c}}\right)+a_{s} \delta\left(r_{\mathrm{b}}-r_{\mathrm{c}}\right)$

- Use a crude lattice basis with $i=1,2,3,4$ sites (circles). In second quantized form:

$$
H=K+V=-t \sum_{\underset{\langle i j\rangle \sigma}{ }\left(c_{i \sigma}^{\dagger} c_{j \sigma}+c_{j \sigma}^{\dagger} c_{i \sigma}\right)+U \sum_{i} n_{i \uparrow} n_{i \downarrow}}^{\substack{\text { near-neighbor }}}
$$

- Parameters: $t ; U \propto a_{s}$

Toy problem - trapped fermions

What is the ground state when $U=0$?

- Diagonalize H directly:

Single-particle Hamiltonian
$H:=\left[\begin{array}{rrrr}0 & -1 & 0 & 0 \\ -1 & 0 & -1 & 0 \\ 0 & -1 & 0 & -1 \\ 0 & 0 & -1 & 0\end{array}\right]$

Diagonalize H to find single-particle energies and w.f's Plot wf in order of $1,2,3,4$

Put fermions in lowest levels:
\rightarrow many-body wf:
$\left[\begin{array}{cc}.3717480339 & -.6015009557 \\ .6015009541 & -.3717480349 \\ .6015009553 & .3717480339 \\ .3717480350 & .6015009543\end{array}\right] \cdot\left[\begin{array}{c}.3717480339 \\ .6015009541 \\ .6015009553 \\ .3717480350\end{array}\right]$

Toy problem - trapped fermions

What is the ground state when $U=0$?

- Diagonalize H directly
- Alternatively, power method:

$e^{-\tau H}: \quad(4 \times 4) \otimes(4 \times 4) \equiv B_{K}$ operate on any $\left|\Psi^{(0)}\right\rangle$ repeatedly $\quad \Rightarrow\left|\Psi_{0}\right\rangle$

> Theorem: For any $\hat{v}=\sum_{i j} v_{i j} c_{i}^{\dagger} c_{j}$, $e^{\hat{v}}|\phi\rangle=\left|\phi^{\prime}\right\rangle$ where $\Phi^{\prime} \equiv e^{v} \Phi$ in matrix form

Toy problem - trapped fermions

Same as from direct diag.:
ground-state wf:
$\left.\begin{array}{ll}.3717480339 & -.6015009557 \\ .6015009541 & -.3717480349 \\ .6015009553 & .3717480339 \\ .3717480350 & .6015009543\end{array}\right] \cdot\left[\begin{array}{c}.3717480339 \\ .6015009541 \\ .6015009553 \\ .3717480350\end{array}\right]$

Toy problem - trapped fermions

What is the ground state when $U=0$?

- Diagonalize H directly
- Alternatively, power method:

$$
e^{-\tau H}: \quad(4 \times 4) \otimes(4 \times 4) \equiv B_{K} \quad \text { operate on any }\left|\Psi^{(0)}\right\rangle \text { repeatedly } \quad \Rightarrow\left|\Psi_{0}\right\rangle
$$

- Applies to any non-interacting system
- Re-orthogonalizing the orbitals prevents fermions from collapsing to the bosonic state
\rightarrow Eliminates 'sign problem’ in non-interacting systems

Toy problem - trapped fermions

Properties of Slater determinants:

$$
|\phi\rangle: \Phi=\left(\begin{array}{cc}
0.37 & -0.60 \\
0.60 & -0.37 \\
0.60 & 0.37 \\
0.37 & 0.60
\end{array}\right) \otimes\left(\begin{array}{c}
0.37 \\
0.60 \\
0.60 \\
0.37
\end{array}\right) \quad \begin{array}{cccc}
1 & 2 & 3 & 4 \text { site abel }
\end{array}
$$

- What is the probability to find the electron configuration shown in the picture?

That is, how to calculate $\langle R \mid \phi\rangle$?

- How to calculate $E_{0}=\langle\phi| H|\phi\rangle$ from the wave function?
- How to calculate the density matrix? The spin-spin correlation function?

A: Simple matrix manipulations (See Lab exercises)

Toy problem - trapped fermions

What is the ground state when $U=0$?

- Diagonalize H directly
- Alternatively, power method:

$$
e^{-\tau H}: \quad(4 \times 4) \otimes(4 \times 4) \equiv B_{K} \quad \text { operate on any }\left|\Psi^{(0)}\right\rangle \text { repeatedly } \quad \Rightarrow\left|\Psi_{0}\right\rangle
$$

What is the ground state, if we turn on U ?

- Lanczos (scaling!)
- Can we still write $e^{-\tau}$ in one-body form?

Yes, with Hubbard-Stratonivich transformation

Introduction - why auxiliary-field methods?

