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Optimization of many-body wave functions

1. Importance of optimizing Ψ

2. Variance minimization vs. Variational Energy minimization

3. Energy optimization methods that work well:

1 Newton method
2 Linear method
3 Perturbative method

4. Connection between methods, mixed minimization in the linear
method

5. Stabilization of methods

6. Illustrative examples:

1 How quickly do the various methods converge for various parameters?
2 How large are variational and fixed-node errors
3 How do E , σ,Tcorr change going from variance minimization to energy

minimization

7. Measures of goodness of wave functions (moments of Ĥ):
a) Energy, b) fluctuations of energy, c) overlap with exact Ψ



Accuracy of Diffusion Monte Carlo

The problem:
Fixed-node error can be LARGE for these systems. e.g., the fixed-node
error for C2 total energy is 1.3 eV and for well-depth is 0.7 eV.

Possible solutions:

1. Solve the Fermion sign problem. Hard!

2. Develop:
1 Better forms of trial wave functions.

2.1.1 Casula and Sorella on geminals

2.1.2 Schmidt, and, Bajdich and Mitas on Pfaffians

2.1.3 Rios and Needs on backflow for nonfluid systems

2 Powerful optimization methods to systematically improve the nodes of
the trial wavefunctions.



Almost all other errors reduced too

1. Reduce fixed-node error (nodes move during optimization). Fixed
node errors can be LARGE.

2. Reduce other systematic errors in the energy – pseudopotential
locality error, time-step error, population-control error.

3. Reduce systematic error of observables that do not commute with the
Hamiltonian (mixed estimators, 〈Ψ0|Â|ΨT 〉 not exact even for
nodeless Ψ).

4. Reduce statistical error.



Functional form of Trial Wave Function

ΨT =

(∑
n

dnD
↑
n D↓

n

)
× J (ri , rj , rij)

• Determinants:
∑

n dnD
↑
n D

↓
n

D↑ and D↓ are determinants of single-particle orbitals φ for up (↑) and
down (↓) spin electrons respectively.
The single-particle orbitals φ are given by:

φ(ri ) =
∑
αk

ckα
Nkα

r
nkα

−1
iα e−ζkα

riα Ylkα
mkα

(̂riα)

• Jastrow: J (ri , rj , rij) =
∏

αi exp (Aαi )
∏

ij exp (Bij)
∏

αij exp (Cαij)

Aαi ⇒ electron-ion correlation
Bij ⇒ electron-electron correlation
Cαij ⇒ electron-electron-ion correlation

dn, ckα
, ζkα

and parms in J are optimized.

∼ Natomtype of J parms.
∼ Natomtype of ζkα

parms.
∼ N2

atom of ckα
parms.

∼ eNatom of dn parms.
Power of QMC:
J parms. do work of dn parms.



Progress in optimization of Many-Body
Wavefunctions

Naive energy optim. → Variance optim. → Efficient energy optim.

− 1988 naive energy optimization, few (∼ 3) parameters
1988 − 2001 variance optimization, ∼ 100 parameters
2001 − efficient energy optimization, > 1000 parameters



Optimization of Many-Body Wavefunctions

A major advantage of quantum Monte Carlo methods is that there is no
restriction on the form of ΨT(R). Hence any insight one may have, as
regards the nature of the many-body correlations, can be built into ΨT(R)
and tested. To exploit this freedom it is necessary to have a method for
optimizing arbitrary wavefunctions.
First thought: Minimize the energy on MC sample.

Ē =

Nconf∑
i=1

HΨT(Ri ; {p})

ΨT(Ri ; {p})
wi , wi =

∣∣∣∣ΨT(Ri )

Ψ0
T(Ri )

∣∣∣∣2
/

Nconf∑
i=1

∣∣∣∣ΨT(Ri )

Ψ0
T(Ri )

∣∣∣∣2
Second thought: Minimize the variance of the local energy.

σ2 =

Nconf∑
i=1

(
HΨT(Ri ; {p})

ΨT(Ri ; {p})
− Ē

)2

wi

Third thought: Minimize the energy using MC but not on MC sample.
Fourth thought: Minimize the linear combination with most of the
weight on energy.



