Advanced School on Quantum Monte Carlo Methods in Physics and

 Chemistry21 January - 1 February, 2008

Worm algorithm

N. Prokofiev

University of Massachusetts, Amherst

WORM ALGORITHM FOR CLASSICAL AND QUANTUM STATISTICAL MODELS

Nikolay Prokofiev, Umass, Amherst

Collaborators on major algorithm developments

Boris Svistunov UMass, Amherst


```
(04FA) Se= =
    DEFENSE SCIENCES OFFICE
```

NASA
Trieste, January 2008

Why bother with algorithms?

Efficiency

PhD while still young

PhD while still young Better accuracy
Large system size
More complex systems
Finite-size scaling
Critical phenomena Phase diagrams

Reliably!

New quantities, more theoretical tools to address physics

Grand canonical ensemble $N(\mu)$ Off-diagonal correlations $G(r, \tau)$ "Single-particle" and/or condensate wave functions $\varphi(r)$ Winding numbers and ρ_{S}

Applications: classical and quantum critical phenomena, latttice spin systems, cold atoms (bosons \& fermions), liquid\&solid Helium-4 ...

Worm algorithm idea
Standard Monte Carlo setup:

$$
\begin{array}{llll}
\downarrow & \uparrow & \uparrow & \uparrow \\
\uparrow & \downarrow & \uparrow & \downarrow
\end{array}
$$

- configuration space $=$
arbitrary closed loops
(more or less anything you can draw without loose ends)
- each cnf. has a weight factor
(depends on the model and it's representation)

$$
\begin{gathered}
W_{c n f} \\
e^{-E_{c n f} / T}
\end{gathered}
$$

$$
\sum_{c n f} A_{c n f} W_{c n f}
$$

- quantity of interest $A_{c n f} \longrightarrow\langle A\rangle=\frac{c n f}{\sum_{c n f} W_{c n f}}$

No sampling of topological classes (non-ergodic)

Critical slowing down
$\begin{aligned} & \text { (large loops are related to } \\ & \text { critical modes) }\end{aligned}$$\left(\frac{N_{\text {updates }}}{L^{d}}\right) \sim L^{Z} \quad \begin{aligned} & \text { dynamical critical exponent } \\ & Z \approx 2 \text { in many cases }\end{aligned}$

Worm algorithm idea

draw and erase:

- Topological classes are sampled efficiently (whatever you can draw!)
- No critical slowing down in most cases

Disconnected loops relate to important physics (correlation functions) and are not merely an algorithm trick!

High-T expansion for the Ising model $\quad-\frac{H}{T}=K \sum_{\langle i\rangle>} \sigma_{i} \sigma_{j} \quad(\sigma= \pm 1)$

$$
Z=\sum_{\left\{\sigma_{i}\right\}} e^{\sum_{<i j>} K \sigma_{i} \sigma_{j}}=\sum_{\left\{\sigma_{i}\right\}}\left(\prod_{b=<i j>} e^{K \sigma_{i} \sigma_{j}}\right) \equiv \sum_{\left\{\sigma_{i}\right\}}\left(\prod_{b=<i j>} \sum_{N_{b}=0}^{\infty} \frac{K^{N_{b}}}{N_{b}!}\left(\sigma_{i} \sigma_{j}\right)^{N_{b}}\right)
$$

$$
\equiv \sum_{\left\{N_{b}\right\}}\left(\prod_{b=<i j>} \frac{K^{N_{b}}}{N_{b}!}\right) \prod_{i}\left(\sum_{\sigma_{i}= \pm 1} \sigma_{i}^{M_{i}}\right)
$$

$$
\text { where } \quad M_{i}=\sum_{<i j>} N_{b=<i j>}=\text { even }
$$

$$
\equiv 2^{N} \sum_{\left\{N_{b}\right\}=l o o p s}\left(\prod_{b=<i j>} \frac{K^{N_{b}}}{N_{b}!}\right)
$$

$N_{b}=$ number of lines;

Spin-spin correlation function: $\quad g_{I M}=\frac{G_{I M}}{Z}, G=\sum_{\left\{\sigma_{i}\right\}} e^{-H / T} \sigma_{I} \sigma_{M}$

$$
G \equiv \underbrace{\sum_{\left\{N_{b}\right\}}\left(\prod_{b=<i j>} \frac{K^{N_{b}}}{N_{b}!}\right) \prod_{i}\left(\sum_{\sigma_{i}= \pm 1} \sigma_{i}^{M_{i}+\delta_{i I}+\delta_{i M}}\right) \equiv 2^{N} \sum_{\substack{\left\{N_{b}\right\}=\text { loops }+ \\ \text { Ira-Masha worm }}}\left(\prod_{b=<i j>} \frac{K^{N_{b}}}{N_{b}!}\right)}_{\text {same as before }}
$$