Hubbard-stratonivich transformation

- Interacting two-body problem can be turned into a linear combination of non-interacting probems living in fluctuating external fields ('completion of square'):

$$
e^{\tau \hat{v}^{2}} \xrightarrow{\text { Hubbard-Strotonivich transformation }} \int e^{-\sigma^{2} / 2} e^{\sigma \sqrt{\tau} \hat{v}} d \sigma \quad \sigma: \text { auxiliary field }
$$

$$
\hat{v}=\sum v_{i j} c_{i}^{\dagger} c_{j}: \text { one-body operator }
$$

- Illustration of HS transformation - Hubbard-like interaction:

$$
\begin{aligned}
& e^{-\tau U n_{i \uparrow} n_{i \downarrow}} \rightarrow e^{\tau U\left(n_{i \uparrow}-n_{i \downarrow}\right)^{2} / 2}=\text { factor } \times \int e^{-\frac{1}{2} x^{2}} e^{\sqrt{\tau U} x\left(n_{i \uparrow}-n_{i \downarrow}\right)} d x \\
& e^{-\tau U n_{i \uparrow} n_{i \downarrow}} \rightarrow e^{-\tau U\left(n_{i \uparrow}+n_{i \downarrow}\right)^{2} / 2}=\text { factor } \times \int e^{-\frac{1}{2} x^{2}} e^{\sqrt{\tau U} i x\left(n_{i \uparrow}+n_{i \downarrow}\right)} d x
\end{aligned}
$$

Or trick by Hirsch:

$$
e^{-\tau U n_{i \uparrow} n_{i \downarrow}}=e^{-\tau U\left(n_{i \uparrow}+n_{i \downarrow}\right) / 2} \cdot \sum_{x= \pm 1} \frac{1}{2} e^{\gamma x\left(n_{i \uparrow}-n_{i \downarrow}\right)} \quad \cosh \gamma=e^{\tau U / 2}
$$

Back to toy problem

What is the ground state, if we turn on \boldsymbol{U} ?

$$
\begin{array}{rl}
e^{-\tau U n_{i \uparrow} n_{i \downarrow}}=\text { factor } \times \sum_{x= \pm 1} \frac{1}{2} e^{\gamma x n_{i \uparrow}} e^{-\gamma x n_{i \downarrow}} \cosh \gamma=e^{\tau U / 2} \\
e^{-\tau H}=\int d \mathrm{x} p(\mathrm{x}) & \left(\begin{array}{cccc}
e^{\gamma x_{1}} & 0 & 0 & 0 \\
0 & e^{\gamma x_{2}} & 0 & 0 \\
0 & 0 & e^{\gamma x_{3}} & 0 \\
0 & 0 & 0 & e^{\gamma x_{4}}
\end{array}\right) \cdot B_{K, \uparrow} \\
& \otimes\left(\begin{array}{cccc}
e^{-\gamma x_{1}} & 0 & 0 & 0 \\
0 & e^{-\gamma x_{2}} & 0 & 0 \\
0 & 0 & e^{-\gamma x_{3}} & 0 \\
0 & 0 & 0 & e^{-\gamma x_{4}}
\end{array}\right) \cdot B_{K, \downarrow} \\
& \begin{array}{l}
1 \text {-particle propagator }
\end{array} \\
e^{-\tau(\mathrm{x})}=\int p(\mathrm{x}) B(\mathrm{x}) d \mathrm{x} & \mathrm{x}=\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}
\end{array}
$$

- With U, same as $U=0$, except for integral over $\mathbf{X} \rightarrow$ Monte Carlo

Introduction to AF QMC

Standard ground-state AF QMC

Sugiyama ${ }^{\mathcal{E} \text { Koonin }{ }^{\prime} 86}$

$\langle\hat{O}\rangle=\frac{\left\langle\Psi^{(0)}\right| e^{-\tau H} \cdots e^{-\tau H} \hat{O} e^{-\tau H} \cdots e^{-\tau H}\left|\Psi^{(0)}\right\rangle}{\left\langle\Psi^{(0)}\right| e^{-\tau H} \cdots e^{-\tau H} e^{-\tau H} \cdots e^{-\tau H}\left|\Psi^{(0)}\right\rangle}$
$\Downarrow \quad e^{-\tau H}=\int p(\mathrm{x}) B(\mathrm{x}) d \mathrm{x}$

$$
\frac{\int p\left(\mathrm{x}^{(1)}\right) \cdots p\left(\mathrm{x}^{(2 L)}\right)\left\langle\Psi^{(0)}\right| B\left(\mathrm{x}^{(2 L)}\right) \cdots B\left(\mathrm{x}^{(L+1)}\right) \hat{O} B\left(\mathrm{x}^{(L)}\right) \cdots B\left(\mathrm{x}^{(1)}\right)\left|\Psi^{(0)}\right\rangle d \mathrm{x}^{(1)} \cdots d \mathrm{x}^{(2 L)}}{\int p\left(\mathrm{x}^{(1)}\right) \cdots p\left(\mathrm{x}^{(2 L)}\right)\left\langle\Psi^{(0)}\right| B\left(\mathrm{x}^{(2 L)}\right) \cdots B\left(\mathrm{x}^{(L+1)}\right) B\left(\mathrm{x}^{(L)}\right) \cdots B\left(\mathrm{x}^{(1)}\right)\left|\Psi^{(0)}\right\rangle d \mathrm{x}^{(1)} \cdots d \mathrm{x}^{(2 L)}}
$$

Choose $\left|\Psi^{(0)}\right\rangle$ as a Slater determinant $\quad B(\mathrm{x})|\phi\rangle=\left|\phi^{\prime}\right\rangle$
Many-dim integral can be done by Monte Carlo: $\frac{\int O_{\mathrm{Gr}}(X) p(X) \operatorname{det}[X] d X}{\int p(X) \operatorname{det}[X] d X} \quad X \equiv\left\{\mathbf{x}^{(l)}\right\}$
Applications mostly to "simple models":

- Hubbard model, impurity models in condensed matter
- nuclear shell model
- lattice QCD

Introduction to AF QMC

Sign problem in standard AF QMC:

As system size grows, average sign of $\operatorname{det}[] \rightarrow 0$ exponentially.
\Rightarrow exponential scaling

- Sign problem is often most severe where the physics is most interesting, for example, in 2-D Hubbard model when number of electrons $\sim 85 \%$ number of lattice sites, where it is thought to model the CuO planes of high $-T_{c}$ cuprates
- In fact, a phase (not just sign) problem appears for general 2-body interactions.