Variance vs. Energy

σ2 =

Nconf∑
i=1

(
HΨT(Ri )

ΨT(Ri )
− Ē

)2

Ē =

Nconf∑
i=1

HΨT(Ri )

ΨT(Ri )

Optimized
Variance

Energies

Original

Energies

Energy
Optimized
Energies

Eav

Eav Eexact



Advantages of Energy (or Mixed) Optim. vs. Variance Optim.

1. Want lowest energy; fluctuations are of secondary importance.
Energy and variance do not always go hand-in-hand enough.

2. Some parameters couple more strongly to energy than variance.

3. Some parameters when variance optimized, make the system too
extended

4. Energy-optimized Ψ can be better for other expectation values
(Rothstein).

5. Hellman-Feynman theorem can be used for forces (when combined
with variance reduction methods).



Early energy optimization methods that worked well

Linear method for linear parameters:
M. P. Nightingale and Melik-Alaverdian, Phys. Rev. Lett., 87, 043401
(2001).
Effective fluctuation potential method:

� S. Fahy, in Quantum Monte Carlo Methods in Physics and Chemistry,
edited by M. P. Nightingale and C. J. Umrigar, [NATO ASI Ser. C.
525 101, 1999];

� Filippi and S. Fahy, J. Chem. Phys., 112, 3523 (2000);
� F. Schautz and S. Fahy, J. Chem. Phys., 116, 3533 (2002);
� D. Prendergast, D. Bevan and S. Fahy, Phys. Rev. B, 66, 155104

(2002);
� Friedemann Schautz and Claudia Filippi, J. Chem. Phys., 120, 10931

(2004).

Stochastic reconfiguration method:

� Sandro Sorella, Phys. Rev. B, 64, 024512 (2001);
� Casula and Sorella, J. Chem. Phys., 119, 6500 (2003).
� Sorella, PRB 71, 241103 (2005).



Optimization methods to be discussed today
1. Newton method CJU, Filippi, PRL 94, 150201 (2005):

Add terms to the Hessian that contribute nothing in the limit of an
infinite MC sample, but cancel much of the fluctuations for a finite
MC sample.
Gain in efficiency: 3 orders of magnitude for NO2, more for C10H12

compared to Newton of Lin-Zhang-Rappe.

2. Linear method (generalized eigenvalue problem):

1 Linear parameters: Nightingale, et al., PRL, 87, 043401 (2001)
Use asymmetric H to have zero variance property in the limit that the
basis functions span an invariant subspace.

2 Nonlinear parameters: Toulouse, CJU, JCP (2007)
CJU, Toulouse, Filippi, Sorella, Hennig, PRL 98, 110201 (2007).
Choose freedom of normalization Ψ(p,R) = N(p) Φ(p,R) to make a
near optimal change in the parameters.

3. Perturbation theory in an arbitrary nonorthog. basis:
Toulouse, CJU, J. Chem. Phys., 126, 084102 (2007).
(Small modification of Scemama-Filippi (2006) perturbative EFP,
modification of the Fahy-Filippi-Prendergast-Schautz EFP method.)



Newton energy minimization method

Find parameter changes by solving linear equations:

h∆p = −g,

h is the Hessian and g is the gradient of the energy.
Two modifications of the straightforward Newton method:

1. Add terms to the Hessian that have zero expectation value on an
infinite MC sample but that cancel much of the fluctuations on a
finite sample.

2. Replace certain terms in the Hessian by other terms that are
approximately proportional to them but that fluctuate less.

These 2 changes improve the efficiency of the simple Newton method of
Lin, Zhang and Rappe by about 3 orders of magnitude.



Newton energy minimization method

Ē =

∫
d3NR ψHψ∫
d3NR |ψ|2

= 〈EL〉; EL(R) =
Hψ(R)

ψ(R)

Ēi =

〈
ψi

ψ
EL +

Hψi

ψ
− 2Ē

ψi

ψ

〉
= 2

〈
ψi

ψ
(EL − Ē )

〉
(by Hermiticity).