Worm algorithm cnf. space $=Z \bigcup G$
Same as for generalized partition

$$
Z_{W}=Z+\kappa G
$$

Getting more practical: since $e^{K \sigma_{1} \sigma_{2}}=\cosh ^{N}(K)\left[1+\tanh (K) \sigma_{1} \sigma_{2}\right]$

$$
Z=\cosh ^{d N}(K) \sum_{\left\{N_{b}=0,1\right\}}^{\text {loops }}\left(\prod_{b} \tanh ^{N_{b}}(K)\right)
$$

Complete algorithm :

- If $I=M$, select a new site for them at random
- select direction to move M, let it be bond b
- If $N_{b}=\left\{\begin{array}{l}0 \\ 1\end{array}\right.$ accept $N_{b} \rightarrow\left\{\begin{array}{l}1 \\ 0\end{array}\right.$ with prob. $R=\left\{\begin{array}{l}\min (1, \tanh (K)) \\ \min \left(1, \tanh ^{-1}(K)\right)\end{array}\right.$

Solving the critical slowing down problem:

Question: What are the signatures of the phase transition (critical modes)?

loop representation

large loops of linear size \sim L (long-range correlations between spins = large distance
draw large loops! between I and M)

$$
\begin{aligned}
& G(I-M)=G(I-M)+1 \\
& Z=Z+\delta_{I, M} \\
& N_{\text {links }}=N_{\text {links }}+\left(\sum_{b} N_{b}\right)
\end{aligned}
$$

Correlation function:

$$
g(i)=G(i) / Z
$$

Magnetization fluctuations: $\quad\left\langle M^{2}\right\rangle=\left\langle\left(\sum \sigma_{i}\right)^{2}\right\rangle=\sum_{i j}\left\langle\sigma_{i} \sigma_{j}\right\rangle=N \sum g(i)$

Energy: either
or

$$
E=-J N d\left\langle\sigma_{1} \sigma_{2}\right\rangle=-J N d g(1)
$$

$$
E=-J \tanh (K)\left[d N+\left\langle N_{\text {links }}\right\rangle \sinh ^{2}(K)\right]
$$

Ising $\rightarrow\left|\psi_{i}\right|^{4}$ lattice-field theory

$$
-\frac{H}{T}=t \sum_{i v= \pm(x, y, z)} \psi_{i+v}^{*} \psi_{i}+\mu \sum_{i}\left|\psi_{i}\right|^{2}-U \sum_{i}\left|\psi_{i}\right|^{4} \quad \text { (XY-model in the } \mu=2 U \rightarrow \infty \text { limit) }
$$

Start as before

$$
Z=\prod_{i} \int d \psi_{i} e^{-H / T}
$$

$$
\begin{gathered}
\text { expand } \\
\text { on each } \\
\text { bond }
\end{gathered} e^{t \psi_{i+v}^{*} \psi_{i}}=\sum_{N=0}^{\infty} \frac{t^{N_{i v}}\left(\psi_{i+v}^{*} \psi_{i}\right)^{N_{i v}}}{N_{i v}!}
$$

Integrate over phases
$\psi_{i}=x e^{i \varphi}$

$$
\begin{aligned}
& Z=\sum_{N_{i v}}\left(\prod_{i v} \frac{t^{N_{i v}}}{N_{i v}!}\right) \underbrace{\prod_{i}(\int_{i} d \psi_{i}=M_{2 i} \underbrace{M_{1 i}\left(\psi_{i}^{*}\right)^{M_{2 i}}}_{i} e^{\mu\left|\psi_{i}\right|^{2}-U\left|\psi_{i}\right|^{4}}}_{e^{i} \prod_{i}^{i\left(\prod_{1 i}\right.} Q\left(M_{2 i}\right)}) \\
& \text { where } \quad Q(M)= \begin{cases}0 & \text { if } M_{1} \neq M_{2} \\
\pi \int_{0}^{\infty} d x x^{M} e^{\mu x-U x^{2}}= & \text { closed oriented loops } \\
\pi\end{cases}
\end{aligned}
$$

$$
\psi_{i} \sum_{v}^{N_{i v}}\left(\psi_{i}^{*}\right)^{\sum_{v} N_{i+v,-v}}
$$

Flux in = Flux out \Rightarrow closed oriented loops of integer N -currents

$$
g(I-M)=\frac{G(I-M)}{Z}=\left\langle\psi_{I} \psi_{M}^{*}\right\rangle
$$

(one open loop)