Some "lingo" from mean field

- Electronic Hamiltonian: (Born-Oppenheimer)

$$
H=H_{1-\text { body }}+H_{2-\mathrm{body}}=-\frac{\hbar^{2}}{2 m} \sum_{i=1}^{M} \nabla_{i}^{2}+\sum_{i=1}^{M} V_{\text {ext }}\left(\mathbf{r}_{i}\right)+\sum_{i<j}^{M} V_{\text {int }}\left(\left|\mathbf{r}_{i}-\mathbf{r}_{j}\right|\right)
$$

can choose any single-particle basis

$$
\left\{\left|\chi_{i}\right\rangle\right\}
$$

$$
\hat{H}=\sum_{i, j}^{N} T_{i j} c_{i}^{\dagger} c_{j}+\sum_{i, j, k, l}^{N} V_{i j l k} \underbrace{c_{i}^{\dagger} c_{j}^{\dagger} c_{k} c_{l}}_{N} \int \chi_{i}^{\star}\left(\mathbf{r}_{1}\right) \chi_{j}^{\star}\left(\mathbf{r}_{2}\right) \frac{1}{\left|\mathbf{r}_{1}-\mathbf{r}_{2}\right|} \chi_{k}\left(\mathbf{r}_{2}\right) \chi_{l}\left(\mathbf{r}_{1}\right) d \mathbf{r}_{1} d \mathbf{r}_{2}
$$

- An orbital:

$$
\left|\varphi_{m}\right\rangle=\sum_{i=1}^{N} \varphi_{i, m}\left|\chi_{i}\right\rangle
$$

- A Slater determinant:

$$
\left(\begin{array}{c}
\left.\left(\begin{array}{c}
\varphi_{1,1} \\
\varphi_{2,1} \\
\vdots \\
\varphi_{N, 1}
\end{array}\right)\left(\begin{array}{ccc}
\varphi_{1,2} & \cdots & \varphi_{1, M} \\
\varphi_{2,2} & \cdots & \varphi_{2, M} \\
\vdots & & \vdots \\
\varphi_{N, 2} & \cdots & \varphi_{N, M}
\end{array}\right) \quad \begin{array}{l}
\\
\end{array}\right): \text { basis } \\
\end{array}\right.
$$

MnO

Summary: basic formalism of AF methods

To obtain ground state, use projection in imaginary-time:

$$
\begin{aligned}
\left|\Psi^{(n+1)}\right\rangle & =e^{-\tau \hat{H}}\left|\Psi^{(n)}\right\rangle \quad \xrightarrow{n \rightarrow \infty}\left|\Psi_{0}\right\rangle \\
& \tau: \text { cnst, small } \quad\left|\Psi^{(0)}\right\rangle: \text { arbitrary initial state }
\end{aligned}
$$

Electronic Hamiltonian: (2nd quantization, given any 1-particle basis)

$$
\begin{array}{ll}
\hat{H}=\hat{H}_{1}+\hat{H}_{2}=\sum_{i, j}^{M} T_{i j} c_{i}^{\dagger} c_{j}+\sum_{i, j, k, l}^{M} V_{i j l k} c_{i}^{\dagger} c_{j}^{\dagger} c_{k} c_{l} & M: \text { basis size } \\
\begin{array}{ll}
\hat{H}_{2} \rightarrow-\sum \hat{v}^{2} & \text { with } \hat{v}=1 \text {-body } \\
\text { Hubbard-Strotonivich transf. }
\end{array} & \\
e^{-\tau \hat{H}} \rightarrow e^{-\tau \hat{H}_{1}} \int e^{-\sigma^{2} / 2} e^{\sigma \sqrt{\tau} \hat{v}} d \sigma & \bullet \cdots \cdots \rightarrow\left\{\begin{array}{l}
|\bullet| \\
|\ell| \\
|\ell|
\end{array}\right.
\end{array}
$$

interacting system $\rightarrow \sum$ (non-interacting system in auxiliary fields)

AF methods: some background

- Applied in models in condensed matter, nuclear physics, (lattice QCD),

Scalapino, Sugar, Hirsch, White et al.; Koonin; Sorella, interacting $\rightarrow \sum$ (non-interacting in fields)
basic idea: Monte Carlo to do sum (path integral)

- However,
$>$ sign problem for "simple" interactions (Hubbard)
$>$ phase problem for realistic interaction
Fahy \& Hamann; Baroni \& Car; Wilson \& Gyorffy; Baer et. al.;
- Reformulate ---

Slater determinant random walk (preliminary I)