Ēij = 2

[ 〈(
ψij

ψ
+

ψiψj

|ψ|2

)
(EL − Ē )

〉
−

〈
ψi

ψ

〉
Ēj −

〈
ψj

ψ

〉
Ēi +

〈
ψi

ψ
EL,j

〉 ]
.

Identical to the Hessian in Lin, Zhang, Rappe.
Two changes:
1) Symmetrize – eigensystem is real
2) Noting that 〈EL,j〉 = 0, rewrite in the form of a covariance
(〈ab〉 − 〈a〉〈b〉)
The fluctuations of 〈ab〉 − 〈a〉〈b〉 are in most cases smaller than those of
〈ab〉, (e.g. if a and b are weakly correlated), and, they are much smaller if√
〈a2〉 − 〈a〉2 � |〈a〉| and a is not strongly correlated with 1/b.



Newton energy minimization method (cont.)

Ēij = 2

[ 〈(
ψij

ψ
+

ψiψj

|ψ|2

)
(EL − Ē )

〉
−

〈
ψi

ψ

〉
Ēj −

〈
ψj

ψ

〉
Ēi

]

+

〈
ψi

ψ
EL,j

〉
−

〈
ψi

ψ

〉
〈EL,j〉 +

〈
ψj

ψ
EL,i

〉
−

〈
ψj

ψ

〉
〈EL,i 〉

= 2

[ 〈(
ψij

ψ
−

ψiψj

|ψ|2

)
(EL − Ē )

〉
(0 for lin. pi in expon)

+2

〈(
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ψ
−

〈
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〉)(
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ψ
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ψ

〉)(
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ψ
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ψ
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〉
−
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ψ

〉
〈EL,i 〉 .

1) Additional terms =0 for infinite sample but cancel most of the
fluctuations for a finite sample.
2) Red terms fluctuate less than blue terms away from minimum. Ratio of
red terms to blue terms depends on ψ but is roughly independent of i and
j . Why?? Exploit that!



Optimization of determinantal parameters

Different issues arise in optimizing Jastrow parameters and determinantal
parameters:
Jastrow: eigenvalues of Hessian have a range of 11 orders of magnitude!
Determinantal parameters: divergences in elements of Hessian and
Hamiltonian matrices.

Ēi = 2

〈
ψi

ψ
(EL − Ē )

〉
(by Hermiticity).

Ēij = 2

[ 〈(
ψij

ψ
+

ψiψj

|ψ|2

)
(EL − Ē )

〉
−

〈
ψi

ψ

〉
Ēj −

〈
ψj

ψ

〉
Ēi

]

+

〈
ψi

ψ
EL,j

〉
−

〈
ψi

ψ

〉
〈EL,j〉 +

〈
ψj

ψ
EL,i

〉
−

〈
ψj

ψ

〉
〈EL,i 〉

Leading divergences cancel! They cancel in the linear method too.
Remaining divergences do not seem to be problematic. Do 2nd order ones
cancel?



Linear method for linear parameters

M. P. Nightingale and Melik-Alaverdian, PRL, 87, 043401 (2001).

Given N = Nparm + 1 basis functions, Ψi (Rσ), that are complete, or, less
stringently that form an invariant subspace, one can find a linear
combination that satisfies the Schrödinger equation exactly for any R:

Ĥ(R)

Nparm∑
j=0

pjΨj(R) = E

Nparm∑
j=0

pjΨj(R)

Multiplying by Ψi (R) and integ. over R gives the gen. eigenvalue eq.,

Hp = ESp, (p0 = 1)
where Hij = 〈Ψi |Ĥ|Ψj〉 and Sij = 〈Ψi |Ψj〉.

Instead, multiplying by Ψi (R)/Ψ2
0(R) and averaging over MC points

sampled from Ψ2
0 again gives Eq. 1 but with Hij =

〈
Ψi

Ψ2
0
ĤΨj

〉
and

Sij =
〈

ΨiΨj

Ψ2
0

〉
. It is this nonsymmetric H that has the strong zero-variance

property that the parameters are independent of the MC sample.