Z-configurations have $I=M$

Same algorithm:

- $Z \leftrightarrow G$ sectors, prob. to accept $\quad R_{z \rightarrow G}=\min \left[1, \frac{Q\left(M_{I}+1\right)}{Q\left(M_{I}\right)}\right]$
- $N_{M v} \rightarrow N_{M v}+1$ draw

$$
R=\min \left[1, \frac{t Q\left(M_{M^{\prime}}+1\right)}{\left(N_{M v}+1\right) Q\left(M_{M^{\prime}}\right)}\right]
$$

- $N_{M+v,-v} \rightarrow N_{M+v,-v}-1 \quad$ erase $\quad R=\min \left[1, \frac{\left(N_{M+v,-v}\right) Q\left(M_{M}-1\right)}{t Q\left(M_{M}\right)}\right]$

[^0]
Multi-component gauge field-theory:

$$
-\frac{H}{T}=t \sum_{a ; i v} \psi_{a, i+v}^{*} \psi_{a, i} e^{i A_{v}(i)}+\mu \sum_{a ; i}\left|\psi_{a, i}\right|^{2}-\sum_{a b ; i} U_{a b}\left|\psi_{a, i}\right|^{2}\left|\psi_{b, i}\right|^{2}-\kappa \sum_{\square}\left[\nabla \times A_{v}(i)\right]^{2}
$$

solid-liquid transitions, deconfined criticality, XY-VBS and Neel-VBS quantum phase transitions, etc.
... and finite-T quantum models

Interacting particles on a lattice:

$$
\begin{gathered}
H=H_{0}+H_{1}=\sum_{i j} U_{i j} n_{i} n_{j}-\sum_{i} \mu_{i} n_{i}-\sum_{<i j>} t\left(n_{i}, n_{j}\right) b_{j}^{+} b_{i} \\
Z=\operatorname{Tr} e^{-\beta H} \equiv \operatorname{Tr} e^{-\beta H_{0}} e^{-\int_{0}^{\beta} H_{1}(\tau) d \tau-d i a g o n a l}{ }^{\text {diagonal }} H_{1}(\tau)=e^{\beta H_{0}} H_{1} e^{-\beta H_{0}} \\
=\operatorname{Tr} e^{-\beta H_{0}}\left\{1-\int_{0}^{\beta} H_{1}(\tau) d \tau+\int_{\tau^{\prime}}^{\beta} \int_{0}^{\beta} H_{1}(\tau) H_{1}\left(\tau^{\prime}\right) d \tau d \tau^{\prime}+\ldots\right\}
\end{gathered}
$$

In the diagonal basis set (occupation number representation): $\quad\left\langle\left\{n_{i}\right\}\right|=\left\langle\left\{n_{1}, n_{2}, n_{3}, \ldots\right\}\right|$

$$
Z=\sum_{\left\{n_{i}\right\}}\left\langle\left\{n_{i}\right\}\right| e^{-\beta H_{0}}-\int_{0}^{\beta} e^{-(\beta-\tau) H_{0}} H_{1} e^{-\tau H_{0}} d \tau+\int_{\tau^{\prime} 0}^{\beta} \int_{0}^{\beta} e^{-(\beta-\tau) H_{0}} H_{1} e^{-\left(\tau-\tau^{\prime}\right) H_{0}} H_{1} e^{-\tau^{\prime} H_{0}} d \tau d \tau^{\prime}+\ldots\left|\left\{n_{i}\right\}\right\rangle
$$

Each term describes a particular evolution of $\left\{n_{i}\right\}$ as imaginary "time" increases

0-order term

one of the 2-order terms

potential energy contribution
high-order term for $\mathrm{Z}=\operatorname{Tr} \mathrm{e}^{-\beta H}$

Similar expansion in hopping terms for

$$
G_{I M}=\operatorname{Tr} b_{M}^{\dagger}\left(i_{M}, \tau_{\mathrm{M}}\right) b_{I}\left(i_{I}, \tau_{I}\right) \mathrm{e}^{-\beta H}
$$

+ two special points for Ira and Masha

The rest is worm algorithm in this $\mathrm{Z} \cup G_{I M}$ configuration space: draw and erase lines using exclusively Ira and Masha

ergodic set of local updates

time shift:

space shift
("particle" type):

space shift
("hole" type):

Insert/delete
Ira and Masha:

$$
\mathrm{Z} \leftrightarrow G
$$

\qquad
connects Z and G configuration spaces

Path-integrals in continuous space

$$
Z=\iiint d R_{1} \ldots d R_{P} \exp \left\{-\sum_{i=1}^{P=\beta / \tau}\left(\frac{m\left(R_{i+1}-R_{i}\right)^{2}}{2 \tau}+U(R) \tau\right)\right\}
$$

Not necessarily for closed loops!