- In general, we can choose any single-particle basis $\left\{\left|\chi_{i}\right\rangle\right\}$, with $i=1,2, \cdots, N$
- A single-particle orbital (labeled by m) is given by $\hat{\varphi}_{m}{ }^{\dagger}|0\rangle \equiv \sum_{i=1}^{N} \varphi_{i, m}\left|\chi_{i}\right\rangle$
- If we have M identical fermions $(M \leq N)$, a Slater determinant $|\phi\rangle$ is given by:

$$
|\phi\rangle \equiv \hat{\varphi}_{1}{ }^{\dagger} \hat{\varphi}_{2}^{\dagger} \cdots \hat{\varphi}_{M}^{\dagger}|0\rangle
$$

- $|\phi\rangle$ is represented by an $N \times M$ matrix:

$$
\Phi \equiv\left(\begin{array}{cccc}
\varphi_{1,1} & \varphi_{1,2} & \cdots & \varphi_{1, M} \\
\varphi_{2,1} & \varphi_{2,2} & \cdots & \varphi_{2, M} \\
\vdots & \vdots & & \vdots \\
\varphi_{N, 1} & \varphi_{N, 2} & \cdots & \varphi_{N, M}
\end{array}\right)
$$

- E.g., $\left\langle\phi \mid \phi^{\prime}\right\rangle=\operatorname{det}\left(\Phi^{\mathrm{T}} \Phi^{\prime}\right) ; \quad G_{i j} \equiv \frac{\langle\phi| c_{c}^{\dagger} c_{c}\left|\phi^{\prime}\right\rangle}{\left\langle\phi \mid \phi^{\prime}\right\rangle}=\left[\Phi^{\prime}\left(\Phi^{\mathrm{T}} \Phi^{\prime}\right)^{-1} \Phi^{\mathrm{T}}\right]_{i j}$; any 2-body correlation $\leftarrow\left\{G_{i j}\right\}$

Slater determinant random walk (preliminary II)

HS transformation:
For example in electronic systems:

$$
H=K+V_{\mathrm{e}-\mathrm{I}}+V_{\mathrm{e}-\mathrm{e}}+V_{\mathrm{I}-\mathrm{I}}
$$

In plane-wave one-particle basis $|k\rangle \equiv \frac{1}{\sqrt{\Omega}} e^{i \mathbf{G}_{k} \cdot \mathbf{r}}$:

$$
\begin{aligned}
V_{\mathrm{e}-\mathrm{I}} & =\sum_{i \neq j} V_{\text {local }}\left(\mathbf{G}_{i}-\mathbf{G}_{j}\right) c_{i}^{\dagger} c_{j}+\sum_{i, j} V_{\mathrm{NL}}\left(\mathbf{G}_{i}, \mathbf{G}_{j}\right) c_{i}^{\dagger} c_{j} \\
V_{\mathrm{e}-\mathrm{e}} & =\frac{1}{2 \Omega} \sum_{i, j, \mathbf{Q} \neq 0} \frac{4 \pi}{|\mathbf{Q}|^{2}} c_{\mathbf{G}_{i}+\mathbf{Q}}^{\dagger} c_{\mathbf{G}_{j}-\mathbf{Q}^{c} c_{\mathbf{G}_{j}} c_{\mathbf{G}_{i}}} \\
& \rightarrow-\frac{1}{2 \Omega} \sum_{\mathbf{Q} \neq 0} \frac{4 \pi}{|\mathbf{Q}|^{2}} \rho^{\dagger}(\mathbf{Q}) \frac{\rho(\mathbf{Q})}{i \hat{v}} \sqrt[\sum_{i} c_{\mathbf{G}_{i}+\mathbf{Q}^{c} \mathbf{G}_{i}}^{\dagger}]{\hat{v}^{\prime}}
\end{aligned}
$$

New AF QMC approach

Random walks in Slater determinant space:

$$
\begin{aligned}
\text { Recall }\left|\Psi^{(n+1)}\right\rangle= & e^{-\tau \hat{H}}\left|\Psi^{(n)}\right\rangle \xrightarrow{n \rightarrow \infty} \quad\left|\Psi_{0}\right\rangle & \text { SZ, Carlson, Gubernatis } \\
& \int_{V} \text { H-S transformation } & \text { SZ, Krakauer }
\end{aligned}
$$

Schematically:

Connection with DMC

Many-dim. electronic configuration space: $R=\left\{\mathbf{r}_{1}, \mathbf{r}_{2}, \ldots ., \mathbf{r}_{M}\right\}$

$$
\begin{array}{cl}
\hat{H}=\sum_{i}^{M} \frac{\hat{\mathbf{p}}_{i}^{2}}{2 m}+\hat{V} & \left|\Psi^{(n+1)}\right\rangle=e^{-\tau \hat{H}}\left|\Psi^{(n)}\right\rangle \rightarrow\left|\Psi_{0}\right\rangle \\
e^{-\tau \hat{\mathbf{p}}_{i}^{2} / 2 m}=\int e^{-\sigma^{2} / 2} e^{i \hat{\mathbf{p}}_{i} \cdot(\gamma \sigma)} d \sigma & \gamma=\sqrt{\frac{\tau}{m}} \\
e^{-\tau \hat{H}}=\int e^{-\vec{\sigma}^{2} / 2} e^{i \hat{P} \cdot(\gamma \vec{\sigma})} d \vec{\sigma} e^{-\tau \hat{V}} & \vec{\sigma}: 3 M \text {-dim vector } \\
\text { translation op. } & \\
\text { Random walk realization of } \cdots \text { : } & \text { basic idea (importance sampling can also be derived) }
\end{array}
$$

\[

\]