Linear method for linear parameters (cont)

Note that minimizing the energy evaluated on a finite sample

E = min
p

pTHp

pTSp

= min
p

∑
ij piHijpj∑
ij piSijpj

gives a generalized eigenvalue equation with a symmetric H that lacks the
strong zero-variance property.⎛⎝∑

ij

piSijpj

⎞⎠⎛⎝∑
j

Hkjpj +
∑

i

piHik

⎞⎠−

⎛⎝∑
ij

piHijpj

⎞⎠ ⎛⎝2
∑

j

Skjpj

⎞⎠ = 0

(HT + H)

2
p = ESp



Linear method for nonlinear parameters
CJU, Toulouse, Filippi, Sorella, Hennig PRL (2007);

Toulouse, CJU, JCP (2007).

Make linear order Taylor expansion of wavefunction:

Ψlin = Ψ0 +

Nparm∑
i=1

∆pi Ψi

Ψ0 ≡ Ψ(p0,R) = current wave function
Ψlin = next iteration linearized wave function
Ψi = derivative of Ψ at p0, wrt i th parameter.
No unique way to obtain new parameters.
The simplest procedure: is pnew

i = pi + ∆pi .
More complicated procedure: fit wave function form to the optimal linear
combination.
Simpler, yet efficient approach, freedom of norm to make linear
approximation better

Ψ̄(p,R) = N(p) Ψ(p,R), N(p0) = 1

Ψ̄i = Ψi + NiΨ0



General semiorthogonalization

Ψ̄(p,R) = N(p) Ψ(p,R), N(p0) = 1

Ψ̄i = Ψi + NiΨ0

Choose Ni such that the derivatives are orthogonal to a linear combination
of Ψ0 and Ψlin.〈

ξ
Ψ0

|Ψ0|
+ (1 − ξ)

Ψlin

|Ψlin|

∣∣∣∣ Ψi + NiΨ0

〉
= 0

Solving for Ni we get
[
s = 1(−1) if 〈Ψ0|Ψlin〉 = 1+

∑
j S0j∆pj > 0(< 0)

]
,

Ni = −
ξDS0i + s(1 − ξ)(S0i +

∑
j Sij∆pj)

ξD + s(1 − ξ)(1 +
∑

j S0j∆pj)

D =
|Ψlin|

|Ψ0|
=

⎛⎝1 + 2
∑

j

S0j∆pj +
∑
i ,j

Sij∆pi∆pj

⎞⎠1/2



Semiorthogonalization in the linear method

∆Ψ.5Ψlin

.5

Ψi

0

Ψ lin

0

∆Ψ0

Ψ
lin

lin

1
Ψ

0

Ψ
0

0Ψ

∆Ψ

∆Ψ

Ψi Ψi Ψ i

Ψi

ξ

∆Ψ i

ξ

Ψ
lin

ξ
the linear wavefn.

the change in the wavefn.

derivative of the wavefn. wrt parameter p_i

the initial wavefn.

1

1

.5

Comparison of semiorthogonalizations with xi = 1, 0.5, 0
versus no semiorthogonalization



Semiorthogonalization in the linear method

Ψ0 is the initial wave function, Ψζ
i is the derivative of the wave function

wrt parameter pi for ζ. If superscript ζ is omitted that denotes that no
semiorthogonalization is done. Then

Ψlin = Ψ0 +

Nparm∑
i=1

∆Ψζ
i = Ψ0 +

Nparm∑
i=1

∆p
ζ
i Ψ

ζ
i , ∆p

ζ
i =

∆Ψζ
i

Ψζ
i

Note that ||∆Ψζ || is smallest for ζ = 1 and that ||Ψ0.5
lin || = ||Ψ0||.

Also note that when there is just one parameter (can be generalized to
more than one):

1. In the limit that Ψlin ‖ Ψi , ∆pi = ±∞

2. In the limit that Ψlin ⊥ Ψ0, ∆p1
i = ±∞ because ∆Ψ1 = ∞, and,

∆p0
i = 0 because Ψ0

i = ∞

3. ∆p0.5
i is always finite

Note that ∆p
ζ
i decreases as ζ decreases from 1 to 0. In Fig. 1, ∆pi is > 1

for ζ = 1, and, < 1 for ζ = 0.5, 0.
Also note that in Fig. 1 if we rotate Ψlin such that ∇Ψ·Ψ0

||∇Ψ||||Ψ0||
> Ψlin·Ψ0

||Ψlin||||Ψ0||

then ∆pi has the opposite sign as ∆p
ζ
i !