Feynman (space-time) diagrams for fermions with contact interaction (attractive) $O=-U$ ($\mathrm{n}=1$ positive Hubbard model too)

Pair correlation function
$\left\langle a_{\uparrow}^{+}\left(r_{1}, \tau_{1}\right) a_{\downarrow}^{+}\left(r_{1}, \tau_{1}\right) a_{\downarrow}\left(r_{2}, \tau_{2}\right) a_{\uparrow}\left(r_{2}, \tau_{2}\right)\right\rangle$

The rest is worm algorithm in this $Z \cup G_{I M}$ configuration space: draw and erase interaction vertexes using exclusively Ira and Masha

More: winding numbers and superfluid density

$$
W_{\mu}=\int_{0}^{\beta}[\text { particle number flux }]_{\mu} d \tau
$$

$W=$ fractional

$$
\rho_{S}=\left(m / \beta d L^{d-2}\right)\left\langle W^{2}\right\rangle
$$

Grand canonical ensemble (a "must" for disorder problems!)

Fig. 1
ξ_{ξ}^{ξ}
Fig. 2

Some examples:

Weakly interacting Bose gas:

$$
T_{C}\left(n^{1 / 3} a\right) / T_{C}^{(0)}
$$

$n a^{3}=5 \times 10^{-3}$

Nho, Landau ‘04

Worm algorithm: Pilati, Giorgini, NP

Imperfect crossing due to corrections to scaling

Mott insulator - superifuid $T=0$ phase diagram:

(u/U,t/U) plane, 3D case

$(\mu / U)_{ \pm}$determine gaps for adding/removing particles from the MI state with $\langle n\rangle=1$
gaps control the exponential decay of the Green's function $G(p=0, \tau)$ in time

Otherwise, good luck in calculating energy differences

$$
E(N \pm 1)-E(N) \text { for } N=L^{3} \text { with } L=40
$$

Current standard for simulations of bosons in optical lattices and in traps: all experimental parameters "as is", including particle number" $N \sim 10^{6}$

Quantum spin chains

 $\begin{aligned} & \text { gaps, spin wave spectra, } \\ & \text { magnetization curves } . .\end{aligned} \quad \mathbf{H}=-\sum_{<i j>}\left[J_{x}\left(S_{j x} S_{i x}+S_{j y} S_{i y}\right)+J_{z} S_{j z} S_{i z}\right]-H \sum_{i} S_{i z}$.Energy gap: One dimensional S=1 chain with $J_{z} / J_{x}=0.43$

magnetization curves

$S=1 / 2$ Heisenberg chain

magnetization curves

More tools:
1.Density matrix $n\left(r^{\prime}, r\right)=\left\langle\psi^{\dagger}\left(r^{\prime}, \tau\right) \psi(r, \tau)\right\rangle$ (and the condensate fraction) is as cheap as energy
2. μ is an input parameter, and $\langle N\rangle_{\mu}$ is a simple diagonal property
3. But also compressibility $\kappa V T=\left\langle(N-\langle N\rangle)^{2}\right\rangle_{\mu}$

$$
P_{\mu^{\prime}}(N)=P_{\mu}(N) e^{\left(\mu^{\prime}-\mu\right) N / T}
$$

4. Added particle wavefunction:

$$
G\left(\beta / 2 \rightarrow \infty, r, r^{\prime}\right)=\left\langle G_{N}\right| \psi^{\dagger}(r)\left|G_{N-1}\right\rangle\left\langle G_{N-1}\right| \psi\left(r^{\prime}\right)\left|G_{N}\right\rangle=\varphi(r) \varphi\left(r^{\prime}\right)
$$

mobility thresholds, participation ratio, etc.

Why bother with algorithms?

Efficiency

PhD while still young

PhD while still young
Better accuracy
Large system size
More complex systems
Finite-size scaling
Critical phenomena
Phase diagrams
Reliably!

New quantities, more theoretical tools to address physics

Grand canonical ensemble $N(\mu)$ Off-diagonal correlations $G(r, \tau)$ "Single-particle" and/or condensate wave functions $\varphi(r)$ Winding numbers and ρ_{S}
"Wave function" of the added particle

$$
\phi_{N}(\mathbf{r})=\left\langle\Psi_{G}(N)\right| b_{\mathbf{r}}^{\dagger}\left|\Psi_{G}(N-1)\right\rangle
$$

It is a theorem that for $\Delta>E_{G A P}$ the compressibility is finite

[^0]: Keep drawinglerasing ...