Random walks in Slater determinant space

Standard DMC

$$
|R\rangle=\left|\mathbf{r}_{1}, \mathbf{r}_{2}, \cdots, \mathbf{r}_{M}\right\rangle
$$

$$
\left|\Psi_{0}\right\rangle=\sum_{R} \Psi_{0}(R)|R\rangle
$$

$$
\Downarrow
$$

$$
\left|\Psi_{0}\right\rangle \doteq \sum_{\mathrm{MC}}|R\rangle
$$

- The formalism is appealing - each random walker is a full Slater determinant
- Close formal relation to mean-field approaches. The QMC thus shares the same machinery as DFT or Hartree-Fock, using any one-particle basis
- Second-quantization, antisymmetry automatically imposed
- The single-particle problem (\hat{H}_{1}) is solved exactly, with no statistical error
- Correlation effects are obtained by building stochastic ensembles of independent-particle solutions
- Core-electron problem: non-local pseudopotential can be implemented straightforwardly - locality approximation eliminated

But ... sign problem

E.g., in Hubbard:
$\cdot e^{-\tau \hat{H}} \rightarrow$ paths in Slater determinant space

- Suppose $\left|\Psi_{0}\right\rangle$ is known; consider "hyper-node" line

- If path reaches hyper-node

$$
\begin{aligned}
& \left\langle\Psi_{0} \mid \phi\right\rangle=0 \\
& \Rightarrow\left\langle\Psi_{0}\right| e^{-n \tau \hat{H}}|\phi\rangle=0
\end{aligned}
$$

then its descendent paths collectively contribute 0

- MC signal is exponentially small compared to noise

In special cases ($1 / 2$ filling, or $U<0$), symmetry keeps paths to one side
\rightarrow no sign problem

How to control the sign problem?

Constrained path appr.

keep only paths that never reach the node
require $\left\langle\Psi_{\mathbf{T}} \mid \phi\right\rangle>0$

Trial wave function

Zhang, Carlson, Gubernatis, '97
Zhang, ‘00

Introduction to $\boldsymbol{T}>\mathbf{0}$ method

Standard finite-T method Blankenbecler, Scalapino, and Sugar, '81
Partition function for Hamiltonian H is: $\quad(\beta=1 / k T)$

$$
\operatorname{Tr}\left(e^{-\beta H}\right)=\operatorname{Tr}\left(e^{-\tau H} e^{-\tau H} \cdots e^{-\tau H}\right)
$$

Need:

$$
e^{-\tau H}=\sum_{\mathrm{x}} B(\mathrm{x})
$$

$$
\langle O\rangle=\frac{\operatorname{Tr}\left(O e^{-\beta H}\right)}{\operatorname{Tr}\left(e^{-\beta H}\right)}=\frac{\sum_{\left\{\mathrm{x}_{l}\right\}} \operatorname{Tr}\left(O B\left(\mathrm{x}_{L}\right) B\left(\mathrm{x}_{L-1}\right) \cdots B\left(\mathrm{x}_{1}\right)\right)}{\sum_{\left\{\mathrm{x}_{l}\right\}} \operatorname{Tr}\left(B\left(\mathrm{x}_{L}\right) B\left(\mathrm{x}_{L-1}\right) \cdots B\left(\mathrm{x}_{1}\right)\right)}
$$

Analytically evaluate trace: $\quad \operatorname{Tr}\left(e^{-\beta H}\right)=\sum_{\left\{\mathrm{x}_{l}\right\}} \operatorname{det}\left[I+B\left(\mathrm{x}_{L}\right) B\left(\mathrm{x}_{L-1}\right) \cdots B\left(\mathrm{x}_{1}\right)\right]$
Sample fields $\left\{\mathrm{x}_{l}\right\}$ by Metropolis Monte Carlo to compute sum.
Sign Problem in standard finite-T AF QMC:

- As T lowers, average sign of $\operatorname{det}[] \rightarrow 0$ exponentially.
- We need to control the sign problem - focus on real auxiliary fields, i.e., real \hat{v}

The sign problem at finite- T

Imagine introducing path integrals one time slice at a time: Zhang, '99

$$
\begin{array}{rlr}
Z & =\operatorname{Tr}\left(e^{-\tau H} e^{-\tau H} \cdots e^{-\tau H} e^{-\tau H}\right) & P_{0} \\
& =\sum_{\left\{\mathbf{x}_{1}\right\}} \frac{\operatorname{Tr}\left(e^{-\tau H} e^{-\tau H} \cdots e^{-\tau H} B\left(\mathbf{x}_{1}\right)\right)}{} P_{1}\left(\left\{\mathbf{x}_{1}\right\}\right) \quad-\text { integrand } \\
& =\sum_{\left\{\mathbf{x}_{1}, \mathbf{x}_{2}\right\}} \operatorname{Tr}\left(e^{-\tau H} e^{-\tau H} \cdots B\left(\mathbf{x}_{2}\right) B\left(\mathbf{x}_{1}\right)\right) & P_{2}\left(\left\{\mathbf{x}_{1}, \mathbf{x}_{2}\right\}\right) \\
& =\cdots \\
& =\sum_{\left\{\mathbf{x}_{l}\right\}} \operatorname{det}\left[I+B\left(\mathbf{x}_{L}\right) B\left(\mathbf{x}_{L-1}\right) \cdots B\left(\mathbf{x}_{1}\right)\right] & P_{L}\left(\left\{\mathbf{x}_{1}, \mathbf{x}_{2}, \cdots, \mathbf{x}_{L}\right\}\right)
\end{array}
$$