Perturbation Theory in a nonorthogonal basis
Toulouse, CJU, JCP (2007)

Given a Hamiltonian Ĥ and an arbitrary nonorthogonal basis, {|Ψi 〉}, use
perturbation theory to get approximate eigenstates of Ĥ.
Define dual basis: 〈Ψ̄i |Ψj〉 = δij and zeroth order Hamiltonian, Ĥ(0):

〈Ψ̄i | =

Nopt∑
j=0

(S−1)ij〈Ψj |, Ĥ(0) =

Nopt∑
i=0

Ei |Ψi 〉〈Ψ̄i |

First order perturbation correction is

|Ψ(1)〉 = −

Nopt∑
i=1

|Ψi 〉

Nopt∑
j=1

(S−1)ij
〈Ψj |Ĥ|Ψ0〉

Ei − E0

Want Ĥ and Ĥ(0) close – choose Ei so Ĥ and Ĥ(0) have same diagonals

Ei =
〈Ψi |Ĥ|Ψi 〉

〈Ψi |Ψi 〉

If the Ei are evaluated without the Jastrow factor then this is the same as
the perturbative eff. fluct. pot. (EFP) method of Scemama and Filippi 06.



Stabilization

If far from the minimum, or, NMC, is small, then the Hessian, Ēij , need
not be positive definite (whereas variance-minimization
Levenberg-Marquardt Ēij is positive definite).

Even for positive definite Ēij , the new parameter values may make the
wave function worse if quadratic approximation is not good.

Determine eigenvalues, ε, of Ēij and add to it (max(0,−εmin) + adiag)I.
This shifts the eigenvalues by the added constant. As adiag is increased,
the proposed parameter changes become smaller and rotate from the
Newtonian direction to the steepest descent direction, but in practice adiag

is tiny.

The linear method and the perturbative method can be approximately
recast into the Newton method. Consequently we can use the same idea
for the linear and perturbative methods too.



Stabilization with Correlated Sampling

Each method has a parameter adiag that automatically adjusts to make
the method totally stable:

1. Do a MC run to compute the gradient and the Hessian (or overlap
and Hamiltonian).

2. Using the above gradient and Hessian (or overlap and Hamiltonian),
use 3 different values of adiag to predict 3 different sets of updated
parameters.

3. Do a short correlated sampling run for the 3 different wave functions
to compute the energy differences for the 3 wave functions more
accurately than the energies themselves.

4. Fit a parabola through the 3 energies to find the optimal adiag.

5. Use this optimal adiag to predict a new wave function, using the
gradient and Hessian computed in step 1.

6. Loop back



Comparison of Newton, linear and perturbative
methods

Programming effort and cost per iteration:

1. Newton method requires ψ, ψi , ψij , Ĥψ, Ĥψi .

2. Linear method requires ψ, ψi , Ĥψ, Ĥψi .

3. Perturbative method requires ψ, ψi , Ĥψ, Ĥψi .
Perturbative method with approximate denominators requires ψ, ψi .

Correct to which order:

1. Newton has correct 2nd order terms in E .

2. Linear does not have correct 2nd order terms in E but has all order
terms coming from linear terms in Ψ.

Convergence with number of iterations:

1. Newton and linear methods converge in 1-5 iterations for all
parameters (CSF, orbital and Jastrow).

2. Perturbative method converges in 1-5 iterations for CSF and orbital
parameters but is very slow for Jastrow because eigenvalues of
Hessian for Jastrow span 9-12 orders of magnitude.



Things to note

Eigenvalues of Ēij for Jastrow parameters span 11 orders of magnitude. So
steepest descent would be horribly slow to converge!

Linear and Newton methods can be used for all parameters, even basis-set
exponents.