Suppose we know $e^{-\tau H}$. Consider P_{l} :

- If $P_{l}=0$, all future paths $\left\{\mathbf{x}_{l+1}, \mathbf{x}_{l+2}, \cdots, \mathbf{x}_{L}\right\}$ collectively contribute 0 in Z.
- A complete path $\left\{\mathbf{x}_{l}\right\}$ contributes to Z iff $P_{l}>0$ for all l.

Constrained path method at finite-T

Constraint to control the sign problem
Require: $P_{1}\left(\left\{\mathrm{x}_{1}\right\}\right)>0 ; P_{2}\left(\left\{\mathrm{x}_{1}, \mathrm{x}_{2}\right\}\right)>0 ; \ldots ; P_{L}\left(\left\{\mathrm{x}_{1}, \mathrm{x}_{2}, \cdots, \mathrm{x}_{L}\right\}\right)>0$.

- Constraint eliminates all noise paths ('dashed lines').
- In practice, we use trial B_{T} for $e^{-\tau H}-$ approximate.

Monte Carlo sampling algorithm to incorporate constraint
If B_{T} is \sum (mean-field), then $\operatorname{Tr} \rightarrow \operatorname{det}[]$ in P_{l}.
Sampling - random walk of L steps:

Recovery from wrong trial w.f.

More predictive QMC: requires reducing reliance on trial wf

2-D Hubbard model: finite-T

- $U>0 ; 12 \%$ doping, 4×4
- Sign problem severe <s>~10^-5

Compare with:

- high T: exact calculation with sigr problem
- $\mathrm{T}=0 \mathrm{~K}$: exact diag.

New AF QMC approach

Random walks in Slater determinant space:

$$
\begin{aligned}
\text { Recall }\left|\Psi^{(n+1)}\right\rangle= & e^{-\tau \hat{H}}\left|\Psi^{(n)}\right\rangle \xrightarrow{n \rightarrow \infty}\left|\Psi_{0}\right\rangle \\
& \int_{V} \text { H-S transformation } \\
& \int e^{-\sigma^{2} / 2} e^{\hat{\mathbf{v}}(\sigma)} d \sigma \square
\end{aligned}
$$

Fre nanamal intamotion nhaen numhlam:

Controlling the phase problem

Sketch of approximate solution:

- Modify propagator by "importance sampling": phase \rightarrow degeneracy (use trial wf)
- Project to one overall phase: $\quad \sum_{\phi} \frac{|\phi\rangle}{\left\langle\Psi_{T} \mid \phi\right\rangle}$ break symmetry $\quad(+/-\rightarrow$ rotation)

After:
Bulk Si, 2-atom fcc primitive cell

Controlling the phase problem --- more details

(a) Phaseless formalism

SZ \& Krakauer

- Seek MC representation of $\left|\Psi_{0}\right\rangle$ in the form: $\left|\Psi_{0}\right\rangle \doteq \sum_{\phi} \frac{|\phi\rangle}{\left\langle\Psi_{T} \mid \phi\right\rangle}$ i.e., the contribution of each $|\phi\rangle$ is independent of its phase (if $\left|\psi_{T}\right\rangle$ is exact)
- This is accomplished by an "importance-sampling" transformation to modify the propagator:

$$
\begin{aligned}
& \int\left\langle\Psi_{T} \mid \phi^{\prime}(\sigma)\right\rangle e^{-\frac{1}{2} \sigma^{2}} B(\sigma) d \sigma \frac{1}{\left\langle\Psi_{T} \mid \phi\right\rangle}=e^{-\tau \hat{H}_{1}} \int e^{-\sigma^{2} / 2} e^{(\sigma-\bar{\sigma}) \sqrt{\tau} \hat{v}} d \sigma e^{-\tau \operatorname{Re}\left\{E_{L}(\phi)\right\}} \\
& \quad \star \text { Force bias: } \bar{\sigma} \equiv-\frac{\left\langle\Psi_{T}\right| \sqrt{\tau} \hat{\imath}|\phi\rangle}{\left\langle\Psi_{T} \mid \phi\right\rangle} \\
& \quad \star \text { Local energy: } E_{L}(\phi) \equiv \frac{\left\langle\Psi_{T}\right| \hat{H}|\phi\rangle}{\left\langle\Psi_{T} \mid \phi\right\rangle}
\end{aligned}
$$

(b) Projection to break "rotational invariance"

- With (a), we can confine the RW to one overall phase (e.g., 0)
- This is accomplished by projecting the RW onto 1D: reducing the weight of a walker according to its phase change, e.g., by $\cos (\Delta \theta)$

Controlling the phase problem: some comments

Subtleties:

- Constraint before importance sampling:
$\operatorname{Re}\left\langle\Psi_{\mathrm{T}} \mid \phi\right\rangle>0$,
then use $\operatorname{Re}\left\langle\Psi_{\mathrm{T}} \mid \phi\right\rangle$ as importance function --- natural (!?), but does not work well
- Instead, project after "importance sampling": use complex importance function $\left\langle\Psi_{\mathrm{T}} \mid \phi\right\rangle$

It helps to subtract "mean-field background" in HS:

$$
\hat{v}^{2} \rightarrow(\hat{v}-\langle\hat{v}\rangle)^{2}+2 \hat{v}\langle\hat{v}\rangle-\langle\hat{v}\rangle^{2}
$$

If ${ }^{\hat{v}}$ is real, method reduces to constrained path MC
Two-dimensionality unique
connection and difference(!) with fixed-phase

Discussion - new AF QMC

- Pluses
- Sign problem is often found to be reduced
\leftarrow more robust and predictive methods
- Can do down-folded Hamiltonians (realistic models)
- Uses a basis --- walkers are Slater determinants formal connection to DFT --- k-pts, non-loc psp's, PAW's,
- Minuses
- Uses a basis --- finite basis-size error
- Mixed-estimator of total energy is not variational
- Not straightforward to include a Jastrow factor in trial w.f. (....)

Application: Hubbard model

- Simplest model combining band structure and interaction:

$$
H=K+V=-t \sum_{\langle i j\rangle \sigma}\left(c_{i \sigma}^{\dagger} c_{j \sigma}+c_{j \sigma}^{\dagger} c_{i \sigma}\right)+U \sum_{i} n_{i \uparrow} n_{i \downarrow}
$$

electrons on a 2-D lattice

- near-neighbor hopping
- on-site repulsion

Size $N=L \times L$
Filling $\langle n\rangle=\frac{N_{\uparrow}+N_{\downarrow}}{N}$

- Rene ved interest due to man ye xperimental opportunities:
- optical lattices
- trapped Fermi gas (unitarit y. QMC key)
-Long-standing: connection to cuprates? phase separation?
- We look at ground-state energ yvs. filling

Hubbard model: equation of state

Exact diagonalization: Dagotto et.al. 1992
CPMC: Zhang et.al., 1997

- Constrained-path auxiliary field QMC (CPMC) is accurate.
- There are kinks at closed-shell fillings => large shell effects.

Hubbard model: equation of state

Ground-state energy per site at $U=4$ (in units of t)

Hubbard model: persistent shell effects

- One signal for phase separation: does e(h) turn?
- Shell effect persists to $>40 \times 40$, leads to bias

Twist averaged boundary conditions (TABCs)

- TABCs have been widely used in band structure methods; some in QMC (Foulkes et.al., Lin, Zhong \& Ceperley...), and exact diagonalizations (Jullien \& Martin, Poilblanc, Gross...).
- E.g. in one dimension:
- The particle picks up a phase when it goes around the lattice:

$$
\Psi(x+L)=e^{i \theta_{x}} \Psi(x)
$$

- In the 1D Hubbard Hamltonian:

$$
\begin{aligned}
& H=\sum_{i, \sigma}\left(-t e^{i \theta_{x} / L} c_{i+1 \sigma}^{\dagger} c_{i \sigma}-t e^{-i \theta_{x} / L} c_{i-1 \sigma}^{\dagger} c_{i \sigma}\right)+U \sum_{i} n_{i \uparrow} n_{i \downarrow} \\
& E_{\text {free }}\left(k, \theta_{x}\right)=-2 t \cos \left(k+\frac{\theta_{x}}{L}\right)
\end{aligned}
$$

- Breaks degenerac yin free-particle spectrum. But introduces phase problem
\rightarrow use the ne wmethod

Application: molecular binding energies

- All with single mean-field determinant as trial w.f.
- "automated" post-HF or post-DFT

Molecular binding energies

3 types of calc's:

- PW +psp:
- Gaussian/AE:
- Gaussian/sc-ECP:

Nval up to ~ 60

- ~ 100 systems (also IP, EA, a_{B}, ω): eq. geom., moderate correlation
- Error < a few mHa (0.1 eV)
- Accuracy $\sim \operatorname{CCSD}(\mathrm{T}) \quad$ (gold standard in chemistry, but N^{\top})
- A QMC algorithm that complements DMC/GFMC
- reduced dependence on trial wf
- Larger systems? strong correlation?

Large extended systems

Cohesive energies: (eV/atom)

	diamond Si	bcc Na
LDA	5.086	1.21
DMC	$4.63(2)$	$0.991(1) \mathrm{w} / \mathrm{o} \mathrm{CPP}$
		$1.022(1) \mathrm{w} / \mathrm{CPP}$
present	$4.59(3)$	$1.143(7)$
expt.	$4.62(8)$	1.13

- Na (preliminary):
- metal
- new finite-size correction scheme
- plane-wave + pseudopotential calculations
- DMC -- Needs et al (Cambridge group)

Benchmark: $\mathrm{H}_{2} \mathrm{O}$ bond breaking

Mimics increasing correlation effects:

(Quantum-chemistry-like calculation with Gaussian basis)

- $\operatorname{CCSD}(\mathrm{T})$ methods (excellent at eq.) have problems
- The new method gives more uniform accuracy (error < 4 mHa)

Equilibrium
"bonding"

Dissoc. limit
"insulating"

F_{2} bond breaking

Mimics increasing correlation effects:

- UHF unbound.

Nonetheless, large dependence on trial wf??