Take Home Message: Any method that attempts to
minimize the energy, by minimizing the energy evaluated
on a set of MC points, will require a very large sample
and be highly inefficient.
Each of the 3 methods presented above avoids doing this.



Optimization of linear combination of energy and
variance

Energy Minimum

Variance Minimum

1. Can reduce the variance,
without sacrificing
appreciably the energy, by
minimizing a linear
combination, particularly
since the ratio of hard to
soft directions is 11 orders
of magnitude.

2. Easy to do – gradient and
Hessian of linear
combination are linear
combinations of the
gradient and Hessian.

3. Measure of efficiency of the
wave function is σ2Tcorr.



Optim. of linear combin. of E and σ
2

(Toulouse, CJU)

E = min
∆p

(
1 ∆pT

) (
E0 H0j

Hi0 Hij

)(
1

∆p

)
(

1 ∆pT
) (

1 S0j

Si0 Sij

) (
1

∆p

) ,

= E0 +
∑

j

(H0j + Hj0 − 2E0S0j)∆pj

+
∑
ij

{Hij − E0Sij − 2(H0i + Hi0)S0j}∆pi∆pj

If this is to equal the 2nd order expansion in the Newton method then

H0j + Hj0 − 2E0S0j = −gj

Hij − E0Sij − 2(H0i + Hi0)S0j =
hij

2
So choose,

H0j + Hj0 = 2E0S0j − gj

Hij = E0Sij + 2(H0i + Hi0)Soj +
hij

2



Convergence of energy of NO2
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Convergence of energy fluctuations, σ, of NO2
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Convergence of autocorrelation time, Tcorr, of NO2
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Convergence of energy of decapentaene C10H12
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Optimization of Jastrow of all-electron C2
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Linear and Newton methods converge in 2-6 iterations, perturbative is slow!



Optimization of CSF coefs. of all-electron C2
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Optimization of orbitals of all-electron C2
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Simultaneous optimization of Jastrow, CSFs and
orbitals of all-electron C2 with linear method

-75.9

-75.8

-75.7

-75.6

-75.5

-75.4

 0  1  2  3  4  5  6

E
n

er
g
y
 (

H
a
rt

re
e)

Iterations



Convergence of C2 and Si2
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Well-depth of C2



Well-Depth of 1st-Row Diatomic Molecules
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Error in Well-Depth of 1st-Row Diatomic Molecules
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Error in Well-Depth of 1st-Row Diatomic Molecules

-6

-5

-4

-3

-2

-1

 0

F2O2N2C2B2Be2Li2

E
r
r
o
r
 i

n
 w

e
ll

 d
e
p

th
 (

e
V

)

Molecules

HF
MCSCF CAS
VMC J × det
DMC J × det



Error in Well-Depth of 1st-Row Diatomic Molecules

-6

-5

-4

-3

-2

-1

 0

F2O2N2C2B2Be2Li2

E
r
r
o
r
 i

n
 w

e
ll

 d
e
p

th
 (

e
V

)

Molecules

HF
MCSCF CAS
VMC J × det
DMC J × det
VMC J × CAS



Error in Well-Depth of 1st-Row Diatomic Molecules

-6

-5

-4

-3

-2

-1

 0

F2O2N2C2B2Be2Li2

E
r
r
o
r
 i

n
 w

e
ll

 d
e
p

th
 (

e
V

)

Molecules

HF
MCSCF CAS
VMC J × det
DMC J × det
VMC J × CAS
DMC J × CAS



Error in Well-Depth of 1st-Row Diatomic Molecules

-6

-5

-4

-3

-2

-1

 0

F2O2N2C2B2Be2Li2

E
r
r
o
r
 i

n
 w

e
ll

 d
e
p

th
 (

e
V

)

Molecules

HF
MCSCF CAS
VMC J × det
DMC J × det
VMC J × CAS
DMC J × CAS



Measures of goodness of variational wave functions

Expectation value of the energy, variance of the local energy and square of
overlap with the ground state (1st , 2nd and 0th moments of Ĥ) are:

ET =
〈ψT|H|ψT〉

〈ψT|ψT〉
= 〈EL〉|ψT|2 =

1

N

∑
i

EL(Ri )