- No. Spin-contamination:
- | $\left.\Psi_{\text {UHF }}\right\rangle$: not eigenstate of S^{2}
- low-lying triplet in F_{2}
- Simple fix - spin-projection:
- Let $\left|\Psi^{(0)}\right\rangle=\left|\Psi_{\text {RHF }}\right\rangle$
- HS preserves spin symmetry
- each walker determinant:

free of contamination

Equilibrium
"bonding"

Dissoc. limit
"insulating"

F_{2} bond breaking --- larger basis

How well does DFT do?

- LDA and GGA/PBE well-depths too deep
- B3LYP well-depth excellent
- "Shoulder" too steep in all 3

C_{2} potential energy curve

ARTICLES

Full configuration interaction potential energy curves for the $X^{1} \Sigma_{g}^{+}$, $B^{1} \Delta_{g}$, and $B^{\prime}{ }^{1} \Sigma_{g}^{+}$states of C_{2} : A challenge for approximate methods

Micah L. Abrams and C. David Sherrill ${ }^{\text {a) }}$
Center for Computational Molecular Science and Technology, School of Chemistry and Biochemistry,
Georgia Institute of Technology, Atlanta, Georgia 30332-0400
(Received 7 July 2004; accepted 17 August 2004)
The C_{2} molecule exhibits unusual bonding and several low-lying excited electronic states, making the prediction of its potential energy curves a challenging test for quantum chemical methods. We
-•••
benchmark results. Unfortunately, even couple unrestricted Hartree-Fock reference exhibits 1 ground state. The excited states are not accurat

C_{2} potential energy curve

- QMC with multi-determinant MCSCF trial wf (preliminary)

Metal-insulator transition in H-chain

Stretching bonds in H_{50} :

Symmetric: stretch each k Asymmetric: stretch red bonds only

- Near-exact DMRG (solid lines)
Chan et. al., '06
- QMC agrees with DMRG to $0.002 \mathrm{eV} /$ electron

Thanks:

Collaborators:

- Wissam Al-Saidi
- Chia-Chen Chang
- Henry Krakauer
- Hendra Kwee
- Wirawan Purwanto

Support:

- NSF, ARO, DOE-cmsn

Lecture Notes: (missing recent developments - see papers below)

- Shiwei Zhang, "Constrained Path Monte Carlo For Fermions," in "Quantum Monte Carlo Methods in Physics and Chemistry," Ed.M. P. Nightingale and C. J. Umrigar, NATO ASI Series (Kluwer Academic Publishers, 1998). (cond-mat/9909090: http://xxx.lanl.gov/abs/cond-mat/9909090v1)
- Shiwei Zhang, " Quantum Monte Carlo Methods for Strongly Correlated Electron Systems," in " TTheoretical Methods for Strongly Correlated Electrons," Ed. by D. Senechal, A.-M. Tremblay, and C. Bourbonnais, Springer-Verlag (2003). (available at my website:

```
http://www.physics.wm.edu/~shiwei/Preprint/Springer03.pdf )
```


Some references: (incomplete!)

In addition to the general QMC references from previous lectures:

1. R. Blankenbecler, D. J. Scalapino, and R. L. Sugar, Phys. Rev. D 24, 2278 (1981)
2. G. Sugiyama and S. E. Koonin, Ann. Phys. 168, 1 (1986)
3. S. R. White et. al., Phys. Rev. B 40, 506 (1989)
4. D. R. Hamann and S. B. Fahy, Phys. Rev. B 41, 11352 (1990)
5. P. L. Silvestrelli and S. Baroni and R. Car, Phys. Rev. Lett. 71, 1148 (1993)
6. N. Rom, D.M. Charutz, and D. Neuhauser, Chem. Phys. Lett. 270, 382 (1997).
7. S. Zhang and J. Carlson and J. E. Gubernatis, Phys. Rev. B 55, 7464 (1997)
8. S. Zhang, Phys. Rev. Lett. 83, 2777 (1999)
9. S. Zhang and H. Krakauer, Phys. Rev. Lett. 90, 136401 (2003)
10. W. Purwanto and S. Zhang, Phys. Rev. E 70, 056702 (2004)
11. W. A. Al-Saidi, S. Zhang, and H. Krakauer, J. Chem. Phys. 124, 224101 (2006)

What we have not covered (see references)

- Ground state method for boson systems (Ref 10))
- Back-propagation to calculate observables other than the energy (refs 7, 10)
- Finite-size correction for solids
- Twist-averaging in solids
- New 2-body finite-size correction scheme

Kwee et al, arXiv:0711.0921

- Applications (Al-Saidi, Chang, Kwee, Purwanto, ...)
- Van der waals, post-d atoms \& molecules, TM molecules, electron affinities, more bond-breaking, trapped atoms,
(my website)

Summary

- New AF QMC approach: random walks in Slater det. space
- Potentially a method to systematically go beyond independent-particle methods while using much of its machinery
--- superposition of independent-particle calculations
- Phaseless approximation (\rightarrow constrained path if sign problem)
- Hybrid of real-space QMC and 'mean-field' methods
- Towards making QMC more robust, capable, black-box:
- Electronic structure:

Benchmarks in ~ 100 systems (w/ increased correlation effects)

- Lattice models
- Simple trial wfs

QMC 'recovery' ability important for strong correlation

- accuracy seems systematic
- Many opportunities for further development and for applications