σ2 =
〈ψT|(H − ET)2|ψT〉

〈ψT|ψT〉
=

〈
E 2

L(Ri )
〉
|ψT|2

− 〈EL(Ri )〉
2
|ψT|2

=
1

N

∑
i

E 2
L(Ri ) − E 2

T

Ω2 =
|〈ψ0|ψT〉|

2

〈ψ0|ψ0〉〈ψT|ψT〉
=

∣∣∣∣〈 ψ0

ψT

〉
|ψT|2

∣∣∣∣2〈∣∣∣ ψ0

ψT

∣∣∣2〉
|ψT|2

Since ψ0 is not known, we cannot evaluate Ω as written above. In principle
we can optimize the wave function by minimizing either ET or σ or by
maximizing Ω. For an infinitely flexible wave function all three will yield
the same result, except that minimizing σ could yield an excited state.



Measures of goodness of variational wave funcs

Define (Mora and Waintal, PRL 2007)

Ψ(τ) = e−HτψT =
∞∑
i=0

e−EiτciΨi

Z (τ) = 〈ψT|e
−Hτ |ψT〉

E (τ) =
〈ψT|He−Hτ |ψT〉

〈ψT|e−Hτ |ψT〉
= −

∂

∂τ
lnZ (τ)

Then

lim
τ→∞

Ψ(τ) = lim
τ→∞

e−E0τc0Ψ0

Integrating E (τ) we get

lnZ (τ2) − lnZ (τ1) = −
∫ τ2

τ1
E (τ)dτ

Ω2 =
|〈ψ0|ψT〉|

2

〈ψ0|ψ0〉〈ψT|ψT〉
=

limτ→∞

∣∣∣ eE0τ

c0
Z (τ)

∣∣∣2
limτ→∞

e2E0τ

c2
0

Z (2τ)Z (0)
= lim

τ→∞

|Z (τ)|2

Z (2τ)Z (0)



Measures of goodness of variational wave functions

ln Ω2 = lim
τ→∞

[2 ln(Z (τ) − lnZ (2τ) − lnZ (0)]

= lim
τ→∞

[ln(Z (τ) − ln(0) − {lnZ (2τ) − lnZ (τ)}]

= − lim
τ→∞

[∫ τ

0
E (τ)dτ −

∫ 2τ

τ
E (2τ)dτ

]
= −

∫ ∞

0
(E (τ) − E0)dτ

So,

Ω = e−κ, where, κ =
1

2

∫ ∞

0
(E (τ) − E0)dτ

So, overlap can be deduced from area underneath (E (τ) − E0) curve.



Measures of goodness of variational wave functions

Some things to note:

1. E (τ) must be a monotonically decreasing function of τ , but, ∂E/∂τ
need not be monotonic. If ψT is close to an excited state and has
only a very tiny component in the ground state then E (τ) will have a
tiny negative slope at τ = 0 and the magnitude of the slope will
increase as the ground state component increases before it eventually
decreases to zero. If we start off with no component in the ground
state then we will converge to the lowest excited state for which ψT

has a nonzero component.

2. If two wave functions have the same variational energy but different
σ’s, then the one with the larger σ will likely have the larger overlap
with the ground state.

3. In practice this overlap is useful only for choosing between trial wave
functions for bosonic ground states. For other states one gets the
overlap of each trial wave function with its own fixed-node wave
function, which is not very useful.



Conclusions

1. Three simple, robust and highly efficient methods for energy
optimization.
Newton and linear methods work for all the parameters.
Perturbation theory is least expensive method for optimizing a large
number of orbital parameters but slow for Jastrow.

2. Methods have been used on large systems – 1000 electrons in solid
phases of Silicon.

3. All 3 methods have been used to optimize hundreds of parameters
and perturbative method for a few thousand orbital parameters
(Sorella, Filippi).

4. Optimization of the determinantal coefficients can be very important
for reducing fixed-node error of EDMC.

5. Seemingly similar molecules, e.g. C2 and Si2 have fixed-node errors
for single-determinant wave functions that differ by a factor of 10.
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